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We study the existence and stability of Q-balls in noncanonical scalar field theories, KðjΦj2; XÞ, where
Φ is the complex scalar field and X is the kinetic term.We extend the Vakhitov-Kolokolov stability criterion
to K-field theories. We derive the condition for the perturbations to have a well-posed Cauchy problem.
We find that K;X > 0 and K;X þ XK;XX > 0 are necessary but not sufficient conditions. The perturbations
define a strongly hyperbolic system if ðK;X − 2ϕ02K;XXÞðK;X þ 2ω2ϕ2K;XXÞ > 0. For all modifications
studied, we found that perturbations propagate at a speed different from light. Generically, the noncanonical
scalar field can lower the charge and energy of the Q-ball and therefore improves its stability.

DOI: 10.1103/PhysRevD.107.104058

I. INTRODUCTION

Q-balls are pseudolike particles that could be defined as
lumps of a singularity-free scalar field with finite energy.
They have been originally discovered in [1] and independ-
ently rediscovered in [2]. Contrary to solitons, they do not
have a topological charge but a Noether charge based
originally on the Uð1Þ global symmetry, and therefore they
belong to the class of nontopological solitons. The scalar
field is captured in some region of space because of
nonlinear self-interaction, therefore forming a pseudolike
particle carrying charge and energy.
Q-balls can be produced via many mechanisms, which

makes them very interesting, in particular in cosmology.
Indeed, they could be produced from inflationary models,
such as natural inflation [3,4], where if a complex scalar
field with a global symmetry is spontaneously broken, we
end up with the inflaton as the goldstone boson and a
naturally flat potential due to the shift symmetry. Also in
supersymmetric extensions of the standard model (see,
e.g., [5]), Q-balls emerge naturally where the global charge
could be assumed by the baryon or the lepton number.
For example, the Affleck-Dine mechanism [6,7] uses the
supersymmetric flat directions to generate baryogenesis.
In this context, some of these flat directions (scalar field)
can be parametrized as a complex field, which is in general
a condensate of squarks, sleptons, and Higgs field. This
condensate can be unstable and form Q-balls [8].

Of course, the most interesting property of Q-balls is
their stability, because they could then be considered dark
matter candidates [9,10]. For that reason, it will be our main
focus in this paper along with some interesting properties
related to their existence. The analysis of the classical
stability was studied in [11,12] where they found that
considering aQ-ball of frequency ω and chargeQ, stability
is similar to the condition dQ=dω < 0. It was shown in [13]
that the stability of gauged Q-balls is not related to this
condition. It would be interesting to see the extension of
this criteria to global chargeQ-balls but in modified gravity
theories.
We will study three types of stability conditions that

appear in the literature [14], namely, classical stability as
we have previously mentioned, absolute stability, and
stability against fission [12].
In most of the papers, a canonical scalar field is assumed,

which appears naturally at low energies of various theories.
But studying Q-balls in the early universe might modify
this simple picture. Indeed, e.g., higher dimensions natu-
rally produce scalar fields with nonlinear kinetic terms
such as D3-brane [15] or in the context of braneworld
gravity [16]. Also in string theory, a rolling tachyon has a
Dirac-Born-Infeld (DBI) type of action [17]. It is therefore
natural to look to noncanonical scalar fields. Q-balls in the
DBI type of kinetic term was studied in [18] along with its
stability using catastrophe theory [19]. In this context, we
will study Q-balls in the context of a complex K-field also
known as K-inflation [20] or K-essence [21].
The plan of the paper is as follows. We introduce the

model before discussing the stability conditions encoun-
tered in the literature. In the next section, we analyze the
range of existence of the Q-balls and define the energy
conditions for these solutions. Finally, we will study
numerically the properties of the Q-balls before studying
the equation of perturbation. We analyze the strong
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hyperbolicity of these equations along with the stability of
the Q-ball before conclusions.

II. Q-BALLS

Let us consider the density Lagrangian

L ¼ KðjΦj2; XÞ; ð2:1Þ

where K is a generic function of a complex scalar field Φ
and the kinetic term X ¼ −∂μΦ∂

μΦ�. The equation of
motion is

∇μðK;X∂
μΦÞ þΦK;jΦj2 ¼ 0; ð2:2Þ

where we have used the notation K;A ≡ ∂K=∂A.
The model admits a global U(1) symmetry with which

the associated Noether current is

jμ ¼ iK;XðΦ�
∂
μΦ −Φ∂

μΦ�Þ: ð2:3Þ

This current is conserved ∂μjμ on-shell. The corresponding
conserved scalar charge (or total particle number) is

Q ¼
Z

d3xj0 ¼ i
Z

d3xK;XðΦ _Φ� − _ΦΦ�Þ: ð2:4Þ

To obtain the energy, we define the canonical conjugate
momenta to the variables Φ and Φ�,

