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In this article, we take into account our previous calculations based on the QCD sum rules, and tentatively assign the Xð4630Þ as
the D∗

s
�Ds1 −Ds1�D

∗
s tetraquark molecular state or ½cs�P½�c�s�A + ½cs�A½�c�s�P tetraquark state with the JPC = 1−+, and assign the Xð3915Þ

and Xð4500Þ as the 1S and 2S ½cs�A½�c�s�A tetraquark states, respectively, with the JPC = 0++. Then, we extend our previous works to
investigate the LHCb’s new tetraquark candidate Xð4685Þ as the first radial excited state of the Xð4140Þ with the QCD sum rules
and obtain the mass MX = 4:70 ± 0:12GeV, which is in very good agreement with the experimental value 4684 ± 7+13−16 MeV.
Furthermore, we investigate the two-meson scattering state contributions in details and observe that the two-meson scattering
states alone cannot saturate the QCD sum rules, the contributions of the tetraquark states play an unsubstitutable role, and we
can saturate the QCD sum rules with or without the two-meson scattering states.

1. Introduction

In 2009, the CDF collaboration observed an evidence for the
Xð4140Þ in the J/ψϕ mass spectrum for the first time with a
significance of larger than 3:8σ [1]. Subsequently, the exis-
tence of the Xð4140Þ was confirmed by the CDF, CMS,
and D0 collaborations [2–5]. In 2016, the LHCb collabora-
tion accomplished the first full amplitude analysis of the
B+ ⟶ J/ψϕK+ decays and acquired a good description of
the experimental data in the 6D phase space and confirmed
the Xð4140Þ and Xð4274Þ and determined the spin-parity-
charge-conjugation JPC = 1++ [6, 7]. Furthermore, the LHCb
collaboration also observed two new exotic hadrons Xð4500Þ
and Xð4700Þ in the J/ψϕmass spectrum and determined the
quantum numbers JPC = 0++ [6, 7]. The Breit-Wigner masses
and widths are

X 4140ð Þ: M = 4146:5 ± 4:5+4:6−2:8MeV, Γ = 83 ± 21+21−14MeV,
X 4274ð Þ: M = 4273:3 ± 8:3+17:2−3:6 MeV, Γ = 56 ± 11+8−11MeV,
X 4500ð Þ: M = 4506 ± 11+12−15MeV, Γ = 92 ± 21+21−20MeV,
X 4700ð Þ: M = 4704 ± 10+14−24MeV , Γ = 120 ± 31+42−33MeV:

ð1Þ

Recently, the LHCb collaboration accomplished an
improved full amplitude analysis of the B+ ⟶ J/ψϕK+

decays using 6 times larger signal yields than previously
analyzed and observed a hidden-charm and hidden-
strange tetraquark candidate Xð4685Þ and (Xð4630Þ) in
the mass spectrum of the J/ψϕ with a significance of 15
σ (5:5σ), the favored assignment of the spin parity is JP

= 1+(1−), and the Breit-Wigner mass and width are 4684
± 7+13−16 MeV (4626 ± 16+18−110 MeV) and 126 ± 15+37−41 MeV
(174 ± 27+134−73 MeV), respectively [8]. Furthermore, the
LHCb collaboration also observed two new tetraquark
(molecular) state candidates Zcsð4000Þ and Zcsð4220Þ in
the mass spectrum of the J/ψK+ with the preferred spin
parity JP = 1+ and updated the experimental values of the
masses and widths of the Xð4500Þ and Xð4700Þ [8]. The
Xð4140Þ, Xð4274Þ, Xð4500Þ, Xð4630Þ, Xð4685Þ, and Xð
4700Þ were observed in the mass spectrum of the J/ψϕ,
and their quantum numbers are JPC = 0++, 1++, and 2++
for the S-wave couplings and 0−+, 1−+, 2−+, and 3−+ for
the P-wave couplings. In the present work, we discuss
the possible assignments of the Xð4140Þ, Xð4500Þ, Xð
4630Þ, and Xð4685Þ based on the QCD sum rules.
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The article is arranged as follows: in Section 2, we discuss
the possible assignments of the Xð4630Þ and Xð4500Þ based
on the QCD sum rules; in Section 3, we get the QCD sum
rules for the masses and pole residues of the tetraquark states
Xð4140Þ/Xð4685Þ with the JPC = 1++; in Section 4, we obtain
numerical results and give discussions, and Section 5 is
aimed to get a conclusion.

2. Possible Assignments of the Xð4630Þ and Xð
4500Þ Based on the QCD Sum Rules

In this section, we discuss the possible assignments of the
Xð4630Þ and Xð4500Þ according to our previous calculations
with the QCD sum rules.

In Ref. [9], we construct the color-singlet-color-singlet
type four-quark current JμνðxÞ to investigate the D∗

s
�Ds1 −

Ds1 �D
∗
s molecular state:

Jμν xð Þ = 1ffiffiffi
2

p �s xð Þγμc xð Þ�c xð Þγνγ5s xð Þ −�s xð Þγνγ5c xð Þ�c xð Þγμs xð Þ
h i

:

ð2Þ

The current JμνðxÞ has definite charge conjugation C = 1
but has not definite parity, and the components J0iðxÞ and
JijðxÞ have positive parity and negative parity, respectively,
where the space indexes i, j = 1, 2, 3. The neutral current
JμνðxÞ couples potentially to the D∗

s
�Ds1 −Ds1�D

∗
s two-meson

scattering states or tetraquark molecular states XD∗
s
�Ds1−Ds1 �D

∗
s

with the quantum numbers JPC = 1++ and 1−+, where we
use the symbols D∗

s and Ds1 to represent the color-neutral
clusters with the same quantum numbers as the physical
D∗
s and Ds1 mesons, respectively. In the QCD sum rules,

we choose the local currents, and it is better to call the
XD∗

s
�Ds1−Ds1 �D

∗
s
as the color-singlet-color-singlet type tetraquark

state than call it as the tetraquark molecular state. The tradi-
tional hidden-flavor mesons, such as the q�q, c�c, and b�b quar-
konia, have the normal quantum numbers JPC = 0−+, 0++,
1−−, 1+−, 1++, 2−−, 2−+, 2++, ⋯. The components J0iðxÞ and
JijðxÞ couple potentially to the JPC = 1++ and 1−+ tetraquark
molecular states, respectively. We construct projection oper-
ators to project out the contribution of the JPC = 1−+ com-
ponent unambiguously and explore the D∗

s
�Ds1 −Ds1�D

∗
s

tetraquark molecular state with the exotic quantum num-
bers JPC = 1−+ using the QCD sum rules and acquire the
prediction [9],

MX = 4:67 ± 0:08GeV, ð3Þ

which happens to coincide with the mass of the Xð4630Þ from
the LHCb collaboration, MXð4630Þ = 4626 ± 16+18−110MeV [8].

