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A R T I C L E I N F O A B S T R A C T 

Editor: Stephan Stieberger In this work, we introduce a novel set of asymptotically flat wormhole solutions within the 
framework of 𝑓 (𝑅,𝑇 ) theory of gravity. Considering a linear 𝑓 (𝑅,𝑇 ) = 𝑅 + 2𝜆𝑇 form, we show 
that a wide variety of wormhole solutions with asymptotically linear equation of state exist. 
Our solutions satisfy all the energy conditions, namely the null, weak, strong and dominant 
energy conditions. The relationship between free parameters in the shape function and boundary 
conditions is analyzed.

1. Introduction

Theoretically, wormholes are solutions of the Einstein’s field equations that can connect two different points in the Universe. They 
can also serve as shortcuts between points in different universes [1]. Flamm initially proposed the concept of a wormhole [2]. Einstein 
and Rosen described the structure of the Einstein-Rosen bridge mathematically, but the Einstein-Rosen bridge is not a traversable 
wormhole [3]. The term ``wormhole'' was introduced by Misner and Wheeler in 1957 [4]. In 1988, Morris and Thorne demonstrated 
that wormholes could be large enough for humanoid travelers and even allow for time travel [5]. A traversable wormhole solution 
should not contain any horizon or singularity [1]. An exotic fluid that violates the null energy condition (NEC) in general relativity 
(GR) must be used to develop wormhole structures. This is the main ingredient of the wormhole theory in GR. Numerous astronomical 
probes have cofirmed the phenomenon of accelerating cosmic expansion, which has become a focus of interest for researchers in 
modern cosmology. Phantom wormholes violate the energy conditions (ECs) but have been studied extensively in the literature 
after the discovery of the accelerated expansion of the Universe [6--8]. Many authors try to minimize the usage of exotic matter in 
constructing a wormhole. Thin shell wormhole [9--12], wormhole with variable equation of state (EoS) [13,14], and wormhole with 
polynomial EoS [15] are some examples. In all of these models, exotic matter is limited to a small region of spacetime.

Modfied theories of gravity are an alternative to describe the new cosmological problems [16]. The additional levels of freedom, 
presented in these theories, can be reinterpreted as a generalized geometrical fluid. This fluid holds distinct interpretations compared 
to the conventional matter fluids typically used as inputs in the field equations. A strong alternative to solving the problem of exotic 
matter can be found in modfied theories. In this realm, wormholes have been studied extensively in modfied theories. Wormholes 
are investigated in Braneworld [17--20], Born-Infeld theory [21,22], quadratic gravity [23,24], Einstein-Cartan gravity [25,26], 𝑓 (𝑄)
gravity [27--34], 𝑓 (𝑅) gravity [35--41] and Ricci inverse gravity [42].

In 𝑓 (𝑅) gravity, the standard Einstein-Hilbert action is replaced by an arbitrary function of the Ricci scalar (𝑅) [43]. Additionally, 
𝑓 (𝑅,𝑇 ) theory of gravity is generated by coupling any function of the Ricci scalar 𝑅 with the trace 𝑇 of the stress-energy tensor of the 
matter [44]. The 𝑓 (𝑅,𝑇 ) gravity can be seen as an extension of the 𝑓 (𝑅) modfied theory of gravity [44,45]. The cosmological aspects 
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within the framework of 𝑓 (𝑅,𝑇 ) have been explored in the literature [46--48]. In [49,50] constraints on cosmological models Black 
holes have been studied in the context of 𝑓 (𝑅,𝑇 ) gravity [51,52]. Various investigations have been carried out on wormhole solutions 
within 𝑓 (𝑅,𝑇 ) gravity. Azizi [53] has determined a shape function under the assumption of a linear EoS for matter. Solutions that 
are presented in [53] satisfy the energy conditions. The modeling of wormholes in 𝑓 (𝑅,𝑇 ) gravity is presented in [54] by Moraes 
and Sahoo. They have identfied solutions with linear EoS and a variable EoS parameter that satisfy the energy conditions for the 
linear EoS model. Zubair et al. discuss spherically symmetric wormhole solutions in 𝑓 (𝑅,𝑇 ) modfied theory of gravity by introducing 
well-known non-commutative geometry in terms of Gaussian and Lorentzian distributions of string theory [55]. Rosa and Kull have 
demonstrated that traversable wormhole solutions for the non-vanishing redshift function in the linear form of 𝑓 (𝑅,𝑇 ) = 𝑅 + 2𝜆𝑇
gravity satisfy the energy conditions for the entire spacetime [56]. Sharif and Nawazish explored wormhole solutions in spherically 
symmetric spacetime using the Noether symmetry approach within the framework of 𝑓 (𝑅,𝑇 ) gravity [57]. In [58], two different 
traversable wormhole geometries, namely exponential and power law shape functions have been utilized to model the wormholes. 
In [59], three different models of 𝑓 (𝑅,𝑇 ) are investigated to find exact wormhole solutions. Solutions for charged wormholes in 
𝑓 (𝑅,𝑇 ) extended theory of gravity have been presented in [60]. Sharif and Fatima have introduced traversable wormhole solutions 
through Karmarkar condition in 𝑓 (𝑅,𝑇 ) theory [61]. In [62] a new hybrid shape function for wormhole in modfied 𝑓 (𝑅,𝑇 ) gravity 
is proposed. Many other wormhole solutions have been discussed in the context of 𝑓 (𝑅,𝑇 ) gravity [63--82]. Recently wormholes in 
a generalized geometry-matter coupling theory of gravity, 𝑓 (𝑅,𝐿,𝑇 ) are investigated [83] Some of the solutions in the context of 
𝑓 (𝑅,𝑇 ) satisfy the ECs while others do not respect the energy conditions. Despite the numerous studies on wormholes in the context 
of 𝑓 (𝑅,𝑇 ), non-exotic wormhole solutions for 𝑓 (𝑅,𝑇 ) =𝑅+2𝜆𝑇 are scarce in the existing literature. Wormhole with linear EoS and 
constant redshift function are presented in [53] and [54]. In existing literature, solutions with constant redshift function that satisfy 
the ECs are limited to a power-law shape function and linear EoS for 𝑓 (𝑅,𝑇 ) =𝑅+2𝜆𝑇 [53,54]. In this paper, we introduce a diverse 
range of solutions within the framework of 𝑓 (𝑅,𝑇 ) = 𝑅 + 2𝜆𝑇 that also adhere to the energy conditions. We apply the approach 
outlined in reference [14] to construct asymptotically flat wormholes with a variable EoS parameter.