πΦ ¼ ∂L

∂ _Φ
¼ K;X

_Φ�; ð2:5Þ

πΦ� ¼ ∂L

∂ _Φ� ¼ K;X
_Φ; ð2:6Þ

so the Hamiltonian density is

H ¼ πΦ _Φþ πΦ� _Φ� − L ¼ 2j _Φj2K;X − K: ð2:7Þ

The energy of the system is then

E ¼
Z

d3xð2j _Φj2K;X − KÞ: ð2:8Þ

We are looking for solutions that minimize the energy for a
given charge Q. For that, we define the functional

Eω ¼ Eþ ω

�
Q − i

Z
d3xK;XðΦ _Φ� − _ΦΦ�Þ

�
; ð2:9Þ

where ω is a Lagrange multiplier which enforces the given
charge Q. We have

Eω¼ωQþ
Z

d3x½KXð2j _Φj2− iωðΦ _Φ�− _ΦΦ�ÞÞ−K�

¼ωQþ
Z

d3x½KXj _Φ− iωΦj2þKXðj _Φj2−ω2jΦj2Þ−K�:

ð2:10Þ

In the case of a canonical scalar field,K ¼ X − VðjΦj2Þ, we
have

Eω ¼ ωQþ
Z

d3x½j _Φ − iωΦj2 − ω2jΦj2 þ j∇!Φj2

þ VðjΦj2Þ�; ð2:11Þ

where we used that X ¼ −∂μΦ∂
μΦ� ¼ j _Φj2 − j∇!Φj2. We

can therefore conclude that for a given chargeQ, the energy
is minimized when _Φ − iωΦ ¼ 0, which means for
Φðt; x⃗Þ ¼ ϕðx⃗Þeiωt [12]. This simple argument for the
canonical scalar field cannot be easily generalized to the
K-field. But we observe that in the general case, if
Φðt; x⃗Þ ¼ ϕðx⃗Þeiωt,

Eω ¼ ωQ −
Z

d3xK; ð2:12Þ

which implies that the extrema of the energy (for a fixed
charge) coincide with the extrema of the action. Therefore
solutions of the following type Φðt; x⃗Þ ¼ ϕðx⃗Þeiωt extrem-
ize the energy. Even if we do not know of the existence of
other solutions that could also extremize the energy func-
tional, we will assume in the future for this paper this time-
dependent phase of the solution.
For a given model, the only parameter that characterizes

the energy E and the chargeQ is the parameterω. Therefore
we can consider that energy and charge are functions of ω,
thus differentiating the energy, and we get

dE
dω

¼
Z

d3x½2ωϕ2K;X þ 4ω3ϕ4K;XX�: ð2:13Þ

Performing the same differentiation of the charge Q, we
found

dE
dω

¼ ω
dQ
dω

; ð2:14Þ

which extends to K-field results from [11]. When dQ
dω ¼ 0,

also dE
dω ¼ 0, which corresponds to the existence of

extremum of the charge and the energy at the same time.
They will correspond to the cusps in the diagram EðQÞ.
When dQ

dω ≠ 0, we obtain

dE
dQ

¼ ω; ð2:15Þ
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which corresponds to the generic relation found for a Uð1Þ
Q-ball.

III. STABILITY

Usually, three different stability criteria are discussed in
the literature. The first condition considers that a given
Q-ball should not decay into smaller Q-balls, sometimes
referred to as stability against fission [12]. In that case, the
stability translates into

EðQ1 þQ2Þ < EðQ1Þ þ EðQ2Þ; ð3:1Þ

and if taking derivatives with respect to both charges (Q1,
Q2), we obtain the equivalent condition d2E

dQ2 < 0; by using

Eq. (2.15) it reduces to dQ
dω < 0. Notice the similarity with

the more generic Vakhitov-Kolokolov stability criterion
[22] (or spectral stability). Of course, because of Eq. (2.14),
we could equivalently consider dE

dω < 0.
The second stability criterion considers decay into free

particles of mass M ¼
ffiffiffiffiffiffiffiffiffi
V 00ð0Þ
2

q
. To avoid the decay of a

Q-ball intoQ free particles with the rest massesM, we need
to consider EðQÞ < MQ.
Finally, the last stability considers the time evolution of

small perturbations, the so-called classical stability that we
will analyze later.
Notice that from the catastrophe theory, a simple criteria

of stability has been proved [23]. Indeed, considering the
diagram EðQÞ, the lowest branch corresponds to the stable
soliton while the upper branch is unstable. This condition
will be found to be equivalent to the linear stability.

IV. EXISTENCE

In this section, we briefly summarize the conditions of
the existence of Q-balls. These conditions are obtained by
constraining the shape of the potential.
Considering a flat spherically symmetric spacetime, and