The calculations based on the Bethe-Salpeter equation
combined with the heavy meson effective Lagrangian also
indicate that there exists such a D∗

s
�Ds1 −Ds1 �D

∗
s tetraquark

molecular state with the exotic quantum numbers JPC =
1−+ [10, 11]. The predictions in Refs. [9–11] were achieved
before the discovery of the Xð4630Þ. Whether or not the

predictions of the QCD sum rules are reliable, the experi-
mental data can reply. After the discovery of the Xð4630Þ
by the LHCb collaboration, Yang et al. study the
charmonium-like molecules with hidden-strange via the
one-boson exchange mechanism and assign the Xð4630Þ
to be the D∗

s
�Ds1 molecular state with the quantum numbers

JPC = 1−+ [12].
As long as the diquark-antidiquark type tetraquark

states are concerned, we usually take the scalar (S), pseu-
doscalar (P), vector (V), axialvector (A), and tensor (T)
diquark operators without introducing explicit P-waves as
the elementary building blocks to construct the interpolat-
ing currents. The tensor currents have both vector and
axialvector components, and we construct projection oper-
ators to project out the spin parity JP = 1− and 1+ compo-
nents explicitly and denote the corresponding operators as
~V and ~A, respectively, to avoid ambiguity. In Ref. [13], we
choose the diquark-antidiquark type vector currents J−μðxÞ
and J+μðxÞ:

J−μ xð Þ = εijkεimnffiffiffi
2

p sj xð ÞCck xð Þ�sm xð ÞγμC�cn xð Þ − sj xð ÞCγμck xð Þ�sm xð ÞC�cn xð Þ
n o

,

J+μ xð Þ = εijkεimnffiffiffi
2

p sj xð ÞCck xð Þ�sm xð ÞγμC�cn xð Þ + sj xð ÞCγμck xð Þ�sm xð ÞC�cn xð Þ
n o

,

ð4Þ

to interpolate the ½cs�P½�c�s�A − ½cs�A½�c�s�P-type and ½cs�P½�c�s�A +
½cs�A½�c�s�P-type tetraquark states with the quantum numbers
JPC = 1−− and 1−+, respectively, and investigate their prop-
erties with the QCD sum rules, where the i, j, k, m, and n
are color indexes. We acquire the predictions:

MX 4630ð Þ = 4:63+0:11−0:08 GeV for JPC = 1−+,

MY 4660ð Þ = 4:70+0:14−0:10 GeV for JPC = 1−−,
ð5Þ

which happen to coincide with the masses of the Xð4630Þ
and Yð4660Þ, respectively [13], and support assigning the
Xð4630Þ and Yð4660Þ to be the tetraquark states with the
symbolic quark constituents c�cs�s and with the quantum
numbers JPC = 1−+ and 1−−, respectively. The prediction of
the mass 4:63+0:11−0:08 GeV was achieved long before the discov-
ery of the Yð4630Þ.

In Refs. [14, 15], we construct the diquark-antidiquark
type currents to explore the ½cs�S½�c�s�S, ½cs�P½�c�s�P, ½cs�A½�c�s�A,
and ½cs�V ½�c�s�V tetraquark states with the quantum numbers
JPC = 0++ concordantly via the QCD sum rules, and the
numerical results support assigning the Xð3915Þ and
Xð4500Þ to be the ground state and first radial excited state
of the ½cs�A½�c�s�A tetraquark states, respectively, with the
quantum numbers JPC = 0++ and assigning the Xð4700Þ to
be the ground state ½cs�V ½�c�s�V tetraquark states with the
quantum numbers JPC = 0++. Furthermore, we also obtain
the potability that assigning the Xð3915Þ to be the ground
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state ½cs�S½�c�s�S tetraquark state with the JPC = 0++ [15]. Our
predictions,

MX 4500ð Þ = 4:50+0:08−0:09 GeV,

MX 4700ð Þ = 4:70+0:08−0:09 GeV,
ð6Þ

are in very good agreement with the LHCb improved mea-
surement MXð4500Þ = 4474 ± 3 ± 3MeV and MXð4700Þ = 4694
± 4+16−3 MeV [8]. Other assignments of the Xð4500Þ and Xð
4700Þ, such as the D-wave cs�c�s tetraquark states with the
JP = 0+, are also possible [16], and more theoretical and
experimental works are still needed to obtain definite
conclusion.

In summary, according to the (possible) quantum num-
bers, decay modes, and energy gaps, we can assign the Xð
3915Þ and Xð4500Þ as the ground state and first radial
excited state of the hidden-charm tetraquark states with
the JPC = 0++ [14, 17], assign the Zcð3900Þ and Zcð4430Þ as
the ground state and first radial excited state of the
hidden-charm tetraquark states with the JPC = 1+−, respec-
tively [18–20], and assign the Zcð4020Þ and Zcð4600Þ as
the ground state and first radial excited state of the
hidden-charm tetraquark states with the JPC = 1+−, respec-
tively [21, 22]. If we assign the Xð4685Þ to be the first radial
excited state of the Xð4140Þ tentatively, we can get the
energy gap 566MeV, and it is reasonable, see Table 1.

Moreover, in Ref. [17], Lebed and Polosa assign the
Xð3915Þ and Xð4140Þ to be the JPC = 0++ and 1++ diquark-
antidiquark type hidden-charm tetraquark states ½cs�S½�c�s�S
and ½cs�A½�c�s�S + ½cs�S½�c�s�A, respectively, based on the effective
Hamiltonian with the spin-spin and spin-orbit interactions.
In Ref. [23], we construct the ½sc�~A½�s�c�A + ½sc�A½�s�c�~A type and
½sc�~V ½�s�c�V − ½sc�V ½�s�c�~V type axialvector currents with the
quantum numbers JPC = 1++ to interpolate the Xð4140Þ
and observe that only the ½sc�~V ½�s�c�V − ½sc�V ½�s�c�~V type current
can reproduce the mass and width of the Yð4140Þ in a con-
sistent way.

3. The Xð4140Þ/Xð4685Þ as the 1S/2S Axialvector
Tetraquark States

In this section, we extend our previous work [23] to investi-
gate the Xð4685Þ as the first radial excitation of the Xð4140Þ
with the QCD sum rules and discuss the possible assignment

of the Xð4685Þ as the tetraquark state having the quantum
numbers JPC = 1++.

Firstly, we write down the two-point correlation function
Πμμ′ðpÞ in the QCD sum rules:

Πμμ′ pð Þ = i
ð
d4xeip·x 0 ∣ T Jμ xð ÞJ†

μ′ 0ð Þ
n o

∣ 0
D E

, ð7Þ

where

Jμ xð Þ = εijkεimnffiffiffi
2

p sT j xð ÞCσμνc
k xð Þ�sm xð Þγ5γνC�cTn xð Þ

h
− sT j xð ÞCγνγ5ck xð Þ�sm xð ÞσμνC�c

Tn xð Þ
i
:

ð8Þ

The current JμðxÞ couples potentially to the ½sc�~V ½�s�c�V
− ½sc�V ½�s�c�~V tetraquark states with the JPC = 1++. The tensor
diquark operator εijksT jðxÞCσμνckðxÞ has both the spin par-

ity JP = 1+ and 1− components, and we project out the 1−
component via multiplying the tensor diquark operator by
the vector antidiquark operator εimn�smðxÞγ5γνC�cTnðxÞ. In
Ref. [23], we observe that the current JμðxÞ can reproduce
the mass and width of the Yð4140Þ satisfactorily.

