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Abstract: In a remarkable recent work [1], the amplituhedron program was extended

to the realm of non-supersymmetric scattering amplitudes. In particular it was shown

that for tree-level planar diagrams in massless φ3 theory (and its close cousin, bi-adjoint

φ3 theory) a polytope known as the associahedron sits inside the kinematic space and

is the amplituhedron for the theory. Precisely as in the case of amplituhedron, it was

shown that scattering amplitude can be obtained from the canonical form associated to

the Associahedron. Combinatorial and geometric properties of associahedron naturally

encode properties like locality and unitarity of (tree level) scattering amplitudes. In this

paper we attempt to extend this program to planar amplitudes in massless φ4 theory. We

show that tree-level planar amplitudes in this theory can be obtained from geometry of

objects known as the Stokes polytope which sits naturally inside the kinematic space. As

in the case of associahedron we show that the canonical form on these Stokes polytopes

can be used to compute scattering amplitudes for quartic interactions. However unlike

associahedron, Stokes polytope of a given dimension is not unique and as we show, one

must sum over all of them to obtain the complete scattering amplitude. Not all Stokes

polytopes contribute equally and we argue that the corresponding weights depend on purely

combinatorial properties of the Stokes polytopes. As in the case of φ3 theory, we show how

factorization of Stokes polytope implies unitarity and locality of the amplitudes.
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1 Introduction

In [1], authors extended the “amplituhedron program” [2] of analysing scattering ampli-

tudes in super-symmetric quantum field theories to a class of non-supersymmetric theories.

In particular, for tree level planar diagrams in massless φ3 theory (or it’s close cousin, all

tree level diagrams in bi-adjoint scalar field theory) a precise connection was established

between so-called planar scattering form on kinematic space, a polytope known as associa-

hedron and tree-level scattering amplitudes. Fascinating attempts have also been made to

extend the program to 1-loop amplitudes in φ3 theory, where the corresponding polytope

is an object already known to mathematicians known as Halohedron [3, 4].

This work has far reaching ramifications for our understanding of scattering ampli-

tudes. Specifically, two new perspectives has emerged:
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1. Understanding of amplitudes not as functions but as differential forms on kine-

matic space,

2. A precise connection between these forms and polytopes located inside the kinematic

space. This new perspective leads one to a new understanding of locality , unitarity

and various other properties (like soft limits and recursion relations) of scattering

amplitudes from combinatorial and geometric properties of the polytopes.

Another beautiful result was established in [1] that gave a new understanding of the

formulae of Cachazo, He and Yuan (CHY) for tree-level scattering amplitudes [5]. The

CHY formula expresses scattering amplitude for a large class of theories (including planar

diagrams in massless φ3 theory) as integrals over certain world-sheet moduli space [5]. It has

been known for some time that compactification of this moduli space is an associahedron [6,

7]. In [1] it was shown that this “worldsheet associahedron” is in fact diffeomorphic to the

associahedron sitting inside kinematic space! Scattering equations which are basic building

blocks of CHY formula are precisely these diffeomorphisms. Whence it naturally followed

that the CHY integrand for φ3 theory is a pullback of the canonical scattering form on

the associahedron.

This relationship between polytopes in kinematic space with CHY integrand however

presents a puzzle. CHY formulae exist for (tree-level) amplitudes in a wide class of quantum

field theories including planar diagrams in scalar field theories with φp, p > 3 interac-

tions [8, 9]. Thus it is a natural question to ask if for such theories, the CHY formula

can also be understood in terms of differential forms and polytopes in kinematic space,

with scattering equations defining the diffeomorphism. But before answering this ques-

tion, we need to understand how to extend the “amplituhedron program” to such theories.

In this paper, we take a small step in answering this second question in the context of

quartic interactions.

That is, we would like to ask if there is a relationship between (tree-level, planar)

amplitudes in massless φ4 theory, scattering forms and polytopes in kinematic space. As

we show below, the answer is in the affirmative, although it differs from the idea of a

single polytope such as associahedron which contains complete information about scattering

amplitudes in several respects.

We begin our analysis by trying to generalise one of the key observations of [1], namely

existence of a unique differential form on the kinematic space. Uniqueness of this form is

however tied to a striking property of φ3 amplitudes called projectivity. Essentially projec-

tivity captures the idea that planar amplitudes in massless φ3 theory have no pole at infinity

in the kinematic space. However, from the days of BCFW [10] recusion relations [11], it is

well known that tree-level amplitudes for φ4 theory do have a pole at infinity and hence

projectivity cannot be used to define a unique differential form in this case. Although

this looks like a formidable obstacle, there is a rather natural solution to the problem.

As we show in section 5, in the case of n-particle scattering, there is a family of unique

scattering forms in kinematic space, parametrised by quadrangulations Q of a polygon1

1By quadrangulation we mean, splitting a polygon into quadrilaterals.
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with n-vertices. Although no single form contains information about all the poles of the

n particle amplitude, the entire family of scattering forms do. For each of these forms

parametrised by Q, a picture closely analogous to the picture in [1] emerges.

As we show in section 5, for each Q of a hexagon, a one dimensional positive geometry

sits inside kinematic space of n particles. It turns out that this positive geometry is

a convex realisation of a specific Stokes polytope. Stokes polytopes are combinatorial

polytopes discovered by Baryshnikov in [12]. Compared to the associahedron which was

discovered by Jim Stasheff in 60’s [13, 14], these polytopes were discovered rather recently

in the context of studying singularities of quadratic forms. Convex realisations of the

Stokes polytopes have been studied in [12, 15, 16]. As a convex realisation of the Stokes

polytope will be relevant for us in the study of scattering amplitudes, we denote both the

Stokes polytopes as well as their realisations as positive geometries as SQn .

For each of these Stokes polytopes SQn whose dimension depends on n and are param-

terised by Q, the scattering form2 descends to a unique canonical form with logarithmic

singularities on the boundaries. As in the case of associahedron and φ3 amplitudes, this

canonical form can be used to obtain n-particle planar scattering amplitude of the theory.

However there is a key difference with the associahedron picture. The form associated to a

single polytope only yields some of the channel-contributions in such a way that a weighted

sum over the polytopes produces complete amplitude Mn.

Our proposal for scattering amplitude obtained from combinatorial geometry of Stokes

polytopes can be summarised by the formula

Mn =
∑
Q

αQmn(Q) (1.1)

where mn(Q) is the rational canonical function [1] associated to the form ωQn and the

weights αQ only depend on certain combinatorial properties of the quadrangulation Q (see

section 6). Although we do not have a analytical formula for αQ for arbitrary n, we check

the validity of our proposal in a few examples.

In section 7, we show that exactly as in the case of associahedron and φ3 theory,

factorization properties of Stokes polytope imply the on-shell factorization of scattering

amplitudes. A massless φ4 theory can be obtained from a theory of two scalar fields with

cubic interaction where one of the (massive) fields is integrated out. In section 8, we try to

understand this connection in terms of polytopes and differential forms and argue that the

combinatorial geometry of single Stokes polytope can not be derived from the geometry

associated to cubic couplings. We end with conclusions.

2It is worth mentioning that we need to distinguish between combinatorial polytopes like Associahedron

and their convex realisations. A combinatorial polytope should be thought of as an abstract set of faces and

incidence relations described in terms of some combinatorical data (e.g, triangulations or quadrangulations).

On the other hand, a convex realisation is the intersection of half-spaces defined by the positivity of some

linear functions. A convex polytope is an example of a positive geometry [17]. To a positive geometry, it

is possible to associate a unique differential form, known as canonical form. In this article by polytopes we

always mean convex polytopes.
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Figure 1. Planar variables.

2 Planar scattering form and associahedron

In this section, we summarise the key results of [1]. We review the construction of planar

scattering form and kinematic associahedron for planar (tree-level) amplitudes in massless

φ3 theory. For more details, we refer the reader to [1]. Throughout the paper, by amplitude

we always mean reduced amplitude where momentum conserving δ-function have been

projected out.

2.1 Kinematic space

Kinematic space (Kn) of n-massless momenta pi where i = 1, 2, . . . n is spanned by
(
n
2

)
number of Mandelstam variables,

sij = (pi + pj)
2 = 2pi.pj (2.1)

For spacetime dimensions d < n − 1, all of them are not linearly independent and they

need to satisfy the following condition

n∑
j=1;j �=i

sij = 0, i = 1, 2, . . . n (2.2)

Thus the dimensionality of the kinematic space (Kn) of n massless particles reduces to

dim(Kn) =

(
n

2

)
− n =

n(n− 3)

2
(2.3)

For any set of particle labels I ⊂ {1, 2, . . . n} one can define Mandelstam variables as follows,

sI =

(∑
i∈I

pi

)2

=
∑

i,j∈I; i<j

sij (2.4)

2.2 Planar kinematic variables and the scattering form

For cyclically ordered particles it’s useful to define planar kinematic variables,

Xi,j = si,i+1,...j−1; 1 ≤ i < j ≤ n. (2.5)

– 4 –
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Figure 2. A planar variable cuts an internal propagator of the Feynman diagram once.