Our article is organized as follows: Sec. 2, delves into the criteria and equations that govern wormholes. Subsequently, we provide 
a concise overview of 𝑓 (𝑅,𝑇 ) theory and the classical ECs. In Sec. 3, we explore various shape functions within the realm of 𝑓 (𝑅,𝑇 )
gravity. We present solutions which satisfy the ECs in Sec. 4. The physical properties of the solutions are presented in this section. 
Finally, we offer our concluding remarks in the last section. In this paper, we have assumed gravitational units, i.e., 𝑐 = 8𝜋𝐺 = 1.

2. Basic formulation of wormhole

In this section, we introduce the basic structure of the wormhole theory and a brief review of 𝑓 (𝑅,𝑇 ) gravity formalism. Typically, 
the line element of a static and spherically symmetric wormhole is given by

𝑑𝑠2 = −𝑈 (𝑟)𝑑𝑡2 + 𝑑𝑟2

1 − 𝑏(𝑟)
𝑟 

+ 𝑟2(𝑑𝜃2 + sin2 𝜃, 𝑑𝜙2) (1)

where 𝑈 (𝑟) = exp(2𝜙(𝑟)). The function 𝑏(𝑟) is called the shape function and 𝜙(𝑟) is called the redshift function which can be used to 
detect the redshift of the signal by a distance observer. The shape function should obey

𝑏(𝑟0) = 𝑟0, (2)

where 𝑟0 is the wormhole throat. Additionally, two other conditions must be met to ensure the existence of a traversable wormhole,

𝑏′(𝑟0) < 1 (3)

and

𝑏(𝑟) < 𝑟, for 𝑟 > 𝑟0. (4)

Equation (3) is well-known as the flaring-out condition which leads to violation of NEC in the background of GR. Asymptotically flat 
condition can be formulated as follows

lim 
𝑟→∞

𝑏(𝑟)
𝑟 

= 0, lim 
𝑟→∞

𝑈 (𝑟) = 1. (5)

It is necessary that redshift function be finite everywhere to avoid the existence of the horizon. To simplify, we have focused on 
solutions with a constant redshift function. In this article, we consider an anisotropic fluid in the form of 𝑇 𝜇

𝜈 = 𝑑𝑖𝑎𝑔[−𝜌, 𝑝, 𝑝𝑡, 𝑝𝑡], 
where 𝜌 is the energy density, 𝑝 is the radial pressure and 𝑝𝑡 denotes the tangential pressure, respectively.

Let us briefly review the 𝑓 (𝑅,𝑇 ) formalism. The total action for 𝑓 (𝑅,𝑇 ) gravity takes the form:

𝑆 = ∫
1
2
𝑓 (𝑅,𝑇 )

√
−𝑔 𝑑4𝑥+ ∫ 𝐿𝑚

√
−𝑔 𝑑4𝑥, (6)

where 𝑓 (𝑅,𝑇 ) is a general function of 𝑅 (Ricci scalar) and 𝑇 (trace of the energy-momentum tensor), 𝑔 is the determinant of the 
metric, and 𝐿𝑚 is the matter Lagrangian density. The connection between 𝐿𝑚 and the energy-momentum tensor is given by

𝑇𝑖𝑗 = − 2 √
−𝑔

[
𝜕(
√
−𝑔𝐿𝑚)
𝜕𝑔𝑖𝑗

− 𝜕

𝜕𝑥𝑘

𝜕(
√
−𝑔𝐿𝑚) 

𝜕(𝜕𝑔𝑖𝑗∕𝜕𝑥𝑘)

]
. (7)
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In most of the papers in 𝑓 (𝑅,𝑇 ) gravity, 𝐿𝑚 is assumed to be dependent only on the metric component not on its derivatives. We 
also use this assumption, so

𝑇𝑖𝑗 = 𝑔𝑖𝑗𝐿𝑚 − 2
𝜕𝐿𝑚

𝜕𝑔𝑖𝑗
. (8)

One can vary the action (6) with respect to metric to find

𝑓𝑅(𝑅,𝑇 )
(
𝑅𝑖𝑗 −

1
3
𝑅𝑔𝑖𝑗

)
+ 1

6
𝑓 (𝑅,𝑇 )𝑔𝑖𝑗

=
(
𝑇𝑖𝑗 −

1
3
𝑇 𝑔𝑖𝑗

)
− 𝑓𝑇 (𝑅,𝑇 )

(
𝑇𝑖𝑗 −

1
3
𝑇 𝑔𝑖𝑗

)
− 𝑓𝑇 (𝑅,𝑇 )

(
𝜃𝑖𝑗 −

1
3
𝜃𝑔𝑖𝑗

)
+∇𝑖∇𝑗𝑓𝑅(𝑅,𝑇 ), (9)

where 𝑓𝑅(𝑅,𝑇 ) ≡ 𝜕𝑓 (𝑅,𝑇 )
𝜕𝑅 , 𝑓𝑇 (𝑅,𝑇 ) ≡ 𝜕𝑓 (𝑅,𝑇 )

𝜕𝑇
and

𝜃𝑖𝑗 = 𝑔𝑖𝑗
𝜕𝑇𝑖𝑗

𝜕𝑔𝑖𝑗
. (10)

There are numerous options for Lagrangian density, such as 𝐿𝑚 = 𝑇 , 𝐿𝑚 = 𝑃 where 𝑃 = 𝑝𝑟+2𝑝𝑡
3 , and 𝐿𝑚 = −𝜌 with different physical 

interpretation. We assume 𝐿𝑚 = −𝜌 which is a natural choice. It should be noted that 𝐿𝑚 = −𝜌 leads to non-vanishing extra force. 
Hence, Eq. (10) give

𝜃𝑖𝑗 = −2𝑇𝑖𝑗 − 𝜌𝑔𝑖𝑗 . (11)

There are many models in the general forms

𝑓 (𝑅,𝑇 ) = 𝑓1(𝑅) + 𝑓2(𝑇 ), (12)

𝑓 (𝑅,𝑇 ) = 𝑓1(𝑅) + 𝑓2(𝑅)𝑓3(𝑇 ). (13)