At the hadron side, we isolate the ground state (X) and
first radial excited state (X ′) contributions, which are sup-
posed to be the pole contributions from the Xð4140Þ and
Xð4685Þ, respectively,

Πμμ′ pð Þ = λ2X
M2

X − p2
+ λ2X ′
M2

X ′ − p2
+⋯

 !
−gμμ′ +

pμpμ′
p2

� �
+⋯

=Π p2
� �

−gμμ′ +
pμpμ′
p2

� �
+⋯,

ð9Þ

where the pole residues or decay constants λXð′Þ are defined
by h0 ∣ Jμð0Þ ∣ Xð′ÞðpÞi = λXð′Þ εμ, and the εμ is the polariza-

tion vectors of the axialvector tetraquark states Xð′Þ.
A hadron, such as the usually called quark-antiquark type

meson, tree-quark type baryon, diquark-antidiquark type tet-
raquark state, and diquark-diquark-antiquark type penta-
quark state, has definite quantum numbers and more than
one Fock states. Any current operator with the same quantum
numbers and same quark structure as a Fock state in the had-
ron couples potentially to this hadron; in other words, it has
nonvanishing coupling to this hadron. Generally speaking,
we can construct several current operators to interpolate a
hadron or construct a current operator to interpolate several
hadrons. Actually, a hadron has one or two main Fock states,
and we call a hadron as a tetraquark state if its main Fock com-
ponent is of the diquark-antidiquark type.

In the present work, the diquark-antidiquark type local
four-quark current operator JμðxÞ having the quantum num-

bers JPC = 1++ couples potentially to the diquark-antidiquark
type tetraquark states with the same quantum numbers JPC

= 1++. On the other hand, this local current JμðxÞ can be rear-
ranged into a special superposition of a series of color-singlet-
color-singlet type currents through the Fierz transformation
both in the Dirac spinor space and color space:

Table 1: The energy gaps between the ground states and first radial
excited states of the hidden-charm tetraquark states with the
possible assignments.

JPC 1S 2S Energy gaps

1+− Zc 3900ð Þ Zc 4430ð Þ 591MeV

0++ X 3915ð Þ X 4500ð Þ 588MeV

1+− Zc 4020ð Þ Zc 4600ð Þ 576MeV

1++ X 4140ð Þ X 4685ð Þ 566MeV
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2
ffiffiffi
2

p
Jμ xð Þ = −�c xð Þσμνγ5c xð Þ�s xð Þγνs xð Þ +�s xð Þσμνγ5s xð Þ�c xð Þγνc xð Þ

− 3i�c xð Þγμγ5c xð Þ�s xð Þs xð Þ + 3i�s xð Þγμγ5s xð Þ�c xð Þc xð Þ
−�c xð Þσμνs xð Þ�s xð Þγνγ5c xð Þ +�s xð Þσμνc xð Þ�c xð Þγνγ5s xð Þ
− 3�c xð Þγμs xð Þ�s xð Þiγ5c xð Þ + 3�s xð Þγμc xð Þ�c xð Þiγ5s xð Þ,

ð10Þ

which couple potentially to the tetraquark molecular states or
two-meson scattering states having the quantum numbers
JPC = 1++. The diquark-antidiquark type tetraquark states
can be viewed as a special superposition of a series of color-
singlet-color-singlet molecular states and embody the net
effects, and vise versa.

The diquark-antidiquark type tetraquark state can be
plausibly described by two diquarks in a double well poten-
tial which are separated by a barrier [24, 25], the spatial dis-
tance between the diquark and antidiquark leads to smaller
wave-function overlap between the quark and antiquark
constituents, and the repulsive barrier or spatial distance
frustrates the Fierz rearrangements or recombinations
between the quarks and antiquarks and therefore suppresses
hadronizing to the meson-meson pairs [24–27].

If the color-singlet-color-singlet type components in Eq.
(10), such as �cðxÞσμνγ5cðxÞ�sðxÞγνsðxÞ and �sðxÞσμνγ5sðxÞ�cð
xÞγνcðxÞ, only couple potentially to the two-meson (TM)
scattering states, we obtain the correlation function ΠTMð
p2Þ at the hadron side:

ΠTM p2
� �

= 1
768π2

ð∞
m2

J/ψϕ

ds
1

s − p2

λ1/2 s,m2
J/ψ,m2

ϕ

� �
s

�ρJ/ψϕ sð Þ

+ 1
1536π2 f

2
ϕm

2
ϕ f

2
hc

ð∞
m2

hcϕ

ds
1

s − p2

λ1/2 s,m2
hc
,m2

ϕ

� �
s

�ρhcϕ sð Þ

+ 1
1536π2 f

2
J/ψm

2
J/ψ f

2
hs

ð∞
m2

hs J/ψ

ds
1

s − p2

λ1/2 s,m2
hs
,m2

J/ψ

� �
s

�ρhs J/ψ sð Þ

+ 3
512π2 f

2
f0
m2

f0
f 2χc1

m2
χc1

ð∞
m2

f0χc1

ds
1

s − p2

λ1/2 s,m2
χc1
,m2

f0

� �
s

�ρχc1 f0 sð Þ

+ 3
512π2 f

2
f1
m2

f1
f 2χc0

m2
χc0

ð∞
m2

f1χc0

ds
1

s − p2

λ1/2 s,m2
χc0
,m2

f1

� �
s

�ρχc0 f1 sð Þ

+ 3
512π2 f

2
f0
m2

f0
f 2ηc

ð∞
m2

f0ηc

ds
1

s − p2

λ3/2 s,m2
ηc
,m2

f0

� �
s2

+ 3
512π2 f

2
χc0
m2

χc0
f 2η

ð∞
m2

χc0η

ds
1

s − p2

λ3/2 s,m2
χc0
,m2

η

� �
s2

+ 1
768π2 f

2
Ds1
m2

Ds1
f 2T ,D∗

s

ð∞
m2

Ds1D∗s

ds
1

s − p2

λ1/2 s,m2
Ds1

,m2
D∗
s

� �
s

�ρDs1D
∗
s
sð Þ

+ 1
192π2

ð∞
m2

DsD
∗
s

ds
1

s − p2

λ1/2 s,m2
Ds
,m2

D∗
s

� �
s

�ρDsD
∗
s
sð Þ

+ 3
256π2

f 2Ds
m4

Ds
f 2Ds0

m2
c

ð∞
m2

DsDs0

ds
1

s − p2

λ3/2 s,m2
Ds
,m2

Ds0

� �
s2

+ J/ψϕ⟶ ψ′ϕ
� �

+ J/ψϕ⟶ ψ′′ϕ
� �

+ hcϕ⟶ hc′ϕ
� �

+⋯,

ð11Þ

where

�ρJ/ψϕ sð Þ = f 2ϕm
2
ϕ f

2
T ,J/ψ −s + 8m2

J/ψ −m2
ϕ +

m2
J/ψ −m2

ϕ

� �2
s

+
s −m2

J/ψ

� �2
m2

ϕ

0B@
1CA

+ 2f J/ψmJ/ψ f ϕmϕ f T ,ϕ f T ,J/ψ 5s − 4m2
J/ψ − 4m2

ϕ −
m2

J/ψ −m2
ϕ

� �2
s

0B@
1CA

+ f 2J/ψm
2
J/ψ f

2
T ,ϕ −s + 8m2

ϕ −m2
J/ψ +

m2
J/ψ −m2

ϕ

� �2
s

+
s −m2

ϕ

� �2
m2

J/ψ

0B@
1CA,

�ρhcϕ sð Þ = −2s − 10m2
hc
− 2m2

ϕ +
2m4

ϕ − 3m2
hc
m2

ϕ

s
+
2s2 − 3sm2

hc

m2
ϕ

+
m6

hc

sm2
ϕ

,

�ρhs J/ψ sð Þ = −2s − 10m2
hs
− 2m2

J/ψ +
2m4

J/ψ − 3m2
hs
m2

J/ψ
s

+
2s2 − 3sm2

hs

m2
J/ψ

+
m6

hs

sm2
J/ψ

,

�ρχc1 f0 sð Þ = 10 +
m2

χc1
− 2m2

f0

s
+
s − 2m2

f0

m2
χc1

+
m4

f0

sm2
χc1

,

�ρχc0 f1 sð Þ = 10 +
m2

f1
− 2m2

χc0

s
+
s − 2m2

χc0

m2
f1

+
m4

χc0

sm2
f1

,

�ρDs1D
∗
s
sð Þ = −2s − 10m2

D∗
s
− 2m2

Ds1
+
2m4

Ds1
− 3m2

D∗
s
m2

Ds1

s

+
2s2 − 3sm2

D∗
s

m2
Ds1

+
m6

D∗
s

sm2
Ds1

,

�ρDsD
∗
s
sð Þ =

f Ds
f T ,D∗

s
s −m2

Ds
−m2

D∗
s

� �
4 −

3f Ds
m2

Ds
f D∗

s
mD∗

s

2mc

0@ 1A2

10 +
m2

D∗
s
− 2m2

Ds

s
+
s − 2m2

Ds

m2
D∗
s

+
m4

Ds

sm2
D∗
s

 !

−
f 2Ds

f 2T,D∗
s
s −m2

Ds
−m2

D∗
s

� �
8 −

3f 2Ds
m2

Ds
f D∗

s
mD∗

s
f T ,D∗

s

4mc

0@ 1A
� s +m2

D∗
s
+ 2m2

Ds
+
3m2

D∗
s
m2

Ds
−m4

D∗
s
− 3m4

Ds

s

 

+
3sm2

Ds
− s2 − 3m4

Ds

m2
D∗
s

+
m6

Ds

sm2
D∗
s

!
+
f 2Ds

f 2T ,D∗
s

4

� −s2 −m4
D∗
s
+m4

Ds
+m2

D∗
s
m2

Ds
+ sm2

Ds
+
3sm2

D∗
s

2

 

+
m8

Ds

4sm2
D∗
s

+
6m2

D∗
s
m4

Ds
− 4m4

D∗
s
m2

Ds
+m6

D∗
s
− 4m6

Ds

4s

+
s3 − 4s2m2

Ds
+ 6sm4

Ds
− 4m6

Ds

4m2
D∗
s

!
,

ð12Þ

λða, b, cÞ = a2 + b2 + c2 − 2ab − 2ac − 2bc,mJ/ψϕ =mJ/ψ
+mϕ,mhcϕ

=m hc +mϕ,mhs J/ψ =mhs
+mJ/ψ,mf0χ c1 =mf0

+
mχc1

,mf1χc0
=mf1

+mχc0
,m f0ηc

=mf0
+mηc

,mχc0η
=mχc0

+
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mη, mDs1D
∗
s
=mDs1

+mD∗
s
,mDsD

∗
s
=mD s +mD∗

s
,mDsDs0

=mDs

+mDs0
, and we have taken the standard definitions of the

decay constants:

0 ∣�c 0ð Þσμνc 0ð Þ ∣ J/ψ pð Þ	 

= if TJ/ψ εμpν − ενpμ

� �
,

0 ∣�s 0ð Þσμνs 0ð Þ ∣ ϕ pð Þ	 

= if Tϕ εμpν − ενpμ

� �
,

0 ∣�c 0ð Þσμνs 0ð Þ ∣D∗
s pð Þ	 


= if TD∗
s
εμpν − ενpμ
� �

,

0 ∣�c 0ð Þσμνc 0ð Þ ∣ hc pð Þ	 

= if hcεμναβε

αpβ,

0 ∣�s 0ð Þσμνs 0ð Þ ∣ hs pð Þ	 

= if hsεμναβε

αpβ,

0 ∣�c 0ð Þγμc 0ð Þ ∣ J/ψ pð Þ
D E

= f J/ψmJ/ψεμ,

0 ∣�s 0ð Þγμs 0ð Þ ∣ ϕ pð Þ
D E

= f ϕmϕεμ,

0 ∣�c 0ð Þγμs 0ð Þ ∣D∗
s pð Þ

D E
= f D∗

s
mD∗

s
εμ,

0 ∣�c 0ð Þγμγ5c 0ð Þ ∣ χc1 pð Þ
D E

= f χc1
mχc1

εμ,

0 ∣�s 0ð Þγμγ5s 0ð Þ ∣ f1 pð Þ
D E

= f f1mf1
εμ,

0 ∣�c 0ð Þγμγ5s 0ð Þ ∣Ds1 pð Þ
D E

= f Ds1
mDs1

εμ,

0 ∣�c 0ð Þγμγ5c 0ð Þ ∣ ηc pð Þ
D E

= if ηc pμ,

0 ∣�s 0ð Þγμγ5s 0ð Þ ∣ η pð Þ
D E

= if ηpμ,

0 ∣�c 0ð Þγμγ5s 0ð Þ ∣Ds pð Þ
D E

= if Ds
pμ,

0 ∣�c 0ð Þc 0ð Þ ∣ χc0 pð Þh i = f χc0
mχc0

,

0 ∣�s 0ð Þs 0ð Þ ∣ f0 pð Þh i = f f0mf0
,

0 ∣�c 0ð Þiγ5s 0ð Þ ∣Ds pð Þh i = f Ds
m2

Ds

mc
,

0 �c 0ð Þγμs 0ð Þ
��� ���Ds0 pð Þ

D E
= f Ds0

pμ:

ð13Þ

The εμ is the polarization vectors of the vector and axialvec-
tor mesons.