Φ ¼ ϕðrÞeiωt, Eq. (2.2) becomes

K;Xðϕ00ðrÞ þ 2

r
ϕ0ðrÞ þ ω2ϕðrÞÞ þ ϕ0ðrÞX0ðrÞK;XX

þ ϕ0ðrÞ2K;ϕX þ 1

2
K;ϕ ¼ 0 ð4:1Þ

with X ¼ ω2ϕðrÞ2 − ϕ0ðrÞ2.
Let us first consider the canonical case, namely

K ¼ X − VðϕÞ. The equation of motion reduces to

ϕ00ðrÞ þ 2

r
ϕ0ðrÞ þ ω2ϕðrÞ − V 0ðϕÞ

2
¼ 0; ð4:2Þ

which can be written as

ϕ00ðrÞ þ 2

r
ϕ0ðrÞ − V 0

effðϕÞ ¼ 0 ð4:3Þ

with VeffðϕÞ ¼ ðVðϕÞ − ω2ϕ2Þ=2. We see that the ω2 term
acts as a tachyonic contribution to the mass of the field,
which will produce solitonic solutions otherwise absent for
ω ¼ 0. Considering only solutions with finite energy, the
energy functional (2.8) E ¼ R

d3xðϕ0ðrÞ2 þ ω2ϕ2 þ VðϕÞÞ
implies that ðϕ;ϕ0Þ → 0 for r → ∞ and Vð0Þ ¼ 0 [we
assumed VðϕÞ > 0].
It is easier to use the analogy with a particle in

Newtonian mechanics, namely replacing ϕ→x and r→ t
which gives ẍþ2

t _xþW0
effðxÞ¼0, whereWeffðxÞ¼−VeffðxÞ.

Looking for a trajectory ϕðrÞ or equivalently xðtÞ, we need
to impose xð∞Þ ¼ 0 to obtain a finite energy solution.
Therefore, the problem reduces to classifying the different
trajectories of the equivalent particle giving finite energy. It
is easy to show [2] that we need to imposeW00

effð0Þ < 0 and
WeffðϕÞ > 0 around ϕðr ¼ 0Þ. These conditions translate

into V 00ð0Þ > 2ω2 as well as minðVðϕÞ
ϕ2 Þ ≤ ω2. Thus, non-

renormalizable potentials have to be considered and the
simplest could be VðϕÞ ¼ m2ϕ2 − bϕ4 þ λϕ6. The pre-
vious constraints reduce to

0 < m2 −
b2

4λ
< ω2 ≤ m2: ð4:4Þ

The positivity ofm2 − b2=4λ is imposed by demanding that
Vð0Þ is a global minimum. In this paper, we will normalize
[24] the parameters such as λ ¼ 1 and b ¼ 2 which implies
m > 1. Therefore we will considerm2 ¼ 1.1 which implies
0.32 < ω ≤ 1.05. The Q-ball will exist only in this range
of frequencies. It is important to mention that this range
will change for K-fields. For example, in a model where
K ¼ X þ αX2 − VðϕÞ, we have around r ¼ 0, and using
the condition ϕ0ðr ¼ 0Þ ¼ 0, ϕ00ðrÞ þW0

effðϕÞ ≃ 0 with

W0
eff ¼ ω2ϕ −

m2 − 2bϕ2 þ 3λϕ4

1þ 2αω2ϕ2
ϕ: ð4:5Þ

Therefore the condition Weff > 0 for some range of the
scalar field implies a different value for the minimum of ω.
For our parameters, we found that with good accuracy,
ωmin ≃ ð1þ α=30Þ= ffiffiffiffiffi

10
p

while ωmax remains unchanged.
Another important condition for the existence of the

Q-ball is the nature of the differential equation. We have an
equation

ðK;X − 2ϕ02K;XXÞϕ00 þ Fðϕ;ϕ0Þ ¼ 0: ð4:6Þ

To avoid singular points, we need to impose
K;X − 2ϕ02K;XX ≠ 0. Therefore, for any model, smoothly
connected to the canonical case, K;X − 2ϕ02K;XX ¼ 1, we
should imposeK;X − 2ϕ02K;XX > 0. Considering the model
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K ¼ X þ αX2 − Vðϕ2Þ, we have 1þ 2αω2ϕ2 − 6αϕ02 > 0.
Around the origin, we have ϕ0 ¼ 0, which implies the
condition 1þ 2αω2ϕ2

0 > 0 and therefore large negative
values of α will not be allowed.

V. ENERGY CONDITIONS

For these type of models, the fluid interpretation is not
suitable because the kinetic term does not have a definite
sign. But, it is mostly positive in the interior of the Q-ball
and becomes negative near the surface of the Q-ball.
Therefore, deep inside the Q-ball, we can use the hydro-
dynamical interpretation of the scalar field, by defining the
energy-momentum tensor

Tμν ¼ Kgμν þ K;Xð∂μΦ∂νΦ� þ ∂μΦ�
∂νΦÞ ð5:1Þ

from which we define the energy density ρ ¼
2j _Φj2K;X − K ¼ 2ω2ϕðrÞ2K;X − K, the radial pressure
Pr ¼ 2ϕ0ðrÞ2K;X þ K, and finally the tangential pressure
Pt ¼ K. These quantities can be converted into the pressure
P ¼ ðPr þ 2PtÞ=3 and the shear force S ¼ Pr − Pt. Notice
that the energy defined from E ¼ R

d3xT00 corresponds
to Eq. (2.8).
The hydrodynamical approach helps to obtain easily the

energy conditions such as the strong energy condition
(SEC)

K;X ≥ 0; K þ ðω2ϕ2 þ ϕ02ÞK;X ≥ 0; ð5:2Þ

the dominant energy condition (DEC)

K;X ≥ 0; ðω2ϕ2 − ϕ02ÞK;X − K ≥ 0; ð5:3Þ

the weak energy condition (WEC)

K;X ≥ 0; 2ω2ϕ2K;X − K ≥ 0; ð5:4Þ

and the null energy condition (NEC)

K;X ≥ 0: ð5:5Þ

We notice that K;X ≥ 0 is common to all energy conditions.