Figure 3. Partial triangulations of a pentagon.

From the definition it is easy to see that Xi,i+1 = 0 and X1,n = 0. These variables Xi,j

can be visualized as diagonal between ith and jth vertices of the corresponding n-gon (see

figure 1).

These variables are related to Mandelstam variables via following relation.

sij = Xi,j+1 +Xi+1,j −Xi,j −Xi+1,j+1 (2.6)

In other words Xi,j are dual to n(n−3)
2 diagonals of n-gon made up of edges with

momenta p1, p2, . . . pn. Each diagonal i.e Xi,j cuts the internal propagator of a Feynman

diagram once (see figure 2). Thus there exists an one-to-one correspondence between cuts

of cubic graphs and complete triangulations of a n-gon.

A partial triangulation of regular n-gon is a set of non-crossing diagonals which do

not divide the n-gon into (n− 2) triangles. Here is an example of partial triangulation for

a 5-gon.

The associahedron of dimension (n−3) is a polytope whose co-dimension d boundaries

are in one-to-one correspondence with the partial triangulation by d diagonals (see figure 4).

The vertices represent complete triangulations and k-faces represent k-partial trian-

gulations of the n-gon. The total number of ways to triangulate a convex n-gon by non-

intersecting diagonals is the (n − 2)-th Catalan number, Cn−2 = 1
n−1

(
2n−4
n−2

)
, a solution

found by Euler. The dimension of the associahedron corresponding to a n-gon is (n− 3).

Now we introduce the planar scattering form, a differential form on the space of kine-

matic variables Xi,j that encodes information about on-shell tree-level scattering ampli-

tudes of the scalar φ3 theory. Let g denote a (tree) cubic graph with propagators Xia,ja

for a = 1, . . . , n−3. The ordering is important here. For each ordering of these propaga-

tors, one assigns a value sign(g) ∈ {±1} to the graph with the property that flipping two

propagators flips the sign. The form must have logarithmic singularities at Xia,ja = 0.

Therefore one assigns to the graph a d log form and thus defines the planar scattering form

– 5 –
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Figure 4. Two dimensional associahedron A5: 5 partial triangulations are represented by 5 diag-

onals. 5 complete triangulations are represented by 5 vertices.

of rank (n−3):

Ω(n−3)
n :=

∑
planar g

sign(g)

n−3∧
a=1

d logXia,ja (2.7)

where the sum is over each planar cubic graph g. It’s important to note that there are

two sign choices3 for each graph. Due to this fact there are many different scattering

forms. But one can fix the scattering form uniquely4 if one demands projectivity of the

differential form i.e. if one requires the form should invariant under local GL(1) transfor-

mations Xi,j → Λ(X)Xi,j for any index pair (i, j). We use this projectivity property to

define a useful operation called mutation. Two planar graphs g and g′ are related by a

mutation if we can obtain one from the other just by exchanging four-point sub-graph

channel (see figure 5). In that figure 5, Xi,j and Xi′,j′ are the mutated propagators of the

graphs g and g′, respectively. Let’s denote the rest of the (common) propagators as Xib,jb

with b = 1, 2, . . . n − 4. Under a local GL(1) transformation, the Λ(x) dependence of the

scattering form becomes,

(
sign(g) + sign(g′)

)
d log Λ ∧

n−4∧
a=1

d logXia,ja + . . . (2.8)

But since we demand projectivity the form shouldn’t have any Λ(x) dependent piece and

therefore,

sign(g′) = − sign(g) (2.9)

3For ‘clockwise’ or ‘anticlockwise’ ordering of propagators g = +1 or −1, respectively.
4Actually the requirement of projectivity fixes the scattering form up to an overall sign which one ignores.
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Figure 5. Two 5-point graphs related by mutation: Xi,j → Xi′,j′ .

Note that projectivity ensures that the form should be ratios of Mandelstam variables.

Here are few examples of (n− 3)-forms in kinematic space of n particle scattering.

Ω
(1)
n=4 =d log

(s
t

)
= d log

(
X1,3

X2,4

)
(2.10)

Ω
(2)
n=5 =d log

X1,3

X2,4
∧ d log

X1,3

X1,4
+ d log

X1,3

X2,5
∧ d log

X3,5

X2,4
(2.11)

and so on.

2.3 The kinematic associahedron

Above we described how one gets an associahedron An in the kinematic space Kn, but

it is not evident how it should be embedded in Kn. Because Kn and An are of different

dimensionality

dim(Kn) =
n(n− 3)

2
(2.12)

dim(An) = n− 3 (2.13)

One needs to impose constraints to embed An inside Kn. One natural choice is to

demand all planar kinematic variables to be positive,

Xi,j ≥ 0 ; 1 ≤ i < j ≤ n (2.14)

These are n(n−3)
2 inequalities and thus cutout a big simplex (∆n) inside Kn which is still

n(n−3)
2 dimensional. Therefore one needs n(n−3)

2 − (n− 3) = (n−2)(n−3)
2 more constraints to

embed the An inside Kn. To do that one imposes the following constraints,

sij = − cij ; for 1 ≤ i < j ≤ n− 1, |i− j| ≥ 2 (2.15)

where cij are positive constants.

– 7 –
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Figure 6. Two triangulations related by mutation: Xi,k → Xj,l.

These constraints give a space Hn of dimensions (n−3) which is precisely the dimension

of An. The kinematic associahedron An now can be embedded in Kn as the intersection of

the simplex ∆n and the subspace Hn as follows,

An := Hn ∩∆n (2.16)

Once one has the associahedron in Kn all one needs to do is to obtain its canonical

form Ω(An). Since associahedron is a simple5 polytope one can directly write down its

canonical form as follows [17].

Ω(An) =
∑

vertex Z

sign(Z)

n−3∧
a=1

d logXia,ja (2.17)

where for each vertex Z and Xia,ja = 0 denote its adjacent facets6 for a = 1, . . . , n−3.

The claim is the above differential form (2.17) is identical to the pullback of scattering

form (2.7) (in Kn) to the subspace Hn. We can justify this statement by identifying:

g ↔ Z and sign(g) ↔ sign(Z).

• There is a one-to-one correspondence between vertices Z and planar cubic graphs g.

Also g and its corresponding vertex Z has same propagators Xia,ja .

• Let Z and Z ′ be two vertices related by mutation. Note that mutation can also

be framed in the language of triangulation. Two triangulations are related by a

mutation if one can be obtained from the other by exchanging exactly one diagonal

(see figure 6).

Thus for Z and Z ′ vertices we have

n−3∧
a=1

dXia,ja = −
n−3∧
a=1

dXi′a,j
′
a

(2.18)

which leads to sign-flip rule identical to g i.e. sign(Z) = − sign(Z ′).

5A polytope An is called simple if each of its vertex is adjacent to d facets where d = dim(An). Its

easy to see associahedron satisfies the criterion and hence is an example of simple polytope.
6One should be careful about the orientations of the facets. Depending on the ordering of the facets are

assigned a sign(Z) ∈ {±1}.
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Therefore one can construct the following quantity (an (n− 3)-form) which is independent

of g on pullback.

dn−3X := sign(g)

n−3∧
a=1

dXia,ja (2.19)

Substituting this in (2.17) one gets,

Ω(An) =

 ∑
planar g

1∏n−3
a=1 Xia,ja


︸ ︷︷ ︸

Mn

dn−3X (2.20)

where Mn is the expected tree level planar n-point scattering amplitude for scalar cu-

bic theory.

3 Positive geometry for φ4 interactions

As reviewed in the previous section, the relationship between (planar) Feynman graphs in

φ3 theory and positive geometry (namely associahedron) encapsulates a few intriguing facts.

(1) There is a one to one correspondence between Feynman graphs with complete trian-

gulations of a polygon.

(2) Dimension of the kinematic associahedron is the same as number of propagators in

an n-particle scattering.

(3) Each co-dimension k facet of the associahedron is in one to one correspondence with

a (n− 3− k)-partial triangulation of the n sided polygon.

At first sight, it is tempting to consider a generalisation of these inter-relationships

between polygons and planar (tree-level) amplitudes in φ4 theory.

One immediately notices the following. Precisely as in the case of φ3 theory and the

triangulations of polygon, there is a one-to-one correspondence between planar tree-level

diagrams of φ4 theory and complete quadrangulations7 of a polygon (see figure 7).

A few facts about the quadrangulations are well known [15]. The total number of

quadrangulations of an n = (2N + 2)-gon is given by the Fuss-Catalan number,

FN =
1

2N + 1

3N
CN .

We can thus ask the following question. Is there a polytope Sn whose vertices are in 1− 1

correspondence with all quadrangulations of a polygon and whose dimension is same as

the number of propagators in a single channel as in the associahedron case. Since, each

quartic graph with n = 2N + 2 external legs has precisely N − 1 propagators,

dim(Sn) = N − 1 =
n− 4

2
.