We accomplish the operator product expansion for the
correlation function Πμμ′ðpÞ up to the vacuum condensates

of dimension 10 consistently [28–30]. In calculations, we
assume dominance of the intermediate vacuum state tacitly,
just like in previous works [28–30], and insert the interme-
diate vacuum state alone in all the channels, and vacuum
saturation works well in the large Nc limit [31]. Up to
now, almost in all the QCD sum rules for the multiquark
states, vacuum saturation is assumed for the higher dimen-
sional vacuum condensates, except in some cases, the
parameter ρ > 1

0∣ : �qiαq
j
β�q

m
λ q

n
τ : ∣0

D E
= ρ

16N2
c

�qqh i2 δijδmnδαβδλτ − δinδjmδατδβλ
� �

,

ð14Þ

which parameterizes deviations from the factorization
hypothesis, is introduced by hand for the sake of fine-
tuning [32], where q = u, d, s, the i, j, m, and n are color
indexes, and the α, β, λ and τ are Dirac spinor indexes.

In the original works, Shifman, Vainshtein, and
Zakharov took the factorization hypothesis based on two
reasons [33, 34]. The first one is the rather large value of
the quark condensate h�qqi, the second one is the duality
between the quark and physical states, and they reproduce
each other, counting both the quark and physical states
(beyond the vacuum states) that maybe lead to a double
counting [33, 34].

In the QCD sum rules for the q�q, q�Q, and Q�Q mesons,
the h�qqi2 are always companied with the fine-structure con-
stant αs = g2s /4π and play a minor important (or tiny) role,
and the deviation from ϱ = 1, for example, ϱ = 2 ~ 3, cannot
make much difference in the numerical predictions; though
in some cases, the values ϱ > 1 can lead to better QCD sum
rules [35, 36]. However, in the QCD sum rules for the multi-
quark states, the h�qqi2 play an important role, large values,
for example, if we take the value ϱ = 2 in the present case,
we can obtain the uncertainties δMX = +0:08GeV and δ
MX ′ = +0:09GeV, which are of the same order of the total
uncertainties from other parameters. Sometimes, large
values of the ρ can destroy the platforms in the QCD sum
rules for the multiquark states [37].

The true values of the higher dimensional vacuum con-
densates remain unknown or poorly known; if the true
values ϱ > 1 or ≫1, the QCD sum rules for the multiquark
states have considerably large systematic uncertainties and
are less reliable than those of the conventional mesons and
baryons [38]. We just make predictions for the multiquark
masses with the QCD sum rules based on vacuum saturation
and then confront them to the experimental data in the
future to examine the theoretical calculations.

After the analytical expression of the QCD spectral den-
sity was acquired, we take the quark-hadron duality below
the continuum thresholds s0 and s0′ by including the contri-
butions of the 1S state and 1S plus 2S states, respectively, and
perform Borel transform in regard to the variable P2 = −p2 to
obtain the two QCD sum rules:

λ2X exp −
M2

X

T2

� �
=
ðs0
4m2

c

ds ρ sð Þ exp −
s

T2

� �
=Π τð Þ,

λ2X exp −
M2

X

T2

� �
+ λ2X ′ exp −

M2
X ′

T2

 !

=
ðs0′
4m2

c

ds ρ sð Þ exp −
s

T2

� �
=Π′ τð Þ,

ð15Þ
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where τ = 1/T2. For the explicit expression of the spectral
density ρðsÞ at the quark and gluon level, one can consult
Ref. [23]. We define Dn = ð−d/dτÞn with n = 0, 1, 2, ⋯ and
then acquire the QCD sum rules for the masses:

M2
X = DΠ τð Þ

Π τð Þ , ð16Þ

M2
X ′ =

b +
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4c

p

2 , ð17Þ

λ2X ′ =
D −M2

X

� �
ΠQCD τð Þ

M2
X ′ −M2

X

exp τM2
X ′

� �
, ð18Þ

where

b = D3 ⊗D0 −D2 ⊗D

D2 ⊗D0 −D ⊗D
,

c = D3 ⊗D −D2 ⊗D2

D2 ⊗D0 −D ⊗D
,

Dj ⊗Dk =DjΠ′ τð ÞDkΠ′ τð Þ,

ð19Þ

the indexes i = 1, 2 and j, k = 0, 1, 2, 3. For the technical
details in obtaining the QCD sum rules in Eqs. (17) and
(18), one can consult Refs. [14, 20, 39].

On the other hand, if we saturate the hadron side of
the QCD sum rules with the contributions of the two-
meson scattering sates, we obtain the following two QCD
sum rules:

ΠTM T2� �
= 1
768π2

ðs0′
m2

J/ψϕ

ds
λ1/2 s,m2

J/ψ,m2
ϕ

� �
s

�ρJ/ψϕ sð Þ exp −
s

T2

� �

+ 1
1536π2 f

2
ϕm

2
ϕ f

2
hc

ðs0′
m2

hcϕ

ds
λ1/2 s,m2

hc
,m2

ϕ

� �
s

�ρhcϕ sð Þ exp −
s

T2

� �

+ 1
1536π2 f

2
J/ψm

2
J/ψ f

2
hs

ðs0′
m2

hs J/ψ

ds
λ1/2 s,m2

hs
,m2

J/ψ

� �
s

�ρhs J/ψ sð Þ exp

� −
s

T2

� �
+ 3
512π2 f

2
f0
m2

f0
f 2χc1

m2
χc1

ðs0′
m2

f0χc1

ds
λ1/2 s,m2

χc1
,m2

f0

� �
s

�ρχc1 f0 sð Þ exp

� −
s

T2

� �
+ 3
512π2 f

2
f1
m2

f1
f 2χc0

m2
χc0

ðs0′
m2

f1χc0

ds
λ1/2 s,m2

χc0
,m2

f1

� �
s

�ρχc0 f1 sð Þ exp

� −
s

T2

� �
+ 3
512π2 f

2
f0
m2

f0
f 2ηc

ðs0′
m2

f0ηc

ds
λ3/2 s,m2

ηc
,m2

f0

� �
s2

exp −
s

T2

� �

+ 3
512π2 f

2
χc0
m2

χc0
f 2η

ðs0′
m2

χc0η

ds
λ3/2 s,m2

χc0
,m2

η

� �
s2

exp −
s

T2

� �

+ 1
768π2 f

2
Ds1
m2

Ds1
f 2T ,D∗

s

ðs0′
m2

Ds1D∗s

ds
λ1/2 s,m2

Ds1
,m2

D∗
s

� �
s

�ρDs1D
∗
s
sð Þ exp

� −
s

T2

� �
+ 1
192π2

ðs0′
m2

DsD
∗
s

ds
λ1/2 s,m2

Ds
,m2

D∗
s

� �
s

�ρDsD
∗
s
sð Þ exp −

s

T2

� �

+ 3
256π2

f 2Ds
m4

Ds
f 2Ds0

m2
c

ðs0′
m2

DsDs0

ds
λ3/2 s,m2

Ds
,m2

Ds0

� �
s2

exp −
s

T2

� �
+ J/ψϕ⟶ ψ′ϕ
� �

+ J/ψϕ⟶ ψ′′ϕ
� �

+ hcϕ⟶ hc′ϕ
� �

+⋯ = κΠ′ T2� �
,

ð20Þ

d

d 1/T2� �ΠTM T2� �
= κ

d

d 1/T2� �Π′ T2� �
: ð21Þ

In Eqs. (20) and (21), we introduce the parameter κ to
measure the deviations from 1; if κ ≈ 1, we can acquire the
conclusion tentatively that the two-meson scattering states
can saturate the QCD sum rules.

