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Abstract

We present the quantum Yang-Mills theory in the four-dimensional de Sitter ambient space formalism. 
In accordance with the SU(3) gauge symmetry the interaction Lagrangian is formulated in terms of in-
teracting color charged fields in curved space-time. The gauge-invariant field equations are obtained in an 
independent coordinate description, and their corresponding color conserved currents are computed. It is 
shown that the Faddeev-Popov ghost fields appear similarly to their Minkowskian counterparts. We obtain 
that the free ghost fields are massless minimally coupled scalar fields. The problems of the vacuum state, 
namely the breaking of de Sitter invariance, and the appearance of infrared divergence in its quantization 
procedure, are discussed. The existence of an axiomatic quantum Yang-Mills theory within the framework 
of the Krein space quantization is examined. The infrared divergence regularization of the interaction be-
tween the gauge vector fields and the ghost fields is studied in the one-loop approximation. Two different 
regularization methods are discussed: cut-off regularization and Krein space regularization. A mass term 
for the gauge vector fields is obtained, which may explain the mass gap and the color confinement problems 
at the quantum level in de Sitter background. The large curvature limit at the early universe or inflationary 
epoch is considered.
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1. Introduction

Quantum field theory in de Sitter (dS) space-time has been evolving as an exceedingly vi-
tal subject in the past decade. Historically the dS space-time, as a curved space-time manifold 
with maximum symmetry, was introduced as a solution of Einstein’s equations with a positive 
cosmological constant, “maximum” meaning that it has the same degree of symmetry as the flat 
Minkowski space solution [1]. The interest in the dS space has been tremendously increasing 
when it turned out that it could play a central role in the inflationary cosmological paradigm 
[2]. Over the past three decades, a non-zero cosmological constant has been proposed to explain 
the luminosity of the farthest supernovae [3,4]. Therefore the dS space-time could play a further 
important role in the modeling of the large-scale universe.

All of these developments make it more imperative than ever to seek a formulation of dS 
quantum field theory (QFT) with the same level of completeness and rigor as its Minkowskian 
counterpart. A unique Poincaré invariant vacuum state can be fixed in Minkowski space by im-
posing the positive energy condition. In a curved space-time like de Sitter, however, a global 
time-like Killing vector field does not exist, and therefore the positive energy condition cannot 
be imposed without any ambiguity. Symmetry alone is not sufficient in the determination of a 
unique vacuum state. Nevertheless, in dS space, symmetry considerations allow one to identify 
the vacuum with a two-parameter ambiguity, say |α, β〉, corresponding to a family of distinct dS 
invariant vacuum states (see [5] and references therein). Only the one-parameter family |α, 0〉, 
is invariant under the disconnected de Sitter group, i.e. O(1, 4) [5]. By imposing the condi-
tion that in the null curvature limit, the Wightman’s two-point function becomes the same as 
the Minkowskian Wightman’s two-point function, the other parameter (α), can be fixed as well. 
This vacuum state, |0, 0〉 ≡ |�〉, is called Bunch-Davies or Euclidean vacuum state. However, this 
vacuum state is not suitable when one deals with the massless minimally coupled (mmc) scalar 
fields, which causes problems for quantization of the Yang-Mills theory and the linear gravity.

In [6,7] Bros et al. have presented a QFT for a massive scalar field in dS space-time that 
closely mimics the QFT in Minkowski space-time. They have introduced a new version of the 
so-called Fourier-Bros transformation on the dS hyperboloid, which allows us to completely 
characterize the Hilbert space of the “one-particle” states in terms of corresponding irreducible 
2
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unitary representations of the dS group. In this construction, the analyticity properties of the 
two-point functions play a significant role in the interaction field quantization. Then the Bros 
construction was generalized to various quantum free fields with non-zero spin in dS space in a 
series of papers (see [8] and references therein).

On the other hand, quantum Yang-Mills theory can be considered as one of the most mathe-
matically challenging topics in QFT [9]. An axiomatic quantum Yang-Mills theory, with a mass 
gap and color confinement, does not yet exist.1 Recently, a dS Yang-Mills theory was studied 
in an intrinsic coordinate system [10]. In the present paper, the Yang-Mills theory is considered 
within the 4-dimensional dS ambient space formalism. We describe the interaction between the 
color-charged spinor field (“quark”) and the massless color-charge vector fields (“gluons”) in a 
coordinate-independent way. We obtain the gauge-invariant Lagrangian, the field equations, and 
the gauge fixing terms in ambient space formalism. We then show that the free ghost fields are 
the mmc scalar fields in dS space-time.