7By complete Quadrangulation we just means decomposing a polygon into maximum number of quadri-

laterals. We will refer to any subset of the diagonals which do not constitute a complete quadrangulation

as partial quadrangulation.
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Figure 7. A one-to-one correspondence between Feynman graphs of φ4 theory and quadrangula-

tions of an even polygon.

Figure 8. The 3 different planar channels for 6-point scattering.

We can now ask if there is a polytope whose dimension is n−4
2 and number of vertices

are same as FN . Here we immediately run into an obstacle due to the fact that for the

six-point scattering (i.e. N = 2) we should get a one dimensional polytope, which can only

be a line segment with two boundaries but since there are in fact three planar scattering

channels (see figure 8) for the six-point diagram we cannot find such a polytope with

boundaries which correspond to all three propagators going onshell. So, the only way

to define a polytope is to exclude one of the channels using some systematic rule. This

idea was precisely encapsulated in [12] in a different context and used to construct the

Stokes polytope.

3.1 Stokes polytope

In order to introduce Stokes polytope, we first need to define a notion of Q-compatibility

which selects, among the set of all (complete) quadrangulations of a polygon, a subset

which will be in one-to-one correspondence with vertices of Stokes polytope.

Consider, a pair of quadrangulations Q and Q′ of a regular 2N+2 gon which we call

red and blue respectively with diagonals directed from odd to even vertices (see figure 9).

We rotate Q′ anti-clockwise and then superimpose it over Q so that the vertices now get

interlaced. We then say Q′ is Q-compatible with Q if and only if at each crossing of

diagonals the pair (red, blue) in that order are oriented clockwise.

We must emphasise that Q-compatability is not an equivalence relation and is very

much dependent on the reference quadrangulation Q, as can be easily checked that 14

is compatible with 36, 25 with 14 and 36 with 25.8 We can now define a flip as the

replacement of a diagonal of any hexagon inside the quadrangulation of the polygon with

8A simple way to remember this rule is that every diagonal is Q-compatible with every alternate diagonal

when we move clockwise(14 with 36 , 25 with 41 and 36 with 52).

– 10 –
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Figure 9. The above figure shows 36 is Q-compatible with 14 but 25 is not.

its Q-compatible diagonal, this corresponds to changing to a compatible channel for any

6-point diagram inside our (2N + 2)-point diagram. This is the analogue of mutation for

quartic case (see eq. (2.18)).

We can now define the Stokes polytope SQn simply by starting with a particular quad-

rangulation Q with diagonals (i1j1, . . . , iN−1jN−1), N ≥ 3 and by performing flips on each

diagoanl ikjk sitting inside the hexagon with vertices {ik−1, ik, ik+1, jk+1, jk, jk−1} itera-

tively till we do not generate any new quadrangulations. We illustrate this for the N = 3

(8-point scattering) below. We start with the Q = {14, 58} and flip either 14 to 38 in

{1, 2, 3, 4, 5, 8} or 58 to 47 in {1, 4, 5, 6, 7, 8} and to get Q1 = {36, 58} or Q2 = {14, 47} re-

spectively, then a further flip of either 14 to 38 in {1, 2, 3, 4, 7, 8} or 58 to 47 in {3, 4, 5, 6, 7, 8}
both give Q4 = {16, 47}. Further flips do not give us any new quadrangulations. Thus the

corresponding Stokes Polytope in this case has 4 vertices. This is shown in the left half of

n = 8 in figure 10.

If we start with Q = {14, 16} and flip either 14 to 36 in {1, 2, 3, 4, 5, 6} or 16 to 58 in

{1, 4, 5, 6, 7, 8} to get Q1 = {36, 16} or Q2 = {14, 58} respectively, then further flips of 16 to

38 in {1, 2, 3, 6, 7, 8} and 14 to 38 in {1, 2, 3, 4, 5, 8} give Q4 = {36, 38} and Q5 = {36, 58}.
Further flips do not give us any new quadrangulations. Thus the corresponding Stokes

polytope in this case has 5 vertices. This is shown in the right half of n = 8 in figure 10.

It can be checked that if we start with any of the F3 = 12 quadrangulations

then the Stokes polytope we get is either a square or a pentagon. This is

easily seen if we notice that the other 10 quadrangulations can be obtained

from {14, 16} and {14, 58} by cyclic permutations and thus just amount

to relabeling of the vertices.

We can proceed along these lines to obtain Stokes polytopes for any n = 2N + 2, and

there will be several Stokes polytopes depending on the reference quadrangulation Q we

start with. Some of them do turn out be associahedra and we will say more about this

in appendix A. We can thus sumarize the Stokes polytope in analogy with associahedron

– 11 –
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Figure 10. The first few Stokes polytopes. Note that for n = 8 there are two kinds of polytopes.

This is one of the key features of the quartic case.

as follows:

Vertices ↔ Q-compatible quadrangulations

Edges ↔ Flips between them

k-Facets ↔ k-partial quadrangulations

As we see, there are two key differences in the relationship of the Stokes polytope with

quadrangulations from that of the associahedron and triangulations. First being, defini-

tion of Stokes polytope depends on the reference quadrangulation Q, and for each Q one

has a Stokes polytope SQ
n . Secondly vertices of SQ

n are not in 1-1 correspondence with

all the quadrangulations of the polygon but only with a specific sub-set of them, namely

Q-compatible quadrangulations. As all (planar) diagrams of a φ4 theory are in 1-1 corre-

spondence with set of all quadrangulations of a polygon, it is clear that a single SQ
n can

not be the amplituhedron for planar φ4 theory.

However a rather enticing feature of definition of SQ
n is a notion of the flip, which is

analogous to mutation in the case of triangulations. As it was the mutation which was

responsible for defining a unique scattering form in Kn in the φ3 case, there is a possibility

that the flip may do the same in this case. In the next section we propose just such a

definition of planar scattering form for φ4 theory in kinematic space, which however will

depend on the reference quadrangulation Q.
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4 Planar scattering form for φ4 interactions

We consider tree level scattering amplitudes in a massless scalar field theory with quartic

interactions. Given a specific ordering of external particles, we consider contribution of only

planar diagrams which are consistent with this ordering.9 We refer to such amplitudes as

planar amplitudes of massless φ4 theory. These amplitudes can be thought of as analogs of

the partial amplitudes Mn(α|α) in the context of bi-adjoint scalar φ3 theory10 which was

considered in [1].

We would like to extend the idea of defining planar scattering form to planar amplitudes

in massless φ4 theory. However a quick look at the simplest example of six point amplitude

shows us that such a form can not be projective. In general, for an n particle amplitude

in quartic theory, the number of planar diagrams can be even or odd and there is no sense

in which projectivity can be employed to fix a unique scattering form. In the absence of

projectivity, it is a priori not clear how do we define a planar scattering form for planar

amplitudes in φ4 theory. The hint in our case (that we alluded to in the previous section)

comes from one of the key observations made in [1]. Namely, defining a scattering form

projectively is equivalent to choosing the relative signs among various terms via mutation,

which is in turn equivalent to flipping one of the diagonals in the triangulation of the n-gon.

For φ4 interaction, even though mutation or projectivity do not appear to be relevant

concepts, as we saw above, there is an analog. Given a reference quadrangulation Q, there

is a set Q-compatible quadrangulations for which a notion of flip is well defined. Whence

given a Q and its corresponding set of Q-compatible quadrangulations, we can define a

planar scattering form on the kinematic space Kn as follows.

Let Q be a quadrangulation of an n-gon which is associated to an planar Feynmann

diagram with propagators given by X1, . . . , Xn−4
2

. Then we define the (Q-dependent)

planar scattering form as,

ΩQ
n =

∑
flips

(−1)σ(flip)d lnXi1 ∧ . . . d lnXin−4
2

(4.1)

where σ(flip) = ±1 depending on whether the quadrangulation Xi1 , . . . , Xin−4
2

can be

obtained from Q by even or odd number of flips.