4. Numerical Results and Discussions

At the QCD side, we choose the conventional values of the
vacuum condensates h�qqi = −ð0:24 ± 0:01GeVÞ3, h�ssi = ð0:8
± 0:1Þh�qqi, h�sgsσGsi =m2

0h�ssi, m2
0 = ð0:8 ± 0:1ÞGeV2, and

hαsGG/πi = ð0:33GeVÞ4 at the energy scale μ = 1GeV [33,
34, 40, 41] and prefer the modified minimal subtracted
masses mcðmcÞ = ð1:275 ± 0:025ÞGeV and msðμ = 2GeVÞ =
ð0:095 ± 0:005ÞGeV from the Particle Data Group [42]. In

Table 2: The Borel windows, continuum threshold parameters, and ideal energy scales of the spectral densities, pole contributions, masses
and pole residues for the axialvector tetraquark states.

T2 GeV2� � ffiffiffiffi
s0

p GeVð Þ μ GeVð Þ Pole M GeVð Þ λ GeV5� �
X 4140ð Þ 2:7 − 3:3 4:7 ± 0:1 2.0 41 − 69ð Þ% 4:14 ± 0:10 4:30 ± 0:85ð Þ × 10−2

X 4685ð Þ 2:7 − 3:3 5:1 ± 0:1 3.0 69 − 90ð Þ% 4:70 ± 0:12 1:08 ± 0:17ð Þ × 10−1

6.0
5.7
5.4
5.1
4.8
4.5

M
 (G

eV
)

4.2
3.9
3.6
3.3
3.0

2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2

T2 (GeV2)

Central values
Error bounds
Expt

3.3 3.4 3.5

Figure 1: The masses of the X and X ′ with variations of the Borel
parameter T2, where the expt stands for the experimental values of
the masses of the Xð4140Þ and Xð4685Þ, respectively.
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addition, we consider the energy-scale dependence of the
input parameters:

�ssh i μð Þ = �ssh i 1GeVð Þ αs 1GeVð Þ
αs μð Þ

�  12
33−2nf ,

�sgsσGsh i μð Þ = �sgsσGsh i 1GeVð Þ αs 1GeVð Þ
αs μð Þ

�  2
33−2nf ,

mc μð Þ =mc mcð Þ αs μð Þ
αs mcð Þ
�  12

33−2nf ,

ms μð Þ =ms 2GeVð Þ αs μð Þ
αs 2GeVð Þ
�  12

33−2nf ,

αs μð Þ = 1
b0t

1 − b1
b20

log t
t

+ b21 log2t − log t − 1
� �

+ b0b2
b40t

2

" #
,

ð22Þ

where t = log ðμ2/Λ2Þ, b0 = 33 − 2nf /12π, b1 = 153 − 19nf /
24π2, b2 = 2857 − 5033/9nf + 325/27n2f /128π3, Λ = 210MeV
, 292MeV, and 332MeV for the flavors nf = 5, 4, and 3,
respectively [42, 43], and evolve all the input parameters
to the typical energy scales μ with the flavor number nf

= 4, which satisfy the energy scale formula μ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

X/Y/Z − ð2McÞ2
q

with the updated value of the effective

charmed quark mass Mc = 1:82GeV [44, 45], to extract
the masses of the hidden-charm tetraquark states. We ten-
tatively assign the Xð4140Þ and Xð4685Þ to be the ground
state and first radial excited state of the hidden-charm tet-
raquark states, respectively, and the corresponding perti-
nent energy scales of the spectral densities at the quark-
gluon level are μ = 2:0GeV and 3:0GeV, respectively.

In Ref. [23], we obtain the Borel window T2 = 2:7 − 3:3
GeV2, continuum threshold parameter

ffiffiffiffi
s0

p = 4:7 ± 0:1GeV,
and pole contribution ð41 − 69Þ% for the Xð4140Þ, then
acquire the mass and pole residue MX = 4:14 ± 0:10GeV
and λX = ð4:30 ± 0:85Þ × 10−2 GeV5, which are all shown
plainly in Table 2. In the present work, we choose the same
Borel parameter T2 = 2:7 − 3:3GeV2 as in Ref. [23] and
assume that the energy gap between the first and second
radial excited states is about 0:3 ~ 0:5GeV, take the contin-
uum threshold parameter as

ffiffiffiffi
s0′

q
= 5:1 ± 0:1GeV, and then

obtain the pole contribution ð69 − 90Þ%, and it is large
enough to extract the mass of the first radial excited state.
Moreover, the convergent behaviors of the operator product
expansion are very good, and the contributions from the
vacuum condensates of dimension 10 in the QCD sum rules
for the Xð4140Þ and Xð4685Þ are <1% and ≪1%,
respectively.

Finally, we take into account all the uncertainties of the
input parameters and get the mass and pole residue of the
first radial excited state X ′, which are shown plainly in
Table 2 and Figure 1. From the table, we observe that the

predicted massMX ′ = 4:70 ± 0:12GeV is in very good agree-
ment with the experimental value MXð4685Þ = 4684 ± 7+13−16
MeV from the LHCb collaboration [8].

In Figure 1, we plot the predicted masses MX and MX ′
with variations of the Borel parameter T2; from the figure,
we can see clearly that there appear rather flat platforms
both for the ground state and first radial excited state, and
we are confidential to obtain reliable predictions. In addi-
tion, we present the experimental values of the masses of
the Xð4140Þ and Xð4685Þ, which happen to lie in the center
regions of the predicted values.

If the masses of the ground state Xð4140Þ, first radial
excited state Xð4685Þ, second radial excited state X ′′, etc,
satisfy the Regge trajectory,

M2
n = α n − 1ð Þ + α0, ð23Þ

where the α and α0 are some constants to be fitted experi-
mentally, and the n is the radial quantum number. We take
the masses of the ground state and first radial excited state,
MXð4140Þ = 4118MeV and MXð4685Þ = 4684MeV [8], as input
parameters to fit the parameters α and α0, and obtain the
mass of the second radial excited state, MX ′′ = 5:19 ± 0:10
GeV, which is consistent with the continuum threshold

parameter
ffiffiffiffi
s0′

q
= 5:1 ± 0:1GeV, and the contamination from

the second radial excited state is avoided; here, we add an
uncertainty δ = ±0:1GeV to the mass MX ′′ according to
Table 2. Now, we reach the conclusion tentatively that the
calculations are self-consistent.