VI. NUMERICAL ANALYSIS

As we have mentioned, Q-balls are finite energy objects
and therefore with a finite space extension, which imposes
the asymptotic condition ϕð∞Þ ¼ 0. Therefore we have
used a shooting method for each value of the frequency ω
with mixed boundary conditions ϕ0ð0Þ ¼ 0 and ϕð∞Þ ¼ 0.
In practice, we have integrated the system from r ¼ 10−30

to some value, rmax, and demanded that the solution
remains unchanged if we increase rmax. In Fig. 1, we have
considered the standard model KðXÞ ¼ X − VðjΦj2Þ with
the potential defined in Sec. IV. For lower frequencies, or
the thin wall limit, the scalar field is constant and at some
radius (often considered as the Q-ball radius) the scalar
field drops rapidly to zero, while for larger values of ω, also
known as the thick wall limit, the scalar field is more
shallow. The latter will be unstable. In the same graphics,
we have represented the energy and the charge. The energy
and charge seem to diverge for the frequencies ωmin and
ωmax. Also EðωÞ and QðωÞ reach their minimum for the
same frequency, defining therefore a cusp in the energy vs
charge graphics. We show also the stability conditions of
the Q-balls. The stability criteria against decay is stronger
than the fission stability condition. In the ðQ;EÞ plot, it is

FIG. 1. Left: The field ϕðrÞ is shown as a function of the radial coordinate for different values of ω. For each value of ω, ϕð0Þ is
adjusted such that ϕð∞Þ ¼ 0. Center: The energy E and the charge Q are shown as a function of the frequency ω with the critical
frequency (change of colors) defined by the condition dQ=dω ¼ 0. Right: The energy is shown as a function of the charge. For all
graphics, in green we have stable configurations according to the fission stability criteria, while in red we have unstable solutions. In the
first figure, the solution for the critical frequency is shown in blue, and in the third graphics, we have added the decay stability criteria
that is shown by a red solid line and red dashed line for the unstable solutions while the fission unstable configurations are represented
only by a red solid line.
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easy to determine the stable Q-ball. Indeed, for every given
charge Q, two Q-balls exist, and the one with the smallest
energy corresponds to the solution stable under fission. We
will see later that it corresponds also to the stable solution
under linear perturbations.
Q-balls have also excited states that correspond to

solutions with nodes but with the same limit at infinity,
namely ϕð∞Þ ¼ 0. In Fig. 2, we show the first and second
excited modes for a given frequency ω. To fulfill the
boundary conditions, for excited states, the initial con-
ditions must be extremely fine-tuned. The excited states
have as expected larger energy but also charge. We found
that the frequency corresponding to dE=dω ¼ 0 becomes
larger with the number of nodes. For example, for the
fundamental mode, we have a minimal energy for

ω ¼ 0.972, while ω ¼ 1.015 for the first excited mode
and ω ¼ 1.025 for the second excited mode.
All these solutions are easily generalized to K-field

theories. We will consider the simplest model where the
action is modified by a single parameter, K ¼ X þ αX2 −
VðjΦjÞ where α is the new parameter of the model.1

Generically, we found that the structure of the solutions
will not change. Q-balls exist for a certain range of
frequency which depends on the parameter α. We see from
Fig. 3 that for a given frequency, the Q-ball lowers its
energy for large positive values of the parameter α, because
the radius decreases. Notice that the critical value,
ðE0ðωÞ ¼ 0Þ, of the energy and charge is also lowered
for larger values of α. Therefore, for a given frequency, the
modified model with α > 0 produces Q-balls with lower
charge and energy. The modification by the K-field allows
one to buildQ-balls with small charge and energy or on the
contrary with larger energy and charge. Finally, we found
that for all values of the parameter α, in the limit of
ω → ωmax, or the thick-wall limit, we have the scaling
solution E ¼ ωQγ with γ ¼ 1� 10−4. This expression
generalizes results found in [14].
In Fig. 4, we show the energy versus the frequency

for different values of α but with the information on
the violation of the energy conditions. We see that NEC
is never violated. This condition corresponds to
1þ 2αðω2ϕ2 − ϕ02Þ > 0. It could be violated for very

FIG. 2. The field ϕðrÞ is shown as a function of the radial
coordinate for the fundamental mode (green curves), the first
(purple curves), and the second (blue curves) radial excited mode
for ω ¼ 0.7. We also show the evolution of the energy as a
function of the frequency. The dashed region corresponds to the
unstable solutions according to the fission stability criteria.

FIG. 3. The energy is shown as a function of charge for
different values of the parameter α which runs from α ¼ −0.5
in red to α ¼ 0.5 in purple with an incrementation of 0.1.