The most straightforward choice to study wormhole in f(R,T) scenario is

𝑓 (𝑅,𝑇 ) =𝑅+ 2𝜆𝑇 . (14)

The field equations in this model are linear and in the simplest form. The exploration of wormholes within the framework of 𝑓 (𝑅,𝑇 ) =
𝑅+2𝜆𝑇 models is not a novel idea; however, many prior investigations have founded solutions which violate the ECs. Consequently, it 
is essential to conduct studies on these models that satisfy the ECs, as this consideration is fundamental to the theoretical understanding 
of wormholes in modfied gravity. Using (1), (9) and (12), one can find the following field equations

𝑏′

𝑟2
= (1 + 𝜆)𝜌− 𝜆(𝑝𝑟 + 2𝑝𝑙), (15)

− 𝑏 
𝑟3

= 𝜆𝜌+ (1 + 3𝜆)𝑝𝑟 + 2𝜆𝑝𝑙, (16)

𝑏− 𝑏′𝑟

2𝑟3
= 𝜆𝜌+ 𝜆𝑝𝑟 + (1 + 4𝜆)𝑝𝑙, (17)

which the prime denotes the derivative 𝑑
𝑑𝑟

. The field equations stated above admit the solutions

𝜌 = 𝑏′

𝑟2(1 + 2𝜆)
, (18)

𝑝𝑟 = − 𝑏 
𝑟3(1 + 2𝜆)

, (19)

𝑝𝑙 =
𝑏− 𝑏′𝑟 

2𝑟3(1 + 2𝜆)
. (20)

It is worth mentioning that the field equations changed only in Einstein’s gravitational constant.

It has been demonstrated that wormhole solutions within ordinary GR entail the violation of ECs. To ensure a positive stress

energy tensor in the existence of matter, the ECs present feasible methods. These ECs, known as the NEC, dominant energy condition 
(DEC), weak energy condition (WEC), and strong energy condition (SEC), are specifically dfined to facilitate the achievement of this 
desired state.

NEC ∶ 𝜌+ 𝑝 ≥ 0, 𝜌+ 𝑝𝑡 ≥ 0, (21)

WEC ∶ 𝜌 ≥ 0, 𝜌+ 𝑝 ≥ 0, 𝜌+ 𝑝𝑡 ≥ 0, (22)

DEC ∶ 𝜌 ≥ 0, 𝜌− |𝑝| ≥ 0, 𝜌− |𝑝𝑡| ≥ 0, (23)
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SEC ∶ 𝜌+ 𝑝 ≥ 0, 𝜌+ 𝑝𝑡 ≥ 0, 𝜌+ 𝑝+ 2𝑝𝑡 ≥ 0. (24)

Derived from the Raychaudhury equations, these conditions serve as indispensable tools for understanding the geodesics of the 
Universe. By utilizing these equations, we are able to unravel the complex paths followed by cosmic objects. Now, according to [27], 
by defining the functions,

𝐻(𝑟) = 𝜌+ 𝑝, 𝐻1(𝑟) = 𝜌+ 𝑝𝑡, 𝐻2(𝑟) = 𝜌− |𝑝|,
𝐻3(𝑟) = 𝜌− |𝑝𝑡|, 𝐻4(𝑟) = 𝜌+ 𝑝+ 2𝑝𝑡. (25)

It should be mentioned that the ECs serve various purposes in different contexts, allowing for the derivation of general results that 
can impose constraints on model parameters. These conditions originate from the Raychaudhuri equations, which characterize the 
behavior of space-time congruences and are instrumental in the analysis of space-time singularities. This scenario is initially articulated 
within the framework of GR. Recent studies have explored the extension of these ECs to modfied gravity theories, such as 𝑓 (𝑅,𝑇 )
[84,85]. It was shown that in the context of 𝑓 (𝑅,𝑇 ) the ECs result in

NEC ∶ 𝜌𝑒𝑓𝑓 + 𝑝𝑒𝑓𝑓 ≥ 0, 𝜌𝑒𝑓𝑓 + (𝑝𝑡)𝑒𝑓𝑓 ≥ 0

WEC ∶ 𝜌𝑒𝑓𝑓 ≥ 0, 𝜌𝑒𝑓𝑓 + 𝑝𝑒𝑓𝑓 ≥ 0, 𝜌𝑒𝑓𝑓 + (𝑝𝑡)𝑒𝑓𝑓 ≥ 0

DEC ∶ 𝜌𝑒𝑓𝑓 ≥ 0, 𝜌𝑒𝑓𝑓 − |𝑝𝑒𝑓𝑓 | ≥ 0, 𝜌𝑒𝑓𝑓 − |(𝑝𝑡)𝑒𝑓𝑓 | ≥ 0

SEC ∶ 𝜌𝑒𝑓𝑓 + 𝑝𝑒𝑓𝑓 ≥ 0, 𝜌𝑒𝑓𝑓 + (𝑝𝑡)𝑒𝑓𝑓 ≥ 0, (26)

𝜌𝑒𝑓𝑓 + 𝑝𝑒𝑓𝑓 + 2(𝑝𝑡)𝑒𝑓𝑓 ≥ 0.

One can see that the ECs within the framework of 𝑓 (𝑅,𝑇 ) gravity theory can be articulated in a manner analogous to those in GR. 
However, a notable distinction arises in that the conventional energy density, radial pressure and tangential pressure, are substituted 
with their effective counterparts, 𝜌𝑒𝑓𝑓 , 𝑝𝑒𝑓𝑓 , and (𝑝𝑡)𝑒𝑓𝑓 . Modfications to gravity are integrated into the right-hand side of Einstein’s 
field equations within the framework of 𝑓 (𝑅,𝑇 ). So, the flaring out conditions ensure a breach of the effective ECs. However, the 
conventional stress-energy tensor may still satisfy the ECs.

We can investigate the ECs in the recent part of this paper. It was mentioned that wormholes in the context of 𝑓 (𝑅,𝑇 ) have been 
studied extensively in the literature. Solutions with 𝑓 (𝑅,𝑇 ) in the form of (14) are explored in [53] and [54]. It was shown that 
𝐻(𝑟) > 0 and flaring out condition leads to

𝜆 < −1
2

(27)

Although solutions with linear EoS

𝑝(𝑟) =𝑤𝜌 (28)

are explored in [53] and [54] but as we know, there are a few solutions for 𝑓 (𝑅,𝑇 ) =𝑅+ 2𝜆𝑇 , which satisfy the ECs in the existing 
literature. In this paper, we present other classes of solutions that satisfy ECs. For the simplicity, we set 𝑟0 = 1 in the latter part of 
this paper.