The values MX ′′ = 5:09GeV, 5:19GeV and 5:29GeV
correspond to the continuum threshold parameters

ffiffiffiffi
s0′

q
=

5:0GeV, 5:1GeV, and 5:2GeV, respectively, and have the

relationMX ′′ >
ffiffiffiffi
s0′

q
, and the contamination from the second

radial excited state can be neglected. At the beginning, we
assume that the energy gap between the first and second
radial excited states is about 0:3 ~ 0:5GeV and tentatively

take the continuum threshold parameter as
ffiffiffiffi
s0′

q
= 5:1 ± 0:1

GeV to obtain the mass of the X ′, then resort to the Regge
trajectory to check whether or not such a choice is self-
consistent. Fortunately, such a choice happens to be satisfac-
tory. On the other hand, if it is not self-consistent, we can

choose another value of the
ffiffiffiffi
s0′

q
, then repeat the same rou-

tine to obtain self-consistent MX ′ , MX ′′ and
ffiffiffiffi
s0′

q
via trial

and error. In all the calculations, we should obtain flat Borel
platforms to suppress the dependence on the Borel
parameters.

In Refs. [9, 13, 14, 23], we investigate the hidden-charm
tetraquark (molecular) states via the QCD sum rules using

the energy scale formula μ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

X/Y/Z − ð2McÞ2
q

to choose

the pertinent energy scales of the spectral densities at the
quark and gluon level, which can enhance the pole contribu-
tions remarkably and improve the convergent behaviors of
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the operator product expansion remarkably. It is a unique
feature of our works. The predictions MD∗

s
�Ds1−Ds1 �D

∗
s
= 4:67 ±

0:08GeV [9], M½cs�P ½�c�s�A+½cs�A½�c�s�P = 4:63+0:11−0:08 GeV [13],

M½cs�A½�c�s�A ,1S = 3:92+0:19−0:18 GeV, M½cs�A½�c�s�A ,2S = 4:50+0:08−0:09 GeV [14],
M½sc�~V ½�s�c�V−½sc�V ½�s�c�~V ,1S = 4:14 ± 0:10GeV [23], and
M½sc�~V ½�s�c�V−½sc�V ½�s�c�~V ,2S = 4:70 ± 0:12GeV based on the QCD

sum rules support assigning the Xð4630Þ as the D∗
s
�Ds1 −

Ds1 �D
∗
s tetraquark molecular state [9] or ½cs�P½�c�s�A + ½cs�A

½�c�s�P tetraquark state with the quantum numbers JPC = 1−+
[13], assigning the Xð3915Þ and Xð4500Þ as the 1S and 2S
½cs�A½�c�s�A tetraquark states, respectively, with the quantum
numbers JPC = 0++, and assigning the Xð4140Þ and Xð4685
Þ as the 1S and 2S ½sc�~V ½�s�c�V − ½sc�V ½�s�c�~V tetraquark states,
respectively, with the quantum numbers JPC = 1++ [23].
The predictions with the possible assignments are given
plainly in Table 3. We should bear in mind that other assign-
ments of the Xð4500Þ and Xð4700Þ, such as the D-wave cs�c�s
tetraquark states with the JP = 0+, are also possible [16], and
more theoretical and experimental works are still needed to
obtain definite conclusion.

Now, we explore the outcome in the case of saturating
the hadron side of the QCD sum rules with the two-meson
scattering states. At the hadron side of the QCD sum rules
in Eqs. (20) and (21), we choose the parameters mJ/ψ =

3:0969GeV, mηc
= 2:9839GeV, mhc

= 3:52538GeV, mχc0
=

3:41471GeV, mχc1
= 3:51067GeV, mϕ = 1:019461GeV, mh1

= 1:416GeV, mf1
= 1:4263GeV, mf0

= 1:506GeV, mη =
0:547862GeV, mDs

= 1:969GeV, mD∗
s
= 2:1122GeV, mDs0

=
2:318GeV, mDs1

= 2:4596GeV, mψ′ = 3:6861GeV, and mψ′′
= 4:0396GeV from the Particle Data Group [42]; mhc′ =
3:9560GeV from the Godfrey-Isgur model [46]; f J/ψ =
0:418GeV, f ηc = 0:387GeV, f TJ/ψ = 0:410GeV, and f hc =
0:235GeV from the lattice QCD [47]; f χc1

= 0:338GeV, f χc0
= 0:359GeV [48], f ϕ = 0:231GeV, f Tϕ = 0:200GeV [49, 50],
f η = 1:34f π [51], f h1 = 0:183GeV, f f1 = 0:211GeV [52], f f0
= 0:490GeV [53], f Ds

= 0:240GeV, f D∗
s
= 0:308GeV, f Ds0

=
0:333GeVðmc/mDs0

Þ, and f Ds1
= 0:345GeV [54] from the

QCD sum rules; f π = 0:130GeV, f ψ′ = 0:295GeV, and f ψ′′
= 0:187GeV extracted from the experimental data [42]; and
f TD∗

s
= f D∗

s
, f T

ψ′ = f ψ′ , f T
ψ′′ = f ψ′′, and f hc′ = f hcð f ψ′ /f J/ψÞ =

0:166GeV estimated in the present work (also in Ref. [27]).
In Figure 2, we plot the values of the κ with variations of

the Borel parameter T2 for the central values of the input
parameters. From Figure 2, we can see that the values of
the κ increase monotonically and quickly with the increase
of the Borel parameter T2, no platform appears, which indi-
cates that the QCD sum rules in Eqs. (20) and (21) are not
satisfactory, and the two-meson scattering states alone can-
not saturate the QCD sum rules at the hadron side.

In Ref. [27], we investigate the Zcð3900Þ with the QCD
sum rules in details by including all the two-meson scatter-
ing state contributions and nonlocal effects between the
diquark and antidiquark constituents. We observe that the
two-meson scattering states alone cannot saturate the QCD
sum rules at the hadron side, and just like in the present
case, the contribution of the Zcð3900Þ (or pole term) plays
an unsubstitutable role, and we can saturate the QCD sum
rules with or without the two-meson scattering state contri-
butions. We expect the conclusion is also applicable in the
present case.

Now, we explore the two-meson scattering state contri-
butions; besides, the tetraquark states Xc and Xc′, and take
account of all the contributions:

Πμν pð Þ = −
bλ2
X

p2 − M̂
2
X + ΣJ/ψϕ p2ð Þ+⋯

gμν −
bλ2
X ′

p2 − M̂
2
X ′ + ΣJ/ψϕ p2ð Þ+⋯

gμν+⋯:

ð24Þ
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Figure 2: The values of the κ with variations of the Borel parameter
T2, where the A and B come from the QCD sum rules in Eqs. (20)
and (21), respectively.

Table 3: The possible assignments of the LHCb’s X states based on the predictions from the QCD sum rules, where the superscript ∗
denotes the mass of the Xð4140Þ taken from Ref. [23].