As the set of Q-compatible quadrangulations (for a given Q) does not exhaust all

quadrangulations or equivalently, all the planar Feynman diagrams, the set of terms which

appear in the planar scattering form in eq. (4.1) does not correspond to all the diagrams

of the theory. As an example consider N = 6 case and let Q = 14. Then the set of Q

compatible quadrangulations are { (14 ,+), (36 ,−)}. We have attached a sign to each of

the quadrangulation which measures the number of flips needed to reach it starting from

reference Q = 14. Whence the form ΩQ
6 on the kinematic space is given by,

Ω
Q=(14)
6 = (d lnX14 − d lnX36) (4.2)

9By tree-level planar diagrams we mean diagrams with no crossing.
10It is conceivable that the amplitudes we analyse can be considered as basic building blocks of amplitudes

of a bi-adjoint scalar field theory with quartic interaction of the type Tr
[
[φ, φ]2

]
where [φ, φ] is the bi-adoijnt

Lie bracket given by f ijkf̃ i′j′k′
φii′φjj′ . However as bi-adjoint scalar theory with quartic interaction has

not been considered in literature so far, we will not refrain from exploring this point of view further.
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It is clear that this form does not capture singularity associated to X25 channel for

the 6 particle amplitude. Hence it may appear that eventually we may not recover full

planar scattering amplitude from such a form. However there are two more Qs we need

to consider. For Q = 36 the Q-compatible set is {(36,+), (25,−)} and for Q = 25 the

Q-compatible set is {(25,+), (14,−)}. The corresponding forms on Kinematic space are

given by

Ω
Q=(36)
6 = (d lnX36 − d lnX25)

Ω
Q=(25)
6 = (d lnX25 − d lnX14)

(4.3)

Hence we see that unlike the planar scattering form in the case of φ3 interaction which

is uniquely determined by requirement of projectivity, we have FN planar scattering forms,

one for each quadrangulation.

It can be easily checked that for all Q, ΩQ
n in eq. (4.1) factorizes correctly when any

one of the channels goes on-shell. For i < j,

ΩQ
n

∣∣∣
Xij → 0

= ΩQ1

|j−i+1|(i, i+ 1, . . . , j) ∧ dXij

Xij
∧ ΩQ2

n+2−|j−i+1|(j, . . . , n, 1, . . . , i) (4.4)

with Q1, Q2 are quadrangulations associated to the polygons {(i, i + 1, . . . , j),

(j, . . . , n, 1, . . . , i)} respectively.

A happy fact about ΩQ
n will emerge in the next section: paralleling the construction

of [1] we will see how these forms naturally descends to the canonical form on a SQn : as

Stokes polytope is a positive geometry, it has a canonical form associated to it which has

(logarithmic) singularities on all the facets, such that the residue of restriction of this form

on any of the facet equals the canonical form on the facet. (see appendix in [1] and [17]

for details regarding canonical form on positive geometries.)

Stokes polytopes are simple11 polytopes. But an explicit formula for canonical form

on SQn does not seem to be available in the literature. The planar scattering form defined

above however gives us precisely such a form on SQn . That is, we will take a cue from ideas

of [1] and start with a definition of planar scattering form for φ4 theory and show that it

descends to a form on SQn which satisfies all the properties required of the canonical form.

5 Locating the Stokes polytope in kinematic space

In this section we realise Stokes polytopes {SQ6 |Q ∈ (14, 25, 36)} for 6 particle amplitude as

positive geometries in kinematic space. We show how the planar scattering form ΩQ
n defined

above descends to the canonical form on SQ6 . Before proceeding we once again emphasise

that, there are several Convex realisations of Stokes polytopes. Their realisation as a simple

polytope is given in [12, 15], as well as in a beautiful recent work [16]. Although we consider

11The way Stokes polytopes are defined they are always simple. The reason is the following. Any vertex

of the polytope represents a complete quardangulation. The number of diagonals needed to complete the

quardangulation of an n-gon is n−4
2

. This is also the number of dimensions of the corresponding Stokes

polytope. Now to get the facets (co-dimension one boundaries) one needs to remove one of those n−4
2

diagonals, which can be done in exactly n−4
2

different ways. Thus the number of facets attached to a given

vertex of Stokes polytope matches its dimension.
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convex realisations of only 2 and 3 dimensional Stokes polytopes, such convex realisation

exists for all n as shown in [16]. More in detail, we explicitly study convex realisations

of lower dimensional Stokes polytopes for n = 6, 8 and 10 respectively. Our strategy

is to embed the Stokes polytopes (SQn ) inside corresponding associahedra (An) for given

number of particle n. A more precise formulations of our idea which appears to generalise

our construction for arbitrary n has appeared recently in mathematics literature [16]

We proceed exactly as in [12, 15]. That is we begin by fixing a reference quadrangu-

lation Q in terms of kinematic data (i.e. a set of X ′ijs) and get a Stokes polytope SQn in

Kn which sits inside the positive region of kinematic space.12 In fact, our definition of this

kinematic Stokes polytope will be such that it is located inside the kinematic associahedron

An, thus ensuring that it lies in the positive region.

For Q1 = (14) the Q1 compatible set is given by {(14,+), (36,−)}. The corresponding

Stokes polytope is one dimensional with two vertices. We locate this Stokes polytope inside

the kinematic space via the following constraints.

sij = −cij ∀ 1 ≤ i < j ≤ n− 1 = 5, |i− j| ≥ 2

X13 = d13, X15 = d15,with d13, d15 > 0
(5.1)

The first line of constraints are precisely the ones which define the three dimensional

kinematic associahedron A6 inside K6. We have motivated the remaining two constraints

as follows. We can adjoin, to the diagonal (14) any one out of the following pairs.

I = {(13, 15), (24, 15), (13, 46), (24, 46)} to form a complete triangulation of the

hexagon. We pick any one of these pairs to impose further constraints on the kinematic

data. From the perspective of Feynman diagrams, these constraints are rather natural as

planar variables from this set can never occur in Feynman diagrams of φ4 theory.

Using the above constraints, it can be easily checked that the planar kinematic vari-

ables satisfy,

X36 = −X14 + c14 + c24 + c15 + c25 ≥ 0

X25 = d15 + c14 − d13 + c13 ≥ 0
(5.2)

We thus see that we have a (one dimensional) Stokes polytope SQ=(14)
6 whose vertices

are given by X14 = 0 and X36 = 0 (which is when X14 = c14 + c24 + c15 + c25) which

correspond to the two Q-compatible quadrangulations. It can be readily verified that the

kinematic Stokes polytope is insensitive to which of the pairs of diagonals in I above we

choose to constrain. We can now pull back the form given in eq. (4.2) on S6

ωQ1
6 =

(
1

X14
+

1

X36

)
dX14 =: m6(SQ1

6 ) dX14 (5.3)

m6(Q1) is the canonical rational function associated to the Stokes polytope SQ1
6 . We will

use this notation through out the paper namely, we will denote a canonical rational function

associated to a Stokes poytope SQn as mn(Q).

12Positive region of kinematic space is defined by Xij ≥ 0, ∀ i, j.
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As a one dimensional Stokes polytope is also an associahedron (see appendix A), and

as the form in eq. (5.3) is the canonical form on associahedron, we have a canonical form

on SQ=(14)
6 .

The rational function m6 is13

m6(Q1) =

(
1

X14
+

1

X36

)
(5.4)

We can now repeat the analysis with Q2 = (25) and Q3 = (36) analogously and it can

be shown that the corresponding canonical forms on the Stokes polytopes are,

ωQ2
6 =

(
1

X25
+

1

X14

)
dX25

ωQ3
6 =

(
1

X36
+

1

X25

)
dX36

(5.5)

We now define a function M̃n on the kinematic space which is a weighted sum of the

m6 over all SQn . In the n = 6 case this function is defined as,

M̃6 := αQ1

(
1

X14
+

1

X36

)
+ αQ2

(
1

X25
+

1

X14

)
+ αQ3

(
1

X36
+

1

X25

)
(5.6)

Here αQi are positive constants. It is immediately evident that if and only if αQ1 = αQ2 =

αQ3 = 1
2 , M̃6 =M6.

5.1 Eight particle scattering

Let us now consider the n = 8 case.

Our analysis will proceed along the same lines as in the previous section. Namely we

first define planar scattering form on KQ8 for all the quadrangulations. We will then show

how all the kinematic Stokes polytopes SQ8 sit inside the 5 dimensional associahedron A8

and then show how a weighted sum of canonical rational functions over all the polytopes

leads to the planar scattering amplitude.

This computation can be made much easier by realising that all the quadrangulations

of an octagon (and in general any polygon) can be obtained from cyclic permutations of

a subset of quadrangulations. We call this set, set of primitive quadrangulations. More

in detail, given a n sided polygon with labelled vertices, we call a set of quadrangulations

{Q1, . . . , QI} primitive if,

(a) no two members of the set are related to each other by cylic permutations and

(b) all the other quadrangulations can be obtained by a (sequence of) cyclic permutations

of one of the Qs belonging to the set.

13For the sake of pedagogy, we are not differentiating between reference quadrangulation Q that we

fix which is in rotated (blue) polygon and quadrangulations which generate stokes polytope which are

quadrangulations of the red polygon [18].
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We note that, choice of which quadrangulations are called primitive is not unique but

the cardinality of the set of primitive quadrangulations is uniquely fixed by n. In the n = 6

case, there is only one primitive Q and can be chosen to be Q = (14).

As shown in section 3.1, there are two primitive Q’s in this case. With out loss of

generality we can take them to be {Q = (14, 58), Q′ = (14, 16)}.
As we have shown in figure 10,

• Q compatible quadrangulations are given by:

S1 = {(14, 58; +), (14, 47;−) (83, 58;−) (83, 47; +)} ,

• Q′ compatible quadrangulations are:

S2 = {(14, 16; +) (14, 58;−) (36, 16;−) (36, 83; +) (58, 83;−)} .