3. Wormhole solutions

Exotic matter is the primary motivation for exploring wormholes in the context of modfied gravities. Various algorithms are 
available to study wormholes within the framework of 𝑓 (𝑅,𝑇 ) gravity. For instance, one can use an EoS and field equations to find 
exact wormhole solutions [53,54,65]. In another algorithm, the EoS can be not imposed, then we can use different shape functions 
with free parameters to find the desired solutions [56,58]. Solutions where the energy density is a function of 𝑅 and 𝑅′ are discussed 
in [67]. In [55], energy density was assumed to be a function of the radial coordinate, and then 𝑏(𝑟) was presented. However, the 
solutions presented in [55] do not adhere to the energy conditions. In [53], wormhole with vanishing redshift function and 𝑓 (𝑅,𝑇 )
in the form of (14) has been investigated. They have shown that barotropic EoS (28) leads to

𝑏(𝑟) = 𝑟1∕𝜔. (29)

This class of solutions with conditions (27) and 𝜔 ≤ −1 satisfy the ECs.

It should be noted that Eqs. (18)-(20) give

𝜌+ 𝑝+ 2𝑝𝑡 = 0. (30)

This equation demonstrates that solutions satisfying NEC also comply with SEC. It is a crucial point to keep in mind while exploring 
wormhole solutions. Considering Eq. (30) leads to an EoS for 𝑝𝑡 in term of 𝑝. As an illustration, 𝑝 = 𝜔(𝑟)𝜌 results in

𝑝𝑡 = −1 +𝜔(𝑟)
2 

𝜌, (31)

indicating the coexistence of linear EoS for lateral and radial pressure. One can note that for linear EoS,

Nuclear Physics, Section B 1011 (2025) 116797 

4 



S. Rastgoo and F. Parsaei 

Fig. 1. The figure represents the (1 + 2𝜆)𝐻(𝑟,𝑚) against 𝑟 and 𝑚 for 𝐴= 2, which is negative in some range. See the text for details. 

𝑝𝑡 = 𝛾𝑝 (32)

where

𝛾 = −1 +𝜔

2𝜔 
(33)

This equation implies that linear EoS for radial pressure leads to linear EoS for lateral pressure.

Now, we examine some choices for shape function to find exact wormhole solutions. To this end, well-known shape functions 
from the literature are employed. Our options are as follows

𝑏(𝑟) =𝐴𝑟𝑚 + (1 −𝐴), (34)

𝑏(𝑟) = tanh(𝑟) 
tanh(1)

, (35)

𝑏(𝑟) = 𝑐 ln(𝑟) + 1, (36)

𝑏(𝑟) = 𝑎𝑟

𝑎 
. (37)

These shape functions have been extensively studied in the current literature regarding different theories of gravity. They are consis

tent with Eqs. (2)-(5). In this work, our emphasis is on solutions with positive energy density, which seems to be more viable. The 
shape function (34) is presented in [8] to study asymptotically flat wormhole solutions with phantom EoS. This shape function gives

𝜌(𝑟) = 𝐴𝑚 
1 + 2𝜆

𝑟𝑚−3. (38)

To have a positive energy density with 𝜆 < −1
2 ,

𝐴𝑚< 0 (39)

is necessary. We can now verify the ECs (25) by defining the functions 𝐻,𝐻1,𝐻2,𝐻3,𝐻4 in relation to the radial coordinate and 
additional free parameters present in the shape function. One can easily show

𝐻(𝑟,𝑚,𝐴)
1 + 2𝜆 

= (𝐴𝑚𝑟𝑚−1 −𝐴𝑟𝑚 − 1 +𝐴)
𝑟3

, (40)

𝐻1(𝑟,𝑚,𝐴)
1 + 2𝜆 

= (𝐴𝑚𝑟𝑚−1 +𝐴𝑟𝑚 + 1 −𝐴)
2𝑟3

, (41)

so

lim 
𝑟→𝑟0

𝐻(𝑟,𝑚,𝐴)(1 + 2𝜆) = −1 +𝐴𝑚, (42)

lim 
𝑟→𝑟0

𝐻1(𝑟,𝑚,𝐴)(1 + 2𝜆) = 1 +𝐴𝑚

2 
. (43)

The conditions (42) and (43) are satified when 𝐴𝑚 < −1. The overall behavior of 𝐻(𝑟,𝑚,𝐴)(1 + 2𝜆) is intricate, but we have plotted 
𝐻(𝑟,𝑚)(1 + 2𝜆) as a function of 𝑟 and 𝑚 for 𝐴 = 2 in Fig. 1. This figure verfies the violation of ECs within a certain range of the 
radial coordinate. This procedure can be used for the other values of 𝐴 and 𝑚. Now, we can conclude that the shape function (34) 
does not satisfy the ECs in the context of 𝑓 (𝑅,𝑇 ) theory of gravity.
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Fig. 2. The figure represents the (1 + 2𝜆)𝜌(𝑟, 𝑛) against radial coordinate, which is positive in the whole range. See the text for details. 

The shape function (35) has been investigated in [86] in the context of Lyra manifold which yields

𝜌(𝑟) = 1 − tanh(𝑟)2

(1 + 2𝜆) tanh(1)𝑟2
. (44)

We have plotted (1 + 2𝜆)𝜌(𝑟) against 𝑟 in Fig. 2. This figure guarantees that the energy density is negative everywhere for 𝜆 < −1∕2. 
Generally, Eq. (18) demonstrates that solutions with positive energy density in ordinary GR give a negative energy density for 
1 + 2𝜆 < 0 in the background of 𝑓 (𝑅,𝑇 ).

It is easy to show that the energy density related to the shape function (36) is

𝜌(𝑟) = 𝑐

(1 + 2𝜆)𝑟3
. (45)

Since 1 + 2𝜆 < 0 is assumed, the energy density is positive for 𝑐 < 0. This shape function provides

𝐻(𝑟, 𝑐)
𝜌 

= 1 − 𝑐 ln(𝑟) + 1
𝑐

, (46)

𝐻1(𝑟, 𝑐)
𝜌 

= 1 + 𝑐 ln(𝑟) + 1
𝑐

. (47)

We have plotted 𝐻(𝑟,𝑐)
𝜌 as a function of 𝑟 and 𝑐 in Fig. 3. This figure demonstrates that the NEC is not valid for this shape function.