1We assume our model corresponds to the low energy effective
field theory where a small-X expansion is possible and therefore
terms Xn with n ≥ 3 are negligible. This is the complex
analogous of [25] where α−1=4 is a cutoff scale.
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negative values of α, but the construction of Q-balls for
α < −0.5 becomes very challenging and often impossible.
In general, the larger and positive α, the lower the
probability to violate an energy condition, except for the
SEC which is violated for any α.

VII. PERTURBATIONS

To study the mechanical stability, we decompose our
field as

Φðt; r; θ;φÞ ¼ ϕðrÞeiωt þ
X
l;m

δΦlmðt; rÞeiωtYm
l ðθ;φÞ;

where ϕðrÞ is the background scalar field studied in the
previous sections, δΦlm is the scalar field perturbation,
eiωt in the second term is included for convenience, and
Ym
l are spherical harmonics. Because of the symmetries of

the Q-balls, the perturbations will be independent of the
azimuthal numberm, and therefore the spherical harmonics
reduce to Legendre polynomials. We will fixm ¼ 0. Notice
that the different modes, l, do not couple and therefore
we will omit this index. At second order in perturbations,
and after integrating over the angle variables, the action
reduces to

S ¼
Z

dtdr½r2K;X
_Ψ2
1 − r2ðK;X − 2ϕ02K;XXÞΨ02

1

þ r2ðK;X þ 2ω2ϕ2K;XXÞ _Ψ2
2 − r2K;XΨ02

2

− 2ωr2ϕϕ0K;XXð _Ψ1Ψ0
2 þ Ψ0

1
_Ψ2Þ

þ Að _Ψ1Ψ2 −Ψ1
_Ψ2Þ −M2

1Ψ2
1 −M2

2Ψ2
2�; ð7:1Þ

where we have decomposed the perturbation into its real
and imaginary parts, δΦ ¼ Ψ1 þ iΨ2, and

A ¼ −2ωr2
d

dðϕ2Þ ðϕ
2K;XÞ − ω

d
dr

ðr2ϕϕ0K;XXÞ;

M2
1 ¼ λK;X −

r2

2
K;ϕϕ −

d
dr

ðr2ϕ0K;XϕÞ;
M2

2 ¼ λK;X − r2ðK;ϕ2 þ ω2K;XÞ;
λ ¼ lðlþ 1Þ: ð7:2Þ

From this action, we obtain the two coupled equations for
linear perturbations

− K;XΨ̈1 þ ðK;X − 2ϕ02K;XXÞΨ00
1 þ 2ωϕϕ0K;XX

_Ψ0
2

þ F1ðr;Ψ1;Ψ2;Ψ0
1; _Ψ2Þ ¼ 0; ð7:3Þ

− ðK;X þ 2ω2ϕ2K;XXÞΨ̈2 þ K;XΨ00
2 þ 2ωϕϕ0K;XX

_Ψ0
1

þ F2ðr;Ψ1;Ψ2;Ψ0
2; _Ψ1Þ ¼ 0; ð7:4Þ

with F1 and F2 some functions defined by the perturbations
and their first derivative.
These equations form a set of two coupled differential

equations representing the evolution of the perturbations in
an effective metric. Indeed, if we consider, e.g., Eq. (7.3),
and in the absence of coupling between Ψ1 and Ψ2, i.e.,
ω ¼ 0, the equation would reduce to the generic form
hμν∇μνΨ1 þ � � � ¼ 0, with h00 ¼ −K;X and h11 ¼ K;X−
2ϕ02K;XX, from which we obtain the stability conditions,
i.e., a Lorentzian effective metric h00 < 0 and h11 > 0.
These conditions are equivalent to the Hamiltonian of field
perturbations to be positive definite; indeed, as seen from
Eq. (7.1), the Lagrangian (of Ψ1 in the case of ω ¼ 0)
reduces to L ¼ r2ð−h00 _Ψ2 − h11Ψ02Þ and therefore to a
Hamiltonian H ¼ r2ð−h00 _Ψ2 þ h11Ψ02Þ. The Hamiltonian
is bounded from below [26,27] if we satisfy the conditions
for an effective Lorentzian metric

K;X > 0;

K;X − 2ϕ02K;XX > 0 ⇔ K;X þ 2XK;XX > 0 ðω ¼ 0Þ:

But as nicely stated in [28], one should be careful, because
Hamiltonian unboundedness is not always equivalent to
stability. A Hamiltonian can be unbounded only because of
our set of variables chosen. Therefore, stability should be