The signs associated to each quandrangulation is obtained by measuring the number

of relative flips from the reference Q.14

Using eq. (4.1), for each of the two sets S1, S2 we can define two distinct planar 2-forms

on K8 as,

ΩQ
8 = (d lnX14 ∧ d lnX58 + d lnX38 ∧ d lnX47

− d lnX14 ∧ d lnX47 − d lnX38 ∧ d lnX58 )

ΩQ′

8 = (d lnX14 ∧ d lnX16 − d lnX14 ∧ d lnX58

− d lnX36 ∧ d lnX16 + d lnX36 ∧ d lnX83 − d lnX58 ∧ d lnX83 )

(5.7)

One can write down scattering forms for all other quadrangulations exactly analo-

gously. The Stokes polytopes associated to S1, S2 are two dimensional positive geometries

with four and five vertices respectively.

We now locate the two Stokes polytopes SQ and SQ′ inside the Kinematic space (in

fact, inside the five dimensional associahedron A8) precisely in analogy with n = 6 case.

Let T1 and T2 be any two sets of diagonals which are such that T1∪{14, 58} and T2∪{14, 16}
are complete triangulations of the octagon (with labelled vertices). We choose T1 and T2

to be {13, 48, 57} and {13, 46, 86} respectively.15

The constraints defining SQ1 and SQ2 inside the kinematic space are respectively

given by

sij = −cij ∀ 1 ≤ i < j ≤ 7 with |i− j| ≥ 2

X13 = d13, X48 = d48 , X57 = d57 (5.8)

sij = −cij ∀ 1 ≤ i < j ≤ 7 with |i− j| ≥ 2

X13 = d13, X46 = d46 , X68 = d68 (5.9)

14It is important to maintain the order of the diagonals when a flip is taken as these denote the ordering

of the wedge product ((14, 58)→ d lnX14 ∧ d lnX58 etc.) and since this also contributes to the overall sign

of the term when the Scattering form is written down.
15As can be easily verified by the reader, any of the other 8 allowed choices of T1, T2 will also suffice.
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These constraints locate both the Stokes polytopes inside the five dimensional as-

sociahedron A8 and hence ensure that all the Xij ’s are positive in the interior of the

Stokes polytopes.

Using these constraints it is simple algebraic exercise to show that on SQ8 , SQ
′

8 one has

the following top forms obtained from ΩQi on K8.

ωQ8 =

(
1

X14X58
+

1

X38X47
+

1

X14X47
+

1

X38X58

)
dX14 ∧ dX58

ωQ
′

8 =

(
1

X14X16
+

1

X14X58
+

1

X36X16
+

1

X36X83
+

1

X58X83

)
dX14 ∧ dX16

(5.10)

The corresponding canonical functions m8 are given by

m8(Q) =

(
1

X14X58
+

1

X38X47
+

1

X14X47
+

1

X38X58

)
m8(Q′) =

(
1

X14X16
+

1

X14X58
+

1

X36X16
+

1

X36X83
+

1

X58X83

) (5.11)

As all the other quadrangulations can be obtained by cyclic permutations of (labels of)

Q and Q′, we can easily write down the functions f associated to all the Stokes polytopes

and substitute them in M̃8

M̃8 =
∑
σ

ασ·Q m8(σ ·Q) + Σσ′ασ′·Q′ m8(σ′ ·Q′) (5.12)

where σ, σ′ range over all the cyclic permutations which map Q and Q′ to distinct quad-

rangulations respectively.

Upon substituting the residues in eq. (5.12), it can be easily checked that there is a

unique choice of α s , namely ασ·Q = 2
6 ∀ σ and ασ′·Q′ = 1

6 ∀σ
′, for which M̃8 =M8 (see

appendix B).

6 Computing Mn from the canonical forms

As we saw in the previous section, in both the n = 6 and n = 8 cases the scattering ampli-

tude can be obtained from a weighted sum of rational functions (associated to canonical

forms) over all the Stokes polytopes. A curious fact about the weights α was that the α s

for which M̃n equals Mn were parametrized only by the primitive quadrangulations. In

other words, in both the cases considered above,

αQ = ασ·Q ∀ σ (6.1)

We also formalize this observation into a constraint on the weights as

αQ = αQ′ if Q′ = σ · Q for a cyclic permutation σ (6.2)

That is if two quadrangulations are related by a cylic permutation of vertices of the

polygon, then the corresponding α s should be equal.
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The underlying motivation for the constraint in (6.2) is the following. Consider two

quadrangulations Q and Q′ which are cyclically related. From the perspective of kinematic

Stokes polytope this means that the difference between SQ′ and SQ is simply in how they

are embedded in the kinematic space. Our constraints are based on our intuition (based

on n = 6, 8 cases) that αQ only depend on the intrinsic (combinatorial) property of SQ

and not on how it is embedded in Kn. This dependence of α’s on certain equivalence class

of quadrangulations can be encapsulated by the notion of primitive quadrangulations.

We now propose a formula for evaluating the function M̃n for arbitrary n.

M̃n =
∑

Q|primitive

∑
σ

αQ mn(σ ·Q) (6.3)

The proposal (for computing the planar scattering amplitude Mn) can thus be sum-

marised as follows: for any n we first compute mn(σ ·Q) and substitute in eq. (6.3). We

conjecture that there is a unique choice of αs which should be computed purely from com-

binatorics of Q s such that for these α s, M̃n =Mn. That is, there is a unique choice of

αQ ∀ primitive Q such that contribution of all the poles to M̃n with residue unity.

We should emphasize that to compute the scattering amplitude Mn from residues of

the Stokes polytopes, we need an independent formula for αQ which is consistent with

eq. (6.2), and such that all the kinematic channels give equal contribution of order unity.

We do not have such a formula so far and in this paper, we have attempted to verify this

formula in a handful of examples. In appendix B we verify that our proposal leads to the

correct scattering amplitude for ten point scattering amplitude.

We also emphasise that our formula is a mere repackaging of the “more fundamental”

formula

M̃n =
∑
Q

αQ mn(Q) (6.4)

where one sums over all the Stokes polytopes (parametrized by Q), with the proviso that

αQ are same for any two quadrangulations which are related by cyclic permutation.

It is important to summarise our story so far. We have shown that given any quadran-

gulation Q of an n-sided polygon, one can define a unique planar scattering form on the

kinematic space Kn. We then showed how this form naturally descends to the canonical

form on the Stokes polytope SQn such that the corresponding rational function mn gives

a partial contribution to planar scattering amplitude in φ4 theory. Thus an individual

Stokes polytope is not quite the same as an amplituhedron which as a single geometric ob-

ject contained information about complete scattering amplitude. However the families of

all Stokes polytope does contain complete information about Mn. We proposed a formula

for obtaining Mn by summing over mn(Q) of all the Stokes polytopes and have shown it

to be valid for 6, 8 and 10 particle amplitudes. It is important to stress that a single Stokes

polytope is not the amplituhedron of planar amplitudes in massless φ4 theory.

7 Factorization

One of the remarkable consequences of relating tree level scattering amplitudes to positive

geometries like associahedron is the fact that geometric factorization of the associahedron
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implied physical factorization of scattering amplitude. This in turn implied that tree-level

unitarity and locality are emergent properties of the positive geometry [1]. In this section

we will try to argue that this is indeed the case even for planar amplitudes in massless φ4

theory. Namely that, there is a combinatorial factorization of Stokes polytope and that

exactly as in the case of associahedron, it implies amplitude factorization.

Our first assertion is the following. Given any diagonal (ij), consider all Q which

contains ij and the consider all the corresponding kinematic Stokes polytopes SQn . We

contend that for each of these Stokes polytopes, the corresponding facet Xij = 0 is a

product of lower dimensional Stokes polytopes.

SQn
∣∣∣
Xij=0

≡ SQ1
m × SQ2

n+2−m (7.1)

where Q1 and Q2 are such that Q1 ∪ Q2 ∪ (ij) = Q. Q1 is the quadrangulation of the

polygon {i, i + 1, . . . , j} and Q2 is the quadrangulation of {j, j + 1, . . . , n, . . . , i}. Now

we know that, on SQn any planar scattering variable Xkl is a linear combination of Xij and

remaining X’s which constitute Q. Hence in order to prove this assertion we need to show

that any Xkl with i ≤ k < l ≤ j can be written as a linear combination of Xij and elements

of Q1 and similarly any variable in the complimentary set can be written in terms of Xij

and elements of Q2.

However this is immediate since we know from the factorization property of associa-

hedron proven in [1] that any Xkl = Xij +
∑

i<m<n<j Xmn. some of these Xmn ∈ Q1 and

the others are constrained via Xmn = dmn. This proves our assertion. Thus Xij = 0 facet

factorizes into two lower dimensional Stokes polytopes.

Our second assertion is that the geometric factorization implies amplitude factorization

of quartic theory. This assertion is based on the following fact.