The shape function (37) admits the conditions (1)-(5) for 0 < 𝑎 < 1. This shape function has been investigated in [58] in the 
framework of 𝑓 (𝑅,𝑇 ) =𝑅+ 2𝜆𝑇 . Using (37) in (18) gives

𝜌(𝑟) = ln(𝑎) 
𝑎(1 + 2𝜆)

𝑎𝑟

𝑟2
, (48)

which is positive for 0 < 𝑎 < 1 and 𝜆 < −1∕2. The related 𝐻(𝑟, 𝑎)∕𝜌 and 𝐻2(𝑟, 𝑎)∕𝜌 are

𝐻(𝑟, 𝑎)
𝜌 

= 1 − 1 
ln(𝑎)𝑟

(49)

and

𝐻1(𝑟, 𝑎)
𝜌 

= 1 + 1 
ln(𝑎)𝑟

. (50)

It is easy to show that

lim 
𝑟⟶0

𝐻1(𝑟, 𝑎)
𝜌 

= 1 + 1 
ln(𝑎)

, (51)

which verfies the violation of NEC at the wormhole throat for 1∕𝑒 < 𝑎 < 1. We have plotted 𝐻(𝑟,𝑎)
𝜌 and 𝐻1(𝑟,𝑎)

𝜌 as a function of 𝑟 and 

𝑎 in Figs. 4 and 5 for 0 < 𝑎 < 1∕𝑒, which are positive in the entire range. It is easy to show that 𝐻2(𝑟,𝑐)
𝜌 = 𝐻(𝑟,𝑐)

𝜌 and 𝐻3(𝑟,𝑎)
𝜌 = 𝐻1(𝑟,𝑐)

𝜌 . 
Thus, one can conclude that, for 0 < 𝑎 < 1∕𝑒, the shape function (37) satifies all the ECs.
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Fig. 3. The figure represents the 𝐻(𝑟,𝑐)
𝜌 against radial coordinate and 𝑐, which is negative in some range. See the text for details. 

Fig. 4. The figure represents the 𝐻(𝑟,𝑐)
𝜌 against radial coordinate and 𝑎 for 0< 𝑎 < 1∕𝑒, which is positive in the whole range. See the text for details. 

Elizalde and Khurshudyan have studied solutions with varying Chaplygin gas and barotropic fluid in the context of 𝑓 (𝑅,𝑇 ) [66]. 
They have identfied shape functions for certain specific EoS that do not adhere to the ECs. Additionally, some of these shape functions 
do not exhibit asymptotically flat behavior, particularly for EoS in the following form:

𝑝 = 𝜔(𝑟)𝜌, (52)

where

𝜔(𝑟) = 𝜔𝑏(𝑟)𝜈𝜌(𝑟). (53)

The shape function

𝑏(𝑟) = (1 −
𝜈 log(𝑟)
𝜔 

)1∕𝜈 , (54)

is achieved. This shape function does not respect the ECs. In [54], it was shown that EoS in the form (52), with 𝜔(𝑟) =𝐵𝑟𝑚 leads to

𝑏(𝑟) = exp(𝑐 − 1 
𝐵𝑚𝑟𝑚

). (55)

Moares and Sahoo explained that this shape function violates the ECs for 𝑚 > 0 in the background of 𝑓 (𝑅,𝑇 ). Most of the shape 
functions in the current literature are unable to address the issue of exotic matter in the context of 𝑓 (𝑅,𝑇 ) gravity as described 
in (14). We propose an algorithm to discover asymptotically flat wormhole solutions within the framework of 𝑓 (𝑅,𝑇 ) = 𝑅 + 2𝜆𝑇 . 
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Fig. 5. The figure represents the 𝐻1(𝑟,𝑎)
𝜌 against radial coordinate and 𝑎 for 0< 𝑎 < 1∕𝑒, which is positive in the whole range. See the text for details. 

Previous studies on solutions with varying EoS parameter in the context of 𝑓 (𝑅,𝑇 ) theory of gravity are found in [54] and [65--67] 
but these solutions violate the ECs. In the next sections, by using a variable EoS parameter, we will seek solutions that satisfy the 
ECs. We start with a particular form of asymptotically linear EoS to construct the desired wormhole solutions, then we will study the 
physical properties of the solutions.

4. Solutions satisfying energy conditions

In the previous section, it was demonstrated that most known wormhole solutions within the framework of 𝑓 (𝑅,𝑇 ) = 𝑅 + 2𝜆𝑇
violate the ECs. In this section, we aim to discover asymptotically flat wormhole solutions that adhere to the energy conditions in 
the context of 𝑓 (𝑅,𝑇 ). In [14], we have shown that variable EoS in the context of GR results in a small amount of exotic matter to 
construct wormhole solutions. We apply the same approach to identify exact wormhole solutions within the background of 𝑓 (𝑅,𝑇 ). 
We adopt a linear-like EoS given by

𝑝 = 𝜔𝑒𝑓𝑓 (𝑟)𝜌(𝑟) = (𝜔∞ + 𝑔(𝑟))𝜌(𝑟), (56)

where 𝜔𝑒𝑓𝑓 (𝑟) is the effective state parameter and 𝜔∞ , denotes the constant state parameter at the large radial coordinate. To ensure 
an asymptotically linear EoS, we impose the condition

lim 
𝑟→∞

𝑔(𝑟) = 0, (57)

to achieve this characteristic. Through the selection of various forms of the 𝑔(𝑟) function and fine-tuning the free parameters, we 
present solutions that satisfy the ECs. Using (18), (19) and (56), we can obtain

𝑏(𝑟) = exp(∫
𝑑𝑟 

𝑟𝜔∞ + 𝑟𝑔(𝑟)
). (58)

Many broad families of solutions for different 𝑔(𝑟) functions can be found. In the reverse approach, we have the flexibility to arbitrarily 
choose the shape function and subsequently find the EoS parameter. Now, we proceed to verify the energy conditions for this particular 
class of solutions. For 𝜌 > 0, condition 𝐻 ≥ 0 gives