The famous infrared (IR) divergence of the mmc scalar field and the different ways of dealing 
with it were addressed by many authors over the last 30 years. We will briefly recall the crucial 
results. It was commonly thought that this IR divergence is just a gauge artifact [11]. The appear-
ance of this IR divergence in the Faddeev-Popov ghost fields of dS perturbative gravity in the co-
variant gauge has also been noticed (for instance, see [12]). The effect of an IR cut-off in the mo-
mentum space, which regularizes this divergence, breaks the dS invariance. About this problem, 
we will here insist on the necessity of using the Krein space quantization to preserve the dS in-
variance, as was shown in the covariant quantization of the mmc scalar fields in dS space [13–15].

The Krein approach was implemented for the massless fields with spin 1, 3/2, and 2 with 
the construction of relevant indecomposable representations [16–18]. The content of the present 
paper also rests upon the results of [19–23] which were based on the axiomatic quantum field 
theory. The Krein space quantization may be used to construct an axiomatic dS quantum Yang-
Mills theory on the Krein-Fock vacuum state.

The interaction of the ghost field and the gauge vector field at the QFT level is discussed in 
the one-loop approximation. We show that, due to the regularization of the IR divergence, a mass 
term appears for gluons fields, which may explain the mass gap and color confinement problems. 
The regularization of the IR divergence is considered along two different paths: A) a cut-off 
regularization method [5], and B) the Krein space regularization method [24–28]. The first one 
breaks the dS invariance while the second one preserves it.

At this point, it is necessary to recall that the concept of (proper) mass is defined within the 
context of the Poincaré group symmetry, and has to be carefully revisited within the context of the 
dS group symmetry. In the present paper, a field is called “massive” when it propagates inside the 
light-cone and corresponds to a massive Poincaré field representation in the null curvature limit. 
We call a field “massless” if it propagates on the dS light-cone and corresponds to a massless 
Poincaré field representation at H = 0. The concept of light-cone propagation can be precisely 
defined in dS ambient space formalism [7].

The organization of this paper is as follows. In Section 2 we fix the notations, and we make 
explicit the field equations for Dirac and massless vector fields, the Lagrangian density, the con-
served current, and finally, the massless vector two-point function. In Section 3 we obtain the 
non-abelian gauge-invariant Lagrangian. Then the invariant field equations and their correspond-

1 It is one of the seven Millennium Prize Problems in mathematics that were stated by the Clay Mathematics Institute 
in May 24, 2000 [9].
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ing color conserved currents are computed. By obtaining the Faddeev-Popov ghost fields, it is 
shown that these fields are mmc scalar fields. In Section 4 the problems of the vacuum state, the 
breaking of the Sitter invariance, and the appearance of infrared divergence in the quantization 
procedure are reviewed. Section 5 is devoted to the quantum Yang-Mills theory, and two different 
approaches are presented. The mass gap and the color confinement problems of the Yang-Mills 
theory are discussed in Section 6 through the consideration of the one-loop effective action cor-
responding to the gluon-ghost interaction. Finally, concluding remarks and a brief outlook are 
given in Section 7.

2. Notations

The dS space-time can be identified with the 4-dimensional hyperboloid embedded in the 
5-dimensional Minkowski space-time as:

XH =
{
xα ≡ x ∈R5| x · x = ηαβxαxβ = −H−2

}
, α,β = 0,1,2,3,4 , (2.1)

with ηαβ =diag(1, −1, −1, −1, −1) and H is like Hubble’s constant parameter. The dS metric 
element is:

ds2 = ηαβdxαdxβ
∣∣
x·x=−H−2 = gdS

μνdXμdXν , μ = 0,1,2,3 , (2.2)

where the Xμ’s form a set of 4-space-time intrinsic coordinates on the dS hyperboloid, and the 
xα’s are the ambient space coordinates. Let us introduce the global coordinates system in terms 
of the intrinsic coordinates system (Xμ) = (t, χ, θ, ϕ), t ∈R, 0 ≤ χ, θ ≤ π , 0 ≤ ϕ < 2π as:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x0 = H−1 sinhHt

x1 = H−1 coshHt sinχ cos θ

x2 = H−1 coshHt sinχ sin θ cosφ

x3 = H−1 coshHt sinχ sin θ sinφ

x4 = H−1 coshHt cosχ ,

(2.3)

which are appropriate to take the zero curvature limit. The analyticity properties of QFT in dS 
space are described with the introduction of the complexified de Sitter spacetime X(c)

H :