As Stokes polytope is a positive geometry , we know that it’s canonical form satisfies

the following properties satisfed by canonical form on any positive geometry A (For details,

we refer the reader to appendix A of [1] and [17]).

ResH ωA = ωB (7.2)

where we think of ωA as defined on the embedding space and H is any subspace in the

embedding space which contains the face B. It is also known that if B = B1 × B2 then

ω(B) = ω(B1) ∧ ω(B2) (7.3)

Thus we immediately see that

ResXij = 0 ω(SQn ) = ωQ1
m ∧ ωQ2

n+2−m ∀ Q. (7.4)

where m = j − i+ 1.

We thus see that residue over each Stokes polytope which contains a boundary Xij → 0

factorizes into residues over lower dimensional Stokes polytopes. This factorization prop-

erty naturally implies factorization of amplitudes as follows. Consider the n-gon with a

diagonal (ij) (with i, j such that this diagonal can be part of a quadrangulation). This diag-

onal subdivides the n-gon into a two polygons with vertices {i, . . . , j} and {j, . . . , n, 1, . . . i}
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respectively. By considering all the kinematic Stokes polytopes associated to these poly-

gons, we can evaluate M̃|j−i+1|, M̃n+2−(|j−i+1|) which correspond to left and right sub-

amplitudes respectively. This immediately implies that

M̃n

∣∣∣
Xij = 0

= M̃L
1

Xij
M̃R (7.5)

This proves physical factorization. We also note that, eqs. (7.1) and (7.5) imply fol-

lowing constraints on α s. ∑
Q containing(ij)

αQ =
∑

QL,QR

αQL
αQR

(7.6)

where QL and QR range over all the quadrangulations of the two polygons to the left and

right of diagonal (ij) respectively.

It can be verified that in the case of n = 6, 8, and 10 particles αQ’s do indeed satisfy

these constraints.16

8 Relationship with planar scattering form for cubic coupling

Planar tree-level diagrams of massless φ4 theory can be obtained from diagrams of a theory

with cubic interactions ψφ2 which contains two scalar fields φ and ψ, where φ is massless and

ψ is massive. Consider an (ordered) n-point amplitude in this theory Mφ2ψ(p1, . . . , pn) in

which all the external particles are φ-particles. The super-script on the amplitudes indicates

the coupling we are considering. It is easy to see that in all the Feynman graphs associated

to such an amplitude, the φ-propagators precisely correspond to the φ-propagators in the

corresponding diagrams in φ4 theory. Remaining propagators are propagators associated

to ψ field and hence upon integrating out this massive field, one recovers planar amplitudes

in massless φ4 theory.

Whence one may wonder if the canonical form we obtained on Stokes polytopes, SQn
could be obtained from the planar scattering form associated to the theory with ψφ2

interaction.17 We show below that this is not the case.

We can postulate a planar scattering form in the kinematic space associated to ψφ2

coupling, in which all the log singularities associated to ψ fields are absent.18 On restrict-

ing this form to SQn , we can observe that the corresponding form is not the canonical

form on SQn .

Let us illustrate this idea in the simplest of examples, namely n = 6 case. We thus con-

sider planar scattering form on K6 which is obtained by summing over 12 planar graphs.19

16We expect eq. (7.6) to be useful in determining α s.
17We are indebted to Nemani Suryanarayana and Suresh Govindarajan for raising this question. We also

note that this issue was already raised in [1].
18This is how we implement “integrating out the ψ-field” in language of scattering forms.
19In the case of φ3 coupling, one has to sum over 14 graphs, however two of these do not arise if we

instead consider ψφ2 coupling. Whence the corresponding form on K6 is not projective! In the context of

triangulation, what this means is that we consider only those triangulations which has at least one partial

triangulation which can be part of a quadrangulation.
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This form is given by

Ωψφ2

n=6 = dX24 ∧ d lnX14 ∧ [dX15 − dX46] + dX26 ∧ d lnX36 ∧ [dX46 − dX35]

− dX13 ∧ d lnX36 ∧ [ dX46 − dX35 ]− dX26 ∧ d lnX25 ∧ [ dX24 − dX35 ]

+ dX15 ∧ d lnX25 ∧ [ dX24 − dX35 ]− dX13 ∧ d lnX14 ∧ [dX15 − dX46 ]

(8.1)

where singularities associated to ψ propagators are absent.

On restricting this form to SQ=(14)
6 using eq. (5.1), we get

Ω̃N=6

∣∣∣
SQ=(14)
6

= 2

[
1

X14
+

1

X25
+

1

X36

]
dX13 ∧ dX14 ∧ dX15 (8.2)

We thus see that projection of Ωψφ2

n=6 onto SQ=(14)
6 is not the same as its canonical form.

This is because the form in eq. (8.2) has an additional singularity at X25 → 0. Thus

from the perspective of positive geometry there does not seem to be a direct relationship

between quartic interactions and cubic interactions with two scalar fields. Of course in

hindsight, this is not too surprising as integrating out the ψ field reproduces all (planar)

diagrams in φ4 theory and this is precisely reflected in the presence of 1
X25

in eq. (8.2)

above. However as the X25 → 0 singularity is not on one of the vertices of the Stokes

polytope, this form is not the canonical form on the Stokes polytope. We leave further

investigation of relationship between cubic and quartic couplings in the context of positive

geometries for future work.

9 Conclusion

The connection between differential forms in kinematic space, polytopes and scattering

amplitudes is unravelling a deeper structure of quantum field theories by unifying several

recent developments like color-kinematics duality, Recursion relations and CHY formula

into one theme [1, 19, 20]. For tree level scattering amplitudes in a variety of theories,

these multi-faceted connections are precise and centre around combinatorial geometry of

the polytope in the kinematic space. For planar diagrams in scalar field theory with cubic

coupling, this polytope is a well known classic polytope , associahedron. In this paper,

we have tried to explore these connections in the context of massless φ4 theory and shown

that the connections continue to hold, although with several caveats.

As we saw above, there is no single polytope which encompasses all the information

about the scattering amplitude. There is a family of polytopes each of whose combinatorial

geometry contains partial information about the amplitude in such a way that a weighted

sum over all the Stokes polytopes produces complete scattering amplitude. Our analysis

is rather nascent but opens several interesting avenues for further investigations.

There is first an obvious unsolved issue of computing the weights. In order to give a

formula where scattering amplitude is completely determined by combinatorial geometry

of Stokes Polytopes, a formula for the weights αQ should be derived. Our contention, based

on several examples is that these weights only depend on combinatorics of the so-called

primitive quadrangulations. However a formula for the weights is missing so far.
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There is also an obvious question of how to go beyond planar amplitudes and is there

a polytope realisation for full tree-level scattering amplitude of φ4 theory. In the massless

φ3 case, certain progress in this direction was already reported in [1, 19]. It was shown

that a wider class of amplitudes then simply planar ones could be computed with the

corresponding polytopes being generalisation of associahedra known as Cayley polytopes.

It will be interesting to see if by generalising Stokes polytopes (to more general polytopes

associated with quadrangulations) we can go beyond planar diagrams in φ4 theory.

One of our central motivations for this work was to see if the CHY integrand for (planar

diagrams) in φ4 theory can also be understood as pull-backs of certain forms on kinematic

space. It is here that a fascinating question emerges. In the world of CHY formalism,

n-particle tree-level scattering amplitude for any theory containing massless particles is a

result of integrating a top-form on worldsheet moduli space. Hence this form is always

(n − 3)-form. But as the dimension of Stokes polytope is n−4
2 , we see that pullback of

such a form (using scattering equations) onto the worldsheet moduli space will not be a

top form. Such lower forms have not played a role in CHY formalism so far and it will

be interesting to unravel this connection clearly. Going in the other direction, if we push

forward the CHY top-form for planar φ4 theory onto kinematic space, one would get a

(n− 3) form on Kn and it will be interesting to explore the relationship of this form with

the canonical form on Stokes polytope.20

We believe that our work can be generalised to planar diagrams in φp, p > 4 interac-

tions. The notion of Q-compatible quadrangulations which formed the vertices of the Stokes

polytope has an immediate extension to p-gulations of a polygon. In the case of lower point

amplitudes (say n = 10 particle scattering in φ6 case), it can be checked that our analy-

sis admits a step-by-step generalisation and produces weighted sum over certain (hitherto

unknown) polytopes which for certain choice of weights yield the scattering amplitude.
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Figure 11. The upper figure shows the splitting into lower dimensional polytopes. The lower figure

shows explains why the Stokes polytope for this case is a hyper-cube.

Figure 12. A quartic graph before and after twisting.

A Few facts about Stokes polytopes

In this appendix we will review some known facts about Stokes polytopes that may help

in understanding the maintext better. We will be mainly following [12, 15, 18].