−1 ≤ 𝜔(𝑟), (59)

also 𝐻1 ≥ 0 and Eq. (31) indicates that

𝜔(𝑟) ≤ 1, (60)

so

−1 ≤ 𝜔(𝑟) ≤ 1, (61)

is an essential requirement for the maintenance of non-exotic wormholes. It is straightforward to show that 𝐻2 ≥ 0 and 𝐻3 ≥ 0 are 
satified when Eq. (61) is valid. Thus, equation (30) demonstrates that all the ECs are satified when condition (61) is valid.
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4.1. Solutions with 𝜔∞ ≠ 0

In this subsection, we assume 𝜔∞ ≠ 0. Let us study some different 𝑔(𝑟) models to establish traversable wormholes. As our initial 
model, we consider

𝑔(𝑟) = 1
𝑟 
, (62)

which results in

𝑏(𝑟) = 𝑐(𝜔∞𝑟+ 1)−1∕𝜔∞ , (63)

where 𝑐 is the constant of integration. One can find 𝑐 = (𝜔∞ + 1)1∕𝜔∞ by using the condition (2).

At a large distance from the throat, the condition (61) changes to

−1 ≤ 𝜔∞ ≤ 1. (64)

On the other hand, at the throat, condition (61) gives

−2 ≤ 𝜔∞ ≤ 0. (65)

Considering the conditions (64) and (65) implies that

−1 < 𝜔∞ < 1 (66)

must be satified to have non-exotic wormhole solutions. In this work, we are interested in static and spherically symmetric asymp

totically flat traversable wormhole solutions. Thus, Eq. (63) leads to
−1 
𝜔∞

≤ 1. (67)

It is evident that conditions (65) and (66) are not compatible. Therefore, it can be inferred that 𝑔(𝑟) = 1
𝑟 does not lead to solutions 

that meet the ECs.

Let us explore another example of wormhole solutions. The function

𝑔(𝑟) = 𝐷

𝑟 
, (68)

where 𝐷 > 0, is the next potential candidate that yields

𝑏(𝑟) = (𝜔∞ +𝐷)1∕𝜔∞(𝜔∞𝑟+𝐷)−1∕𝜔∞ (69)

The validity of condition (61) at the throat and large distance implies that

−1 ≤ 𝜔∞ ≤ 1 −𝐷. (70)

Applying the asymptotically flat condition and (70) indicates that

0 ≤ 𝜔∞ ≤ 1 −𝐷. (71)

It is worth mentioning that Eq. (71) is constrained by the value of 𝐷. The subsequent step involves verifying the positivity of the 
energy density. Equation (18) for the shape function (69) illustrates that

𝜌(𝑟) = −
(𝜔∞ +𝐷)1∕𝜔∞

1 + 2𝜆 
1 

𝑟2(𝜔∞𝑟+𝐷)1+𝜔∞
. (72)

This equation clarfies that

𝜔∞ ≥ −𝐷 (73)

must be satified to ensure a positive energy density. As an example, we set 𝐷 = 1∕2 which shows that

0 ≤ 𝜔∞ ≤ 1
2
. (74)

The energy density is plotted in Fig. 6 for 𝜆 = −3 and 𝐷 = 1∕2 which is positive in the entire range of 𝑟 and 0 < 𝜔∞ < 1∕2. Thus this 
class of solutions satifies the ECs.

Let us explore the connections between the parameters in the shape function and physical parameters. The boundary limits explain 
that

𝜔0 =
𝑝0
𝜌0

= lim 
𝑟⟶𝑟0

𝜔(𝑟) = 𝜔∞ +𝐷 (75)

so
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Fig. 6. The graphical behavior of 𝜌, against 𝑟 and 𝜔∞ for the case 𝜆 = −3 and 𝐷 = 1
2
. It is clear that this function is positive in the entire range of 𝑟 and 0 < 𝜔∞ <

1
2
. 

See the text for details.

𝐷 = 𝜔0 −𝜔∞. (76)

The energy density at the wormhole throat is given by

𝜌0 = lim 
𝑟⟶𝑟0

𝜌(𝑟) = −
(𝜔∞ +𝐷)−1

1 + 2𝜆 
(77)

This equation along with Eq. (76) show that

𝜔0 = −
(𝜌0)−1

(1 + 2𝜆)
. (78)

Using Eq. (78) indicates

𝑝0 = 𝜔0𝜌0 = − 1 
(1 + 2𝜆)

. (79)

Of course, this equation can be archived by using (2) and (19) for a general shape function. One can utilize (79) to establish the 
relationship between 𝜆 and radial pressure at the throat as follows

𝜆 = 1
2
𝑝0 −

1
2
. (80)

As it was mentioned, 𝜆 < −1
2 is the necessary condition to achieve solutions in the context of 𝑓 (𝑅,𝑇 ) = 𝑅 + 2𝜆𝑇 . Thus, Eq. (80) 

explains that 𝑝0 < 0 is the essential condition to sustain non-exotic wormhole solutions.

The function

𝑔(𝑟) = 𝐷

𝑟𝑛
(81)

is the next choice resulting in

𝑏(𝑟) = (𝜔∞ +𝐷)1∕𝑛𝜔∞(𝜔∞𝑟
𝑛 +𝐷)−1∕𝑛𝜔∞ , (82)

and

𝜌(𝑟) = −
(𝜔∞ +𝐷)

1 
𝑛𝜔∞

(1 + 2𝜆) 
(𝜔∞𝑟

𝑛 +𝐷)−
1 

𝑛𝜔∞
−1

𝑟3−𝑛
. (83)

Following some simple computations, we determine that

0 ≤ 𝜔∞ ≤ 1 −𝐷, (84)

and 𝜔∞ > −𝐷 must be satified to maintain asymptotically flat wormhole solutions without exotic matter. In this case, the energy 
density at the throat is
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𝜌0 = lim 
𝑟⟶𝑟0

𝜌(𝑟) = −
(𝜔∞ +𝐷)−1

1 + 2𝜆 
(85)

Also, Eqs. (76) and (79) are valid for this case.