FIG. 4. Energy versus frequency for the K-field model with α
running from −0.5 (in red) to þ0.5 (in purple) with a step of 0.1.
For each panel, we have represented in dotted lines the regime
where some energy condition is violated. From top left to bottom
right, we show the violation of the SEC, DEC, WEC, NEC.
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imposed only from the existence of a future causal cone
defined by the effective metric. In conclusion, to study
stability, we need to ensure that the problem is well-posed.
For that, we will derive the conditions of weak and strong
hyperbolicity. Broadly speaking, the weak hyperbolicity
condition forbids any solution to grow exponentially in
time while the strong hyperbolicity condition imposes a
stronger bound than the exponential growth and therefore is
equivalent to local well-posedness of the Cauchy problem.
In the case of a strong hyperbolic system, F1 and F2 will
not be relevant while they could change the behavior of
the system if weakly hyperbolic. We define the vector
u ¼ ðΨ1;Ψ2ÞT and the system (7.3) and (7.4) becomes

u;tt ¼ Au00 þ Bu0;t þ � � � ; ð7:5Þ

where � � � indicates the lowest derivative terms and

A11 ¼
K;X − 2ϕ02K;XX

K;X
; ð7:6Þ

A22 ¼
K;X

K;X þ 2ω2ϕ2K;XX
; ð7:7Þ

B12 ¼ 2ωϕϕ0 K;XX

K;X
; ð7:8Þ

B21 ¼ 2ωϕϕ0 K;XX

K;X þ 2ω2ϕ2K;XX
; ð7:9Þ

while other elements of the matrices are zero. We consider
wave solutions uðt; rÞ ¼ eikrûðt; kÞ and obtain

û;tt ¼ −k2Aûþ ikBû;t þ � � � : ð7:10Þ

This system can be reduced to first order by defining the
variable v̂ ¼ û;t=ðijkjÞ:�

v̂

û

�
;t

¼ ijkjP̂
�
v̂

û

�
ð7:11Þ

with

P̂ ¼

0
BBB@

0 k
jkjB12 A11 0

k
jkjB21 0 0 A22

1 0 0 0

0 1 0 0

1
CCCA: ð7:12Þ

Thewell-posedness of this system is reduced to the analysis
of the matrix P̂ (see, e.g., [29]). If, for all k, the eigenvalues
of P̂ are real, the system is weakly hyperbolic. The
eigenvalues are

(
�1;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K;X − 2ϕ02K;XX

K;X þ 2ω2ϕ2K;XX

s )
: ð7:13Þ

Therefore, we conclude that, if K;X−2ϕ02K;XX

K;Xþ2ω2ϕ2K;XX
≥ 0, the

system is weakly hyperbolic. Additionally, when

K;X − 2ϕ02K;XX

K;X þ 2ω2ϕ2K;XX
> 0; ð7:14Þ

the system is strongly hyperbolic because the eigenvectors
form a complete set. In that case, the two perturbations
propagate at the speed

c1 ¼ 1; c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K;X − 2ϕ02K;XX

K;X þ 2ω2ϕ2K;XX

s
: ð7:15Þ

As we have shown in Sec. IV, we consider the condition
K;X − 2ϕ02K;XX > 0 which implies K;X þ 2ω2ϕ2K;XX > 0.
Summing these two conditions, we find a weaker con-
dition, viz. K;X > 0 and K;X þ XK;XX > 0. Notice that
for a real scalar field (ω ¼ 0), the condition K;X þ
2ω2ϕ2K;XX > 0 reduces to K;X > 0 along with the con-
dition K;X − 2ϕ02K;XX > 0 (K;X þ 2XK;XX > 0), and they
correspond to the stability conditions obtained in [27].
Notice that the conditions of well-posedness of the

system are independent of the energy conditions derived
previously, (5.2), (5.3), (5.4), and (5.5). In Fig. 5, and for
the model K ¼ X þ αX2 − VðϕÞ, we have found that for a
certain range of the parameters ðω; αÞ, the Cauchy problem
is not well-posed which never corresponds to α > 0.
Also we found that for any α < 0, the perturbations are
superluminal in some region of space. Even if the classical
theory is well-posed, the superluminal propagation of the
perturbations could be an obstacle to a quantum version
of the theory. For example, requiring UV completion for
K-essence (real scalar field analog to the case studied in
this paper) imposes subluminal propagation [30]. A similar
situation should be expected in our case [25]. Even if not
equivalent, we found numerically, for all parameters ðω; αÞ
of Fig. 5, that a system which violates a weak energy
condition does not have a well-posed Cauchy problem. The
converse is not true.
Restricting our analysis to the cases where the Cauchy

problem is well-posed, we can study the mechanical
stability of our solutions. For that, we assume the following
form for the perturbation:

δΦðt; rÞ ¼ ηðrÞ
rn

eiρt þ χ�ðrÞ
rn

e−iρ
�t: ð7:16Þ

The system (7.3) and (7.4) reduces to two ordinary coupled
differential equations for ηðrÞ and χðrÞ. We have included a
factor rn for numerical stability. In general, n ¼ l provides
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faster numerical results. In the canonical case where
K;X ¼ 1, the stability analyses shows that any instability
corresponds to ρ ¼ −ρ� [13], which implies the condition
dQ
dω < 0. We could not extend this analysis to K-field
theories, and therefore we will study the perturbations
by numerical means. For that, our system can be written as
the four first order differential equations for the variable
Ψ≡ ðη; χ; η0; χ0ÞT , Ψ0 ¼ BΨ where the matrix B is given
in Appendix. Considering the conditions at r ¼ 0 on the
scalar field, ϕ0 ¼ 0, it is easy to show that perturbations
behave as