X
(c)
H =

{
z = x + iy ∈C5; ηαβzαzβ = (z0)2 − �z.�z − (z4)2 = −H−2

}

=
{
(x, y) ∈ R5 ×R5; x2 − y2 = −H−2, x.y = 0

}
. (2.4)

The forward and backward tubes in C5 are defined as T ± = R5 + iV ±. The domain V + (resp. 
V −) stems from the causal structure on XH :

V ± =
{
x ∈ R5; x0 ≷

√
‖ �x ‖2 +(x4)2

}
. (2.5)

Their respective intersections with X(c)
H are denoted by:

T± = T ± ∩ X
(c)
H , (2.6)

and will be called forward and backward tubes of the complex dS space, respectively. Finally the 
“tuboid” above X(c)

H × X
(c)
H is defined by [7]:

T12 = {(z, z′); z ∈T+, z′ ∈ T−} . (2.7)
4
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In the ambient space formalism, the tangential derivative on the dS hyperboloid reads as ∂�
β =

θαβ∂α = ∂β +H 2xβ x ·∂ , where θαβ = ηαβ +H 2xαxβ is the transverse projector. The transverse-
covariant derivative acting on a tensor field of rank-l is defined by:

∇�
β Tα1···αl

≡ ∂�
β Tα1···αl

− H 2
l∑

n=1

xαnTα1·αn−1βαn+1···αl
. (2.8)

The second-order Casimir operator Q0 of the dS group SO0(1, 4) in its representation acting on 
scalar fields is written as:

Q0 = −H−2∂� · ∂� = −H−2gdS
μν∇μ∇ν = −H−2�H , (2.9)

where �H is the Laplace-Beltrami operator on the dS space-time.
By expressing the Casimir eigenvalue equation in terms of the infinitesimal generators of the 

group representation and proceeding with a dS-Dirac field factorization of the quadratic terms, 
one obtains the first order equation [19,29]:(

−iH /xγ · ∂� + i2H + Hν
)

ψ(x) = 0, ν ∈R, /x = x · γ , (2.10)

where ν is the parameter of the principal series representation, as was introduced in [19]. This 
equation can be derived from the least action principle applied to the following spinor field action:

S[ψ, ψ̄] =
∫

dσ(x)L(ψ, ψ̄) =
∫

dσ(x)ψ̄γ 4
(
−iH /xγ · ∂� + i2H + Hν

)
ψ(x) , (2.11)

where ψ̄ = ψ†γ 0γ 4 and dσ(x) is the 4-dimensional dS-invariant volume element. The latter is 
expressed in the ambient space formalism as [7]:

dσ(x) = dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4

d(x · x + H−2)

∣∣∣∣
XH

= dσ(x′) . (2.12)

Here we need five γ α matrices instead of the usual four ones in the Minkowski space-time. They 
generate the Clifford algebra associated with the five dimensional Minkowskian metric as:

{γ α, γ β} = γ αγ β + γ βγ α = 2ηαβ , γ α† = γ 0γ αγ 0 .

By using the Noether’s theorem and the invariance of the field equation (2.10) under the global 
U(1) transformation (ψ ′ = e−i�ψ, � = constant), the conserved current can be obtained [30]:

Jα(x) = δL(ψ, ψ̄)

δ∂�
α ψ

δψ

δ�
= −Hψ̄(x)γ 4/xγ αψ(x) .

It is easily verified that this current satisfies the conditions [19,30]:

∂� · J (x) = 0 , x · J (x) = 0 . (2.13)

For the massless vector field (spin = 1), one also starts from the Casimir operator and its 
eigenvalue, uses the infinitesimal generators and some algebraic relations, to finally obtain the 
following field equations [20,16]:

(Q0 − 2)Kα(x) + 2xα∂� · K(x) + H−2∂�
α ∂� · K = 0 . (2.14)

This equation is invariant under the gauge transformation:
5
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Kα −→ K ′
α = Kα + H−2∂�

α �(x) . (2.15)

Here �(x) is an arbitrary differentiable scalar field. The condition of transversality x · K(x) = 0
restricts the five-vector field to live on the dS hyperboloid and guarantees that it should be viewed 
as a vector-valued homogeneous function of the R5-variables xα with some arbitrarily chosen 
degree λ [29]:

xα ∂

∂xα
Kβ(x) = x · ∂ Kβ(x) = λKβ(x) . (2.16)

The massless vector field equation can be derived from the following action integral:

S[K] = −1

4

∫
dσ(x)

(
∇�

α Kβ − ∇�
β Kα

)(
∇�αKβ − ∇�βKα

)
. (2.17)