The fourth assumption for 𝑔(𝑟) is

𝑔(𝑟) = 1 
ln(𝑟)

, (86)

which leads to

𝑏(𝑟) =
(𝜔∞ ln(𝑟) + 1)

1 
𝜔2∞

𝑟
1 

𝜔∞

. (87)

The function (86) diverges at the wormhole throat, thus the last choice is considered as

𝑔(𝑟) = 𝐷

𝐴+ ln(𝑟)
. (88)

This function results in

𝑏(𝑟) = 𝑟−1∕𝜔∞
(𝜔∞𝐴+𝐷 +𝜔∞ ln(𝑟))𝐷∕(𝜔∞)2

(𝜔∞𝐴+𝐷)𝐷∕(𝜔∞)2
. (89)

Equation (61), at the throat gives

−1 − 𝐷

𝐴 
≤ 𝜔∞ ≤ 1 − 𝐷

𝐴 
. (90)

Asymptotically flat condition and Eqs. (61) and (90) indicate that

0 ≤ 𝜔∞ ≤ 1 − 𝐷

𝐴 
(91)

is the essential condition to have non-exotic solutions. The energy density is given by

𝜌(𝑟) = 𝑟
−3− 1 

𝜔∞
(𝜔∞𝐴+𝐷 +𝜔∞ ln(𝑟))

𝐷

𝜔2∞

𝜔∞(1 + 2𝜆)(𝜔∞𝐴+𝐷)
𝐷

𝜔2∞

×( 𝐷

𝜔∞𝐴+𝐷 +𝜔∞ ln(𝑟)
− 1). (92)

Energy density is a function of 𝑟,𝐴,𝐷, and 𝜔∞ so analyzing the general behavior of this function is complicated. As an example, we 
have plotted 𝜌 versus 𝑟 and 𝜔∞ for 𝐴 = 1 and 𝐷 = 1∕2 in Fig. 7. This figure shows that energy density is positive for 𝑟 ≥ 𝑟0. Since 
Eq. (61) is valid, all the ECs are satified.

We have presented a broad class of exact wormhole solutions using the variable EoS algorithm. We have assumed 𝜔∞ ≠ 0 but the 
special case 𝜔∞ = 0 yields additional solutions. We will study solutions related to 𝜔∞ = 0 in the next section.

4.2. Asymptotically dust solutions

A special case for the EoS in the form of (56) can be considered for a vanishing 𝜔∞ . These solutions can be classfied as asymptotic 
dust solutions. In this subsection, we analyze these solutions for the previously dfined 𝑔(𝑟) functions. For 𝑔(𝑟) = 1∕𝑟 and 𝜔∞ = 0, the 
shape function is given by

𝑏(𝑟) = 𝑐 exp(− 𝑟𝑛

𝑛𝐷
) (93)

where 𝑐 is a constant of integration. Using (2), we obtain

𝑏(𝑟) = exp( 1 
𝑛𝐷

− 𝑟𝑛

𝑛𝐷
) (94)

This shape function is asymptotically flat and satifies all the necessary conditions to sustain a traversable wormhole. The correspond

ing energy density is

𝜌(𝑟) = −
𝑟𝑛−3 exp( 1 

𝑛𝐷
− 𝑟𝑛

𝑛𝐷
)

(1 + 2𝜆)𝐷
. (95)

Since 1 + 2𝜆 < 0, it can be concluded that 𝜌 is positive for 𝐷 > 0. It should be noted that

𝜌0 = lim 
𝑟⟶𝑟0

𝜌(𝑟) = 1 
(1 + 2𝜆)𝐷

. (96)
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Fig. 7. The plot depicts the behavior of 𝜌(𝑟,𝜔∞) against 𝑟 and 𝜔∞ for the case 𝐷 = 1
2
, 𝐴 = 1, and 𝜆 = −3. One can see that 𝜌 is a positive function in the entire range 

of 𝑟 and 0 < 𝜔∞ <
1
2
. See the text for details.

Thus 𝐷 = 1 
(1+2𝜆)𝜌0

where 𝜌0 is the energy density at the throat. We can show that

𝐻(𝑟) = (1 + 𝐷

𝑟𝑛
)𝜌 (97)

and

𝐻1(𝑟) =
(1 − 𝐷

𝑟𝑛
)

2 
𝜌 (98)

It is evident that the conditions 𝐻 > 0 and 𝐻1 > 0 hold for 𝐷 > 0. Additionally, 𝐻2 > 0 and 𝐻3 > 0 are satified for 1 ≥𝐷 > 0. These 
results demonstrate that all the ECs are satified for this solution. For 𝑛 = 1 and 𝐷 = 1, it is clear that

𝑏(𝑟) = exp(1 − 𝑟) (99)

which has been presented in [63]. Here, we can conclude that the special case 𝜔∞ = 0 may lead to solutions with non-exotic matter. 
Notably, solutions with 𝑝 = 𝑟𝑛𝜌(𝑟) and 𝑛 > 0 are presented in [54]. This class of solutions does not respect the ECs. We have shown 
that the case 𝑛 < 0 leads to non-exotic wormhole solutions.

The next candidate is 𝑔(𝑟) = 𝐷

ln(𝑟) which yields

𝑏(𝑟) = exp( ln(𝑟)
2

2𝐷
) (100)

This shape function possesses the necessary criteria to construct a traversable wormhole. The energy density for this shape function 
is as follows

𝜌(𝑟) = −
ln(𝑟) exp(− ln(𝑟)2

2𝐷 )

𝑟3(1 + 2𝜆)𝐷
, (101)

which is positive for 𝐷 > 0. The function

𝐻(𝑟) = (1 + 𝐷

ln(𝑟)
)𝜌 (102)

is also positive in the entire range of 𝑟 ≥ 𝑟0 but

𝐻1(𝑟) = (
1 − 𝐷

ln(𝑟)

2 
)𝜌 (103)

is negative near the wormhole throat. These results illustrate that the ECs are violated in this scenario.