JPC 1S [mass (GeV)] 2S [mass (GeV)] References

D∗
s
�D s1 −Ds1�D

∗
s 1−+ X 4630ð Þ [4:67 ± 0:08] [9]

cs½ �P �c½ �s�A + cs½ �A �c�s½ �P 1−+ X 4630ð Þ [4:63+0:11−0:08] [13]

cs½ �A �c½ �s�A 0++ X 3915ð Þ [3:92+0:19−0:18] X 4500ð Þ [4:50+0:08−0:09] [14]

sc½ �~V �s�c½ �V − sc½ �V ½ �s�c�~V 1++ X 4140ð Þ [4:14 ± 0:10] X 4685ð Þ [4:70 ± 0:12] [23]∗

8 Advances in High Energy Physics



We choose the bare masses and pole residues M̂X , M̂X ′ , bλX ,

and bλX ′ to absorb the divergent terms in the self-energies
ΣJ/ψϕðp2Þ,⋯. The renormalized self-energies satisfy the rela-

tions p2 −M2
X,R + �ΣJ/ψϕðp2Þ +⋯ = 0 and p2 −M2

X ′ ,R + �ΣJ/ψϕð
p2Þ +⋯ = 0, where the subscripts R represent the �MS
masses, and the overlines above the self-energies represent
that the divergent terms have been subtracted. The tetra-
quark states Xc and Xc′ have finite widths and are unstable
particles, and the relations should be modified, p2 −M2

X,R +
Re�ΣJ/ψϕðp2Þ +⋯ = 0, p2 −M2

X ′ ,R + Re�ΣJ/ψϕðp2Þ +⋯ = 0, Im
�ΣJ/ψϕðp2Þ +⋯ =

ffiffiffiffiffi
p2

p
ΓXðp2Þ, and Im�ΣJ/ψϕðp2Þ +⋯ =

ffiffiffiffiffi
p2

p
ΓX ′ðp2Þ. The renormalized self-energies contribute a finite
imaginary part to modify the dispersion relation:

Πμν pð Þ = −
λ2X

p2 −M2
X + i

ffiffiffiffiffi
p2

p
ΓX p2ð Þ

gμν

−
λ2X ′

p2 −M2
X ′ + i

ffiffiffiffiffi
p2

p
ΓX ′ p2ð Þ

gμν+⋯,
ð25Þ

where M2
Xð′Þ =M2

Xð′Þ ,R + �ΣJ/ψϕðM2
Xð′Þ Þ.

We can take account of the finite width effects by the
simple replacements of the hadronic spectral densities:

λ2
X

′ð Þδ s −M2
X

′ð Þ
� �

⟶ λ2
X

′ð Þ
1
π

M
X

′ð ÞΓX
′ð Þ sð Þ

s −M2
X

′ð Þ
� �2

+M2
X

′ð ÞΓ
2
X

′ð Þ sð Þ
,

ð26Þ

where

Γ
X

′ð Þ sð Þ = Γ
X

′ð Þ
M

X
′ð Þffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − mJ/ψ +mϕ

� �2
M2

X
′ð Þ − mJ/ψ +mϕ

� �2
vuut : ð27Þ

The ΓX and ΓX ′ are the physical decay widths. Then, the
hadron sides of the QCD sum rules undergo the following
changes:

We can absorb the numerical factors 0:81 ~ 0:82, 0:82
~ 0:83, 0:97 ~ 0:98, and 0:96 ~ 0:97 into the pole residues
safely, and the two-meson scattering states cannot affect
the masses MX and MX ′ significantly [55]. Again, we obtain
the conclusion, the pole terms or tetraquark states play an
unsubstitutable role, we can saturate the QCD sum rules
with or without the two-particle scattering state contribu-
tions, and the two-particle scattering states can only modify
the pole residues [27].

In the present work, we choose the local four-quark cur-
rent JμðxÞ, while the traditional mesons are spatial extended

objects and have average spatial sizes
ffiffiffiffiffiffiffiffihr2ip

≠ 0, for exam-
ple,

ffiffiffiffiffiffiffiffihr2ip
= 0:41 fm (0:42 fm) for the J/ψ ([56, 57]) and

ffiffiffiffiffiffiffiffihr2ip
= 0:63 fm for the ϕð1020Þ [58]. On the other hand,

the diquark-antidiquark type tetraquark states have the aver-
age spatial sizes hri = 0:5 ~ 0:7 fm [59]. TheJ/ψ,ϕð1020Þ
,Xð4140Þ, andXð4685Þhave average spatial sizes of the same
order, and the couplings to the continuum statesJ/ψϕ, etc.
can be neglected, as the overlappings of the wave-functions
are small enough.

5. Conclusion

At the first step, we take into account our previous calcula-
tions based on the QCD sum rules and make possible assign-
ments of the LHCb’s new particles Xð4630Þ and Xð4500Þ.

λ2
X

′ð Þ exp −
M2

X
′ð Þ

T2

 !
⟶ λ2

X
′ð Þ

ðs ′ðÞ0
mJ/ψ+mϕð Þ2

ds
1
π

M
X

′ð ÞΓX
′ð Þ sð Þ

s −M2
X

′ð Þ
� �2

+M2
X

′ð ÞΓ
2
X

′ð Þ sð Þ
exp −

s

T2

� �
,

= 0:81 ~ 0:82λXð Þ2 0:97 ~ 0:98λX ′ð Þ2�
exp −

M2
X

′ð Þ
T2

 !
:

λ2
X

′ð ÞM
2
X

′ð Þ exp −
M2

X
′ð Þ

T2

 !
⟶ λ2

X
′ð Þ

ðs ′ðÞ0
mJ/ψ+mϕð Þ2

dss
1
π

M
X

′ð ÞΓX
′ð Þ sð Þ

s −M2
X

′ð Þ
� �2

+M2
X

′ð ÞΓ
2
X

′ð Þ sð Þ
exp −

s

T2

� �
,

= 0:82 ~ 0:83λXð Þ2 0:96 ~ 0:97λX ′ð Þ2�
M2

X
′ð Þ exp −

M2
X

′ð Þ
T2

 !
:

ð28Þ
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We tentatively assign the Xð4630Þ to be the D∗
s
�Ds1 −Ds1�D

∗
s

tetraquark molecular state or ½cs�P½�c�s�A + ½cs�A½�c�s�P tetraquark
state with the quantum numbers JPC = 1−+ and assign the
Xð3915Þ and Xð4500Þ to be the 1S and 2S ½cs�A½�c�s�A tetra-
quark states, respectively, with the quantum numbers JPC

= 0++ according to the predicted masses.
Then, we extend our previous works to explore the Xð

4685Þ as the first radial excited state of the Xð4140Þ with
the QCD sum rules and obtain the value of the mass
MXð4685Þ = 4:70 ± 0:12GeV, which is in very good agreement
with the experimental value MXð4685Þ = 4684 ± 7+13−16 MeV
from the LHCb collaboration, and support assigning the X
ð4140Þ and Xð4685Þ as the 1S and 2S ½sc�~V ½�s�c�V − ½sc�V ½�s�c�~V
tetraquark states, respectively, with the quantum numbers
JPC = 1++. Furthermore, we investigate the two-meson scat-
tering state contributions in details and observe that the
two-meson scattering state contributions alone cannot satu-
rate the QCD sum rules at the hadron side, the contributions
of the tetraquark states (or pole terms) play an unsubstituta-
ble role, we can saturate the QCD sum rules with or without
the two-meson scattering state contributions, the two-meson
scattering state contributions can only modify the pole resi-
dues, and the predictions of the tetraquark masses are
robust.
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