ηðr ≃ 0Þ ¼ c0rlþn; ð7:17Þ

χðr ≃ 0Þ ¼ c1rlþn; ð7:18Þ

which implies

Ψð0Þ¼ c0rlþn−1

0
BBB@

r

0

lþn

0

1
CCCAþc1rlþn−1

0
BBB@

0

r

0

lþn

1
CCCA: ð7:19Þ

Therefore, we can perform two numerical integrations
from r ¼ 0 with initial conditions η ¼ rlþn; χ ¼ 0 and
η ¼ 0; χ ¼ rlþn, respectively. The general solution will be
a linear combination of these two solutions with coeffi-
cients ðc0; c1Þ. Similarly, we perform an integration from
infinity to r ¼ 0. We have also a system with two free
parameters ðc3; c4Þ. We can integrate it from a large radius
with initial conditions

η ¼ e
−r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
K
;ϕ2

ð0;0Þ
K;X ð0;0Þ−ðρþωÞ2

q
r1−n

; χ ¼ 0; ð7:20Þ

or

χ ¼ e
−r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
K
;ϕ2

ð0;0Þ
K;X ð0;0Þ−ðρ−ωÞ2

q
r1−n

; η ¼ 0: ð7:21Þ

Having the solution integrated from both boundaries with
four free parameters ðc1; c2; c3; c4Þ, we can match them
at a given radius, using the four continuity conditions of
ðη; χ; η0; χ0Þ. Notice that, because our system is linear,
we can always fix one of the parameters, e.g., c1 ¼ 1.
Therefore, we end with a system of four conditions and
three parameters; the fourth parameter will determine the
value of ρ. In conclusion, only a certain number of discrete
values of ρ can solve our problem.
In Fig. 6, we show jϕþ δΦj2, for ω ¼ ð0.5; 1Þ and

α ¼ 0. For each case, we have found the parameter ρ and

FIG. 5. In gray, the region of parameter space ðω; αÞ where the
Cauchy problem is not well-posed and in cyan the region of
superluminal propagation.

FIG. 6. Spacetime diagram of jΦj2. The upper diagram shows
the stability of the background solution with ω ¼ 0.5 and the
lower case shows an unstable solution for ω ¼ 1. For both
solutions, we have considered α ¼ 0.
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using Eq. (7.16), we obtain the time and space dependence
of the solution. In the case where ω ¼ 0.5, the radius of
the Q-ball is oscillating, and ρ is real. The energy of this
solution is constant in time, while for ω ¼ 1, the energy
grows exponentially as well as the radius of theQ-ball. The
solution is unstable and ρ is purely imaginary.
Therefore, the strategy is simple: for each Q-ball, we

search in the complex plane for values of the ρ solution to
our previous problem.
For the excited states, all frequencies ω were unstable.

But for various frequencies, the unstable modes were not
always purely imaginary but also with a nonzero real part.
For the fundamental solution, Fig. 6 shows two cases

where α ¼ 0 and ω ¼ ð0.5; 1Þ. The first frequency corre-
sponds to a stable solution for which we see an oscillation
of the radius of the Q-ball while the energy remains
perfectly constant in time. The second case corresponds
to an unstable solution for which the radius increases and
the energy grows exponentially.
Generically, we found that the stability region corre-

sponds to dQ=dω < 0 for all ω, generalizing results that
were known in the canonical case. In the unstable region,
the timescale of the instability is of the order 1=ImðρÞ.
We found that ImðρÞ, and therefore the timescale of the
instability depends on the mode l. For example, for α ¼ 0,
ImðρÞ is of the order 10−1 for l ¼ 0 and of the order 10−4

for l ¼ 1. Therefore, we will focus mainly on the spherical
mode of perturbations l ¼ 0.
In Fig. 7, we show the unstable modes for three values

of α. For each α, the instability starts when dQ=dω ¼ 0.
We notice also that even if for a given frequency, such as
ω ¼ 1.03, the Q-ball is unstable for all values of the
parameter α, the instability is slower to develop [lower
value of ImðρÞ], for larger positive values of α, which is
consistent with the previous section where we found that
the energy is lowered.

In Fig. 8, we summarize the various stability conditions.
The quantum stability condition, namely the stability
against fission is, as expected, stronger than the classical
stability condition. We have also represented regions where
the energy conditions are violated. The NEC is never
violated in the region of analysis of the model while the
WEC is violated only in the region where the Cauchy
problem is not well-posed. The violation of the SEC and the
DEC are totally independent of the stability conditions.

VIII. CONCLUSION

In this work we studied Q-balls in noncanonical scalar
field theory. We derived the general equations of existence
and stability for these theories. We found that the stability
against fission and the linear mechanical stability are
equivalent and reduce to Q0ðωÞ < 0 (see Table I). On
the other hand, the condition for decay into free particles is
stronger.
We found that perturbations have a well-posed Cauchy

problem if K;X−2ϕ02K;XX

K;Xþ2ω2ϕ2K;XX
> 0. When the perturbations are

FIG. 7. Existence of ImðρÞ as a function of ω for
α ¼ ð−0.5; 0;þ0.5Þ. The existence of such a mode implies an
instability of the background solution. The dotted line corre-
sponds to unstable modes but in a region where the Cauchy
problem is not well-posed and therefore should be excluded from
the analysis.