The final choice for 𝑔(𝑟) is (88) which leads to

𝑏(𝑟) = 𝑟
− 2𝐴+ln(𝑟)

2𝐷 )
. (104)
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Equation (4) indicates that

−𝐴 
𝐷
< 1. (105)

The form of energy density is as follows

𝜌(𝑟) = − (ln(𝑟) +𝐴)𝑟−
6𝐷+ln(𝑟)+2𝐴

2𝐷

𝑟3(1 + 2𝜆)𝐷
. (106)

It is evident that for

𝐴+ ln(𝑟)
𝐷

> 0, (107)

energy density is positive throughout the entire range of 𝑟 ≥ 1. Conditions (105)) and (107) are valid for 𝐴 > 0 and 𝐷 > 0. We can 
find

𝜌0 = lim 
𝑟⟶𝑟0

𝜌(𝑟) = 𝐴 
𝐷

1 
1 + 2𝜆

. (108)

One can see that EoS parameter at the throat is

𝜔0 =
𝑝0
𝜌0

= 𝐷

𝐴 
, (109)

which must be consistent with Eq. (105). Equations (61) and (107) explain that NEC is satified when

0 < 𝐷

𝐴 
< 1 (110)

is assumed. The condition (110) is fufilled for 𝐴 >𝐷 > 0. It is straightforward to show that other ECs are valid for this case.

We have identfied several solutions for different models of 𝑔(𝑟). It was shown that certain choices for 𝑔(𝑟) cannot yield non

exotic wormhole solutions, while others can indeed present non-exotic wormhole solutions. The relationships between the physical 
terms at the boundary and the parameters in the 𝑔(𝑟) functions were clarfied. Let us briefly compare the solutions corresponding 
to different 𝑔(𝑟) functions. The key point is that the value of 𝜔∞ plays a crucial role in the form of shape function. Additionally, it 
can be concluded that the free parameters 𝐴 in (88) address the singularity issue in the EoS parameter at the wormhole throat. The 
parameter 𝐷 helps us in finding solutions with non-exotic matter. It is straightforward to see that the 𝑛 in the (81) affects the rate of 
convergence to a linear EoS.

5. Concluding remarks

Given that the equation of state of the wormhole is not well understood and constrained, we can attempt to use a more general EoS 
instead of a linear EoS. In this work, the EoS is asymptotically linear which is of great interest. As it was mentioned in [14], variable 
EoS may appear more physical as the linear EoS stands as a global equation; however, at a local level, there is no need to adhere 
strictly to a linear equation. This concept can be linked to the unique geometry of a wormhole in close proximity to its throat. The 
variable EoS parameter has injected fresh vitality into the exploration of wormhole physics when compared to a constant parameter. 
It reduces the exotic matter in the context of GR and also helps us to present a large class of non-exotic solutions in the context of 
𝑓 (𝑅,𝑇 ).

Although, experimental detection of wormholes has not yet been done, in this study, our investigation has focused on the possibility 
of wormhole geometry in the context of 𝑓 (𝑅,𝑇 ) gravity. In wormhole theory, the violation of ECs poses a fundamental inconsistency 
that needs to be dealt with. In the context of 𝑓 (𝑅,𝑇 ), exotic matter is just replaced by an equivalent modfied form of gravity. 
Many forms for 𝑓 (𝑅,𝑇 ) function have been considered in the literature. The wormhole in the 𝑓 (𝑅,𝑇 ) theory with linear function 
𝑓 (𝑅,𝑇 ) =𝑅+2𝜆𝑇 has been extensively studied by many researchers. Most of these solutions violate the ECs when a linear function, 
𝑓 (𝑅,𝑇 ) = 𝑅 + 2𝜆𝑇 , is considered. In this context, wormholes with a linear EoS form a category of solutions that adhere to the ECS 
[53]. The satisfaction of ECs relies on the factor 1 + 2𝜆. This parameter can eliminate the ifluence of exotic matter in the field 
equations. In standard GR, 2𝜆𝑇 is absent, so the flaring-out condition results in the exotic matter. With the presence of 2𝜆𝑇 the 
Einstein gravitational constant shifts to 1 + 2𝜆. The negative sign for this effective gravitational constant could address the issue 
of exotic matter. To summarize, within the framework of GR, solutions with negative energy density, which violate the lateral and 
radial NEC components, can fufill the ECs in the context of 𝑓 (𝑅,𝑇 ). We have shown that the negative sign of 1+2𝜆 leads to negative 
pressure at the wormhole throat in the context of 𝑓 (𝑅,𝑇 ).

According to our knowledge, there are limited solutions in the existing literature that satisfy the ECs for 𝑓 (𝑅,𝑇 ) =𝑅+ 2𝜆𝑇 . We 
analyzed various prominent shape functions for (14). However, none of these shape functions successfully demonstrated a non-exotic 
wormhole solution except for 𝑏(𝑟) = 𝑎𝑟

𝑎 . In this work, we explore a large class of solutions in the context of 𝑓 (𝑅,𝑇 ) gravity while 
𝑓 (𝑅,𝑇 ) =𝑅+2𝜆𝑇 and 𝐿𝑚 = −𝜌 are assumed. We have developed a comprehensive framework to uncover exact solutions, surpassing 
the previous model by focusing on choosing a variable EoS. We use an asymptotically linear EoS for the wormhole fluid. To enhance 
the viability of our solutions, we suggest a positive energy density.
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It was shown that the model parameters’ numerical values play a major role in determining the results. We have shown that the 
free parameter in the shape function can be related to the values of the energy-momentum tensor at the throat or boundary of the 
wormhole. In other words, the boundary is sensitive to changes in parameters of the shape function and EoS parameter.

Relevant 𝑔(𝑟) functions have been explored, with some resulting in viable wormhole solutions. We explored two classes of asymp

totically flat solutions. In the first class, we examined solutions with 𝜔∞ ≠ 0. For the second class of solutions, 𝜔∞ = 0 was analyzed. 
It was demonstrated that these two classes of solutions may lead to different shape functions for the same 𝑔(𝑟), which vary in the 
ECs status. We can see that the rate of coherence to a linear EoS depends on the form of 𝑔(𝑟). For example, 𝑔(𝑟) = 𝐷

𝑟𝑛
for 𝑛 > 1 tends 

faster to a liner EoS in contrast to 𝑔(𝑟) = 𝐷

𝑟 . Also, it was shown that the EoS parameter at large distance (𝜔∞) depends on the free 
parameters in the shape function.

The theoretical coherence and rationale behind these extensions of 𝑓 (𝑅,𝑇 ) can be elucidated to delve into new possibilities in 
wormhole theory and cosmological forecasts of 𝑓 (𝑅,𝑇 ) theory. Along this way, we have considered a vanishing redshift function, 
i.e., 𝜙(𝑟) = 0, but solutions with non-constant redshift function can be explored. Additionally, our algorithms can also be applied to 
various models of 𝑓 (𝑅,𝑇 ) or alternative shape function formats.
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