• Whenever we encounter a + junction as in figure 11 then the corresponding Stokes

polytope splits into product of lower dimensional Stokes polytopes.21

This is easy to see as if the reference quadrangulation is given by Q =

{i1j1, i2j2, · · · , injn} with {i1j1, i2j2, · · · , ik−1jk−1} and {ik+1jk+1, · · · , injn} denot-

ing the left and right half of the quadrangulation respectively, we could perform flips

in each half independently to get all the vertices of the Stokes polytope as regardless

of the flip the diagonals of the two halves never enter {ik−1, ik, ik+1, jk−1, jk, jk+1}.

• When we twist a quartic graph about any propagator as in figure 12, the correspond-

ing Stokes polytope does not change.

This is not so easy to see and needs an introduction of the concept of certain paths

known as serpent nests. We will not attempt to do this here and refer interested

reader to [15] for details. This fact does however helps us in understanding why

despite there being several topologically inequivalent cubic graphs (corresponding to

whether at each vertex the external leg is above or below the central line similar

to 14) for a given n they all had the same polytope namely the associahedron.

An interesting aspect of a Stokes polytope is the following theorem.

Theorem. Any Stokes polytope is writable as a Minkowski sum of hypercubes and

associahedra.
21We would like to emphasize that for the diagrams themselves there is no such splitting only the corre-

sponding Stokes polytope splits.
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Figure 13. The quartic graph whose corresponding Stokes polytope is the hypercube. The quad-

rangulation corresponding to this case has only parallel diagonals

Figure 14. All the diagrams that have associahedra as their polytope.

By Minkowski sum M of A and B we simply mean:22

M = {a+ b|a ∈ A, b ∈ B} (A.1)

Reader interested in proof of this statement should consult [12]. Thus, the Stokes

polytopes are interpolating polytopes in some sense between the simplest polytope,

the cube and the most complicated polytope the associahedron.

There is no known formula for the number of Q-compatible quadrangulations23 for a

generic reference quadrangulation Q. However, for a few special quadrangulations such a

formula is known and we shall list them below along with the corresponding polytopes.

1. Bridge: this case corresponds to choosing the reference Q for the graph given below

in the figure 13. As explained above the polytope in this case turns out to be a hypercube

with 2N−1 vertices.

2. Snake: in this case the corresponding polytope is an associahedron with Catalan

number C2n−1 vertices. There are 2N−1 such diagrams where N − 1 is number of vertices.

It is easy to see why all of them have the same polytope as they are all related to each

other by twisting.

3. Lucas: in this case the corresponding polytope has LN−1 number of vertices, where

Lucas number (Ln) is defined by the recursion formula: L0 = 0, L1 = 2, Ln+2 =

6Ln+1 + 3Ln. This is not very straightforward to see and the interested reader may find

22We can also understand this by treating each point in A and B as the endpoints of a hypothetical

vectors so that the resultant belongs to M .
23This is mainly due to the fact that the Stokes polytopes have not been studied much since their discovery

in a different context [12].
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Figure 15. The quadrangulation in this case is given by a chain of diagonals {i1j1, j1i2, i2j3, . . .}.

the proof in [18]. In [18] a much more general formula was obtained using the method of

generating functions for the case where instead of {3, 3, n, 1} external particles you have

{n1, n2, n3, n4} external particles.

B Some details: for n = 8, 10

Some details of the n = 8 case. We provide the details of the computation of the α

factors for n = 8 case here. The functions m8 corresponding to all F4 = 12 quadrangula-

tions are given below. There are 4 Stokes polytopes with 4 vertices and 8 Stokes polytopes

with 5 vertices.

m8(Q1) =

(
1

X14X58
+

1

X38X47
+

1

X14X47
+

1

X38X58

)
m8(Q2) =

(
1

X25X16
+

1

X25X58
+

1

X14X58
+

1

X14X16

)
m8(Q3) =

(
1

X36X27
+

1

X36X16
+

1

X25X16
+

1

X25X27

)
m8(Q4) =

(
1

X47X38
+

1

X47X27
+

1

X36X27
+

1

X36X38

)
m8(Q′1) =

(
1

X14X16
+

1

X14X58
+

1

X36X16
+

1

X36X83
+

1

X58X38

)
m8(Q′2) =

(
1

X25X27
+

1

X25X16
+

1

X14X16
+

1

X47X14
+

1

X47X27

)
m8(Q′3) =

(
1

X36X38
+

1

X36X27
+

1

X25X27
+

1

X58X25
+

1

X58X38

)
m8(Q′4) =

(
1

X47X14
+

1

X47X38
+

1

X36X38
+

1

X16X36
+

1

X16X14

)
m8(Q′5) =

(
1

X58X25
+

1

X14X58
+

1

X14X47
+

1

X27X47
+

1

X25X27

)
m8(Q′6) =

(
1

X16X36
+

1

X16X25
+

1

X25X58
+

1

X38X58
+

1

X36X38

)
m8(Q′7) =

(
1

X27X47
+

1

X27X36
+

1

X16X36
+

1

X14X16
+

1

X14X47

)
m8(Q′8) =

(
1

X38X58
+

1

X38X47
+

1

X27X47
+

1

X25X27
+

1

X25X58

)
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Figure 16. The primitive quartic graphs (in clockwise order) with corresponding Stokes polytopes

being Cube, Associahedron (2-4), Lucas and Mixed Classes (6 and 7).

Every term in the above sum has either Xii+3Xjj+3 or Xii+3Xii+5 in its denominator. We

can see that each Xii+3Xjj+3 term appears twice in the first list and twice in the second

list. Similarly, each Xii+3Xii+5 term appears only once in the first list and four times in

the second list. Thus, we have

2ασ.Q + 2ασ′.Q′ = 1

ασ.Q + 4ασ′.Q′ = 1

which gives ασ·Q = 2
6 ∀ σ and ασ′·Q′ = 1

6 ∀σ
′.

Scattering form and Stokes polytopes for the n = 10 case. We would like

to provide the details of how to obtain the Scattering amplitude M10 by summing

over the kinematic Stokes polytopes here. There are a total of F4 = 55 quadrangu-

lations the sum over all of them can equivalently be replaced with a sum over just

the 7 primitive Stokes polytopes corresponding to the quartic graphs shown below (16)

with appropriate coefficients. The reference quadrangulations for these primitves are

Q1 = (14, 510, 69), Q2 = (14, 16, 18), Q3 = (14, 16, 69), Q4 = (14, 49, 69), Q5 =

(14, 47, 710), Q6 = (14, 510, 710), Q7 = (14, 16, 710). We first provide the details of these

Stokes polytopes and demonstrate how to get the planar scattering form, which when

pulled back gives the scattering amplitude.

We always impose the associahedron condtions:

sij = −cij for 1 ≤ i < j ≤ n− 1, |i− j| ≥ 2 (B.1)

and together with this we need to impose 4 additional conditions which carve out the Stokes

polytope inside the associahedron. As explained in section 5 we consider the reference

quadrangulation Q corresponding to each Stokes polytope and find any set of 4 other

diagonals T that complete the triangulation of Q. There are 16 possible choices for such

a set which correspond to choosing either of the two diagonals of each quadrilateral inside

the reference quadrangulation independently. We choose any one of these sets. We then

set the Xij ’s corresponding to this set to positive constants dij ’s, since these Xij ’s can

never correspond to propagators of any quartic graph. This particular choice of additional
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Figure 17. The Polytope is a cube as can been seen above each quadrangulation is a vertex and the

lines joining them represent edges, each closed loop represents a face. The set of common diagonals

which complete the triangulation are shown in grey.

contraints provides a particular embedding of the Stokes polytope into the associahedron.

We illustrate this for all the four cases below.

1. Cube type: the corresponding Polytope is a cube with 8 vertices as shown in the

figure 17.The set of Q1 compatible quadrangulations are given by:

S1 ={(14, 510, 69,+), (310, 510, 69,−), (14, 49, 69,−), (14, 510, 58,−),

(14, 49, 58,+), (310, 510, 58,+), (310, 49, 69,+), (310, 49, 58,−)}

One set of diagonals which triangulate Q1 are T1 = {13, 410, 59, 68} which we set to

positive constants to get an embedding

X13 = d13, X410 = d410, X59 = d59, X68 = d68 (B.2)

The planar scattering form for this case is given by:

ΩQ1
10 = (d lnX14 ∧ d lnX510 ∧ d lnX69 − d lnX310 ∧ d lnX510 ∧ d lnX69

− d lnX14 ∧ d lnX49 ∧ d lnX69 − d lnX310 ∧ d lnX510 ∧ d lnX58

+ d lnX14 ∧ d lnX49 ∧ d lnX58 + d lnX310 ∧ d lnX510 ∧ d lnX58

+ d lnX310 ∧ d lnX49 ∧ d lnX69 − d lnX310 ∧ d lnX49 ∧ d lnX58)

When pulled back onto the space of constraints B.1), (B.2) gives the canonical form
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Figure 18. In the Snake case the corresponding Stokes polytope is an associahedron A6.

for the cube:

ωQ1
10 =

(
1

X14X510X69
+

1

X310X510X69
+

1

X14X49X69
+

1

X14X510X58
+

1

X14X49X58

+
1

X310X510X58
+

1

X310X49X69
+

1

X310X49X58

)
dX14 ∧ dX510 ∧ dX69

2. Snake type: the corresponding polytope is an associahedron A6 with 14 vertices (see

figure 18). As Explained above there are three quadrangulations that correspond to

this case namely Q2 = (14, 16, 18), Q3 = (14, 16, 69), Q4 = (14, 49, 69). We show

how to get the planar scattering form and canonical form for Q2 below.