FIG. 8. Space of parameters ðω; αÞ within the region where the
Cauchy problem is well-posed. Represented regions of quantum
stability (against fission) and classical stability as well as regions
where the energy conditions such as the SEC and DEC are
violated. We have kept the cyan and white colors for, respectively,
superluminal and subluminal propagation.

TABLE I. Summary of the three stability conditions studied in
this paper and extended to K-field theories.

Stability conditions

Fission dQ
dω < 0 Proved for K-field theories

Decay E < MQ Generic condition (for any theory)
Classical dQ

dω < 0 Shown numerically to be the same
condition for K ¼ X þ αX2 − VðjΦj2Þ
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strongly hyperbolic, we found that perturbations are super-
luminal or subluminal. In the particular case, K ¼
X þ αX2 − VðjΦj2Þ, perturbations are subluminal and
luminal for α > 0 while they are superluminal and luminal
for α < 0. We found that a Q-ball with α > 0 lowers its
energy for larger values of α. Even in the unstable region,
the timescale of this instability becomes larger and there-
fore more stable. The frequency at which Q-balls become
unstable increases with α. It would be interesting to find
models for which all Q-balls are stable irrespectively of
their frequency.
Finally, we have studied the different energy conditions

such as the SEC, DEC, WEC, NEC. We found that NEC is
never violated and none of these conditions can be related
to mechanical stability.
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APPENDIX: PERTURBATION EQUATIONS

The matrix of the system Ψ0 ¼ BΨ can be decomposed
as B ¼ Bð0Þ þ ρBð1Þ þ ρ2Bð2Þ, where

Bð0Þ ¼

0
BBBBB@

0 0 1 0

0 0 0 1

Bð0Þ
31 Bð0Þ

32 Bð0Þ
33 Bð0Þ

34

Bð0Þ
32 Bð0Þ

31 Bð0Þ
34 Bð0Þ

33

1
CCCCCA; ðA1Þ

Bð1Þ ¼

0
BBBBB@

0 0 0 0

0 0 0 0

Bð1Þ
31 Bð1Þ

32 Bð1Þ
33 Bð1Þ

34

−Bð1Þ
32 −Bð1Þ

31 −Bð1Þ
34 −Bð1Þ

33

1
CCCCCA; ðA2Þ

Bð2Þ ¼

0
BBB@

0 0 0 0

0 0 0 0

Bð2Þ
31 Bð2Þ

32 0 0

Bð1Þ
32 Bð1Þ

31 0 0

1
CCCA; ðA3Þ

with

Bð0Þ
31 ¼ 1

2r2

�
M2

1

K;X − 2ϕ02K;XX
þ M2

2

K;X

�
; ðA4Þ

Bð0Þ
32 ¼ 1

2r2

�
M2

1

K;X − 2ϕ02K;XX
−
M2

2

K;X

�
; ðA5Þ

Bð0Þ
33 ¼ −

2

r
−
1

2

d
dr

logðK;XðK;X − 2ϕ02K;XXÞÞ; ðA6Þ

Bð0Þ
34 ¼ 1

2

d
dr

log
K;X

K;X − 2ϕ02K;XX
; ðA7Þ

Bð1Þ
31 ¼ A

K;X − ϕ02K;XX

r2K;XðK;X − 2ϕ02K;XXÞ

−
ωðr4ϕϕ03K2

;XXÞ0
2r4K;XðK;X − 2ϕ02K;XXÞ

−
ωϕ02ðϕ02 − ϕϕ00ÞK2

;XX

2K;XðK;X − 2ϕ02K;XXÞ
; ðA8Þ

Bð1Þ
32 ¼ ωðϕϕ0K;XXÞ0

K;X − 2ϕ02K;XX
þ 2ωϕϕ0K;XK;XX

rK;XðK;X − 2ϕ02K;XXÞ

þ 2ωrϕ02K;XX
K;X þ ω2ϕ2K;XX þ ϕ2K;Xϕ2

rK;XðK;X − 2ϕ02K;XXÞ
; ðA9Þ

Bð1Þ
33 ¼ −

2ωϕϕ03K2
;XX

K;XðK;X − 2ϕ02K;XXÞ
; ðA10Þ

Bð1Þ
34 ¼ 2ωϕϕ0K;XX

K;X − ϕ02K;XX

K;XðK;X − 2ϕ02K;XXÞ
; ðA11Þ

Bð2Þ
31 ¼ 2ω2ϕ2ϕ02K2

;XX − K2
;X − XK;XK;XX

K;XðK;X − 2ϕ02K;XXÞ
; ðA12Þ

Bð2Þ
32 ¼ K;XX

�
ω2ϕ2

K;X
−

ϕ02

K;X − 2ϕ02K;XX

�
; ðA13Þ

and ðA;M2
1;M

2
2Þ are defined by Eq. (7.2). These equations

are given in the case of n ¼ 0.
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