The set of Q2 compatible quadrangulations are given by:

S2 = {(14, 16, 18,+), (36, 16, 18,−), (14, 58, 18,−), (14, 16, 710,−), (36, 16, 710,+),

(36, 38, 18,+), (14, 58, 510,+), (38, 58, 18,+), (14, 510, 710,+),

(36, 310, 710,−), (36, 38, 310,−), (310, 58, 510,−), (38, 58, 310,−),

(310, 510, 710,−)}
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One set of diagonals which triangulates the reference quadrangulation Q2 is T2 =

{13, 46, 68, 810} which we set to positive constants to get an embedding:

X13 = d13 , X46 = d46 , X68 = d68 , X810 = d810 (B.3)

The planar scattering form for this case is given by,

ΩQ2
10 = d lnX14 ∧ d lnX16 ∧ d lnX18 − d lnX36 ∧ d lnX16 ∧ d lnX18

− d lnX14 ∧ d lnX58 ∧ d lnX18 − d lnX14 ∧ d lnX16 ∧ d lnX710

+ d lnX36 ∧ d lnX16 ∧ d lnX710 + d lnX36 ∧ d lnX38 ∧ d lnX18

+ d lnX14 ∧ d lnX58 ∧ d lnX510 + d lnX38 ∧ d lnX58 ∧ d lnX18

+ d lnX14 ∧ d lnX510 ∧ d lnX710 − d lnX36 ∧ d lnX310 ∧ d lnX710

− d lnX36 ∧ d lnX38 ∧ d lnX310 − d lnX310 ∧ d lnX58 ∧ d lnX510

− d lnX38 ∧ d lnX58 ∧ d lnX310 − d lnX310 ∧ d lnX510 ∧ d lnX710

When pulled back onto the space of constraints eq. (B.1) and eq. (B.3) we get the

canonical form:

ωQ2
10 =

(
1

X14X16X18
+

1

X36X16X18
+

1

X14X58X18
+

1

X14X16X710
(B.4)

+
1

X36X16X710
+

1

X36X38X18
+

1

X14X58X510
+

1

X38X58X18
(B.5)

+
1

X14X510X710
+

1

X36X310X710
+

1

X36X38X310
+

1

X310X58X510
(B.6)

+
1

X38X58X310
+

1

X310X510X710

)
dX14 ∧ dX16 ∧ dX18 (B.7)

Similarly

ωQ3
10 =

(
1

X14X49X69
+

1

X310X49X69
+

1

X14X16X69
+

1

X14X49X58

+
1

X36X310X69
+

1

X310X49X58
+

1

X16X36X69
+

1

X14X16X18

+
1

X14X18X58
+

1

X36X38X310
+

1

X38X310X58
+

1

X16X18X36

+
1

X18X38X58
+

1

X18X36X38

)
dX14 ∧ dX16 ∧ dX18

ωQ4
10 =

(
1

X14X16X69
+

1

X16X36X69
+

1

X14X510X69
+

1

X14X16X18

+
1

X16X18X36
+

1

X36X310X69
+

1

X310X510X69
+

1

X14X58X510

+
1

X14X18X58
+

1

X18X36X38
+

1

X36X38X310
+

1

X310X58X510

+
1

X18X38X58
+

1

X38X310X58

)
dX14 ∧ dX16 ∧ dX18
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Figure 19. In the Lucas case the corresponding polytope has 12 vertices, 18 edges and 8 faces.

3. Lucas type: in this the corresponding Stokes Polytope has Lucas number L3 = 12

vertices (see figure 19). The set of Q5 compatible quadrangulations are given by:

S5 = {(14, 47, 710,+), (310, 47, 710,−), (14, 16, 710,−), (14, 47, 49,−),

(310, 49, 47,+), (36, 310, 710,+), (36, 16, 710,+), (14, 16, 69,+),

(14, 49, 69,+), (310, 49, 69,−), (310, 36, 69,−), (36, 16, 69,−)}

One set of diagonals which triangulates the reference quadrangulation Q5 is T3 =

{13, 46, 79, 410} which we set to positive constants to get an embedding:

X13 = d13 , X46 = d46 , X79 = d79 , X410 = d410 (B.8)

The planar scattering form for this case is given by,

ΩQ5
10 = d lnX14 ∧ d lnX47 ∧ d lnX710 − d lnX310 ∧ d lnX47 ∧ d lnX710

− d lnX14 ∧ d lnX16 ∧ d lnX710 − d lnX14 ∧ d lnX47 ∧ d lnX49

+ d lnX310 ∧ d lnX49 ∧ d lnX47 + d lnX36 ∧ d lnX310 ∧ d lnX710

+ d lnX36 ∧ d lnX16 ∧ d lnX710 + d lnX14 ∧ d lnX16 ∧ d lnX69

+ d lnX14 ∧ d lnX49 ∧ d lnX69 − d lnX310 ∧ d lnX49 ∧ d lnX69

− d lnX310 ∧ d lnX36 ∧ d lnX69 − d lnX36 ∧ d lnX16 ∧ d lnX69
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When pulled back onto the space of constraints eq. (B.1) and eq. (B.8) we get the

canonical form:

ωQ5
10 =

(
1

X14X47X710
+

1

X310X47X710
+

1

X14X16X710
+

1

X14X47X49

+
1

X310X49X47
+

1

X36X310X710
+

1

X36X16X710

+
1

X14X16X69
+

1

X14X49X69
+

1

X310X49X69

+
1

X310X36X69
+

1

X36X16X69

)
dX14 ∧ dX47 ∧ dX710

4. Mixed type: in this case the stokes polytope is just product of lower dimensional stokes

polytopes S1×S22 hence has 10 vertices (see figure 20). As Explained above there are

two quadrangulations that correspond to this case namely Q6 = (14, 510, 710), Q7 =

(14, 16, 710). We show how to get the planar scattering form and canonical form for

Q6 below:

The set of Q6 compatible quadrangulations are given by:

S6 = {(14, 510, 710,+), (310, 510, 710,−), (14, 47, 710,−), (14, 510, 69,−),

(310, 47, 710,+), (310, 510, 69,+), (14, 47, 49,+), (14, 49, 69,+),

(310, 49, 69,−), (310, 47, 49,−)}

One set of diagonals which triangulates the reference quadrangulation Q6 is T6 =

{13, 410, 79, 57} which we set to positive constants to get an embedding:

X13 = d13 , X410 = d410 , X79 = d79 , X57 = d57 (B.9)

The planar scattering form for this case is,

ΩQ6
10 = (d lnX14 ∧ d lnX510 ∧ d lnX710 − d lnX310 ∧ d lnX510 ∧ d lnX710

− d lnX14 ∧ d lnX47 ∧ d lnX710 − d lnX14 ∧ d lnX510 ∧ d lnX69

+ d lnX310 ∧ d lnX47 ∧ d lnX710 + d lnX310 ∧ d lnX510 ∧ d lnX69

+ d lnX14 ∧ d lnX47 ∧ d lnX49 + d lnX14 ∧ d lnX49 ∧ d lnX69

− d lnX310 ∧ d lnX49 ∧ d lnX69 − d lnX310 ∧ d lnX47 ∧ d lnX49)

When pulled back onto the space of constraints (B.1), (B.9) we get the canonical

form:

ωQ6
10 =

(
1

X14X510X710
+

1

X310X510X710
+

1

X14X47X710
+

1

X14X510X69

+
1

X310X47X710
+

1

X310X510X69
+

1

X14X47X49
+

1

X14X49X69

+
1

X310X49X69
+

1

X310X47X49

)
dX14 ∧ dX510 ∧ dX710
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Figure 20. In the mixed case the corresponding polytope has 10 vertices, 15 edges and 7 faces.

Similarly,

ωQ7
10 =

(
1

X14X16X710
+

1

X16X36X710
+

1

X14X510X710
+

1

X14X16X69

+
1

X36X310X710
+

1

X16X36X69
+

1

X310X510X710
+

1

X14X510X69

+
1

X36X310X69
+

1

X310X510X69

)
dX14 ∧ dX16 ∧ dX710

Upon substituting the corresponding m10 in eq. (8), it can be checked that for αQ1 = 5
24 ,

αQ2 = αQ3 = αQ4 = 1
24 , αQ5 = 2

24 and αQ6 = αQ7 = 3
24 the sum over all the residues

give M10.
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