Like for its flat space counterpart, the gauge fixing is accomplished by adding to (2.14) a gauge 
fixing term with parameter ζ [16]:

(Q0 − 2)Kα(x) + 2xα∂� · K(x) + ζH−2∂�
α ∂� · K = 0 . (2.18)

With the simple choice ζ = 3
2 , the vector two-point function reads [16]:

Wαα′(x, x′) = 〈� | Kα(x)Kα′(x′) | �〉 = Dαα′(x, x′, ∂x)Wmcc(x, x′) , (2.19)

where Dαα′(x, x′, ∂x) is the following bi-tensor differential operator,

Dαα′(x, x′, ∂x) = θα · θ ′
α′ + H−2∂�

α

[
∂� · θ ′

α′ + H 2x · θ ′
α′

]
. (2.20)

The symbol Wmcc(x, x′) stands for the Wightman two-point function of the massless conformally 
coupled scalar field [7,31,32]:

Wmcc(x, x′) = −H 2

8π2

[
P

1

1 −Z(x, x′)
− iπε(x0, x′0)δ(1 −Z(x, x′))

]
. (2.21)

Here the symbol P means the principal part and

ε(x0 − x′0) =
⎧⎨
⎩

1 x0 > x′0

0 x0 = x′0

−1 x0 < x′0
.

The function Z is given by:

Z(x, x′) = −H 2x · x′ = 1 + H 2

2
(x − x′)2 ≡ coshHσ(x, x′) , (2.22)

and σ(x − x′) is the geodesic distance between two points x and x′ on the dS hyperboloid.

3. Lagrangian density

In this section, a direct generalization of the abelian gauge theory, expressed in dS ambient 
space formalism [30], to the non-abelian gauge theory is presented. In this formalism, the gauge 
theory construction is utterly similar to its Minkowski counterpart [33]. The dS-Dirac spinor field 
equation (2.10) is not invariant under the following non-abelian gauge transformation:

ψ ′(x) = e−i�a(x)taψ(x) ≡ U (�(x))ψ(x) . (3.1)
6
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The �a’s are local group parameters and the ta’s are generators of the SU(3) group. They satisfy 
the following commutation relation:

[ta, tb] = iC c
ab tc, a, b, c = 1,2, · · · ,8 , (3.2)

where C c
ab ’s are the real structure constants of su(3).

Like the flat Minkowskian case, local gauge symmetry with its space-time-dependent trans-
formation can generate the gauge interaction in the dS universe. For obtaining a gauge-invariant 
Lagrangian for spinor field, it is necessary to replace the transverse-covariant derivative ∇�

β with 

the gauge-transverse-covariant derivative DK
β which is defined by:

DK
β ≡ ∇�

β − igKa
β ta , x · Ka = 0 , (3.3)

where g is a real coupling constant. The gauge fields Ka
β(x) are associated with the group gen-

erators ta . In order to have a simple gauge transformation for the gauge-covariant derivative of 
the spinor field as:

DK
β ψ(x) −→

[
DK

β ψ(x)
]′ = e−i�a(x)taDK

β ψ(x) ≡ DK ′
β ψ ′(x) , DK ′

β = UDK
β U−1 ,

(3.4)

the connection fields or vector gauge potentials Ka
β must be transformed in the following form:

K ′a
β ta = U(�)Kb

βtbU
−1(�) + i

g
U

(
∂�
β U−1

)
. (3.5)

Then the dS-Dirac gauge invariant equation reads as:(
−iH /xγ.DK + 2H i + Hν

)
ψ(x) =

(
−iH /xγ · ∂� − Hg/xγ · Kata + 2H i + Hν

)
ψ(x)

= 0 . (3.6)

By using the curvature C of the Lie algebra of the gauge group SU(3), one obtains the field 
equations for the vector fields Ka

β . The gauge group curvature is:

C
(
DK

α ,DK
β

)
= i

g

[
DK

α ,DK
β

]
= F a

αβ ta ≡ Fαβ , F′
αβ = UFαβU−1 ,

where

F a
αβ = ∇�

α K a
β − ∇�

β K a
α + gC a

bc K b
α K c

β , (3.7)

together with the transversality properties xαF a
αβ = 0 = xβF a

αβ . The SU(3) gauge invariant 
action or Lagrangian in the dS background for the gauge field K a

α is:

S[Ka] = −1

2

∫
dσ(x) Tr

(
FαβFαβ

) = −1

2

∫
dσ(x)F a

αβ Fαβb Tr (tatb) ,

where summing over the repeated indices is used. The normalization of the structure constants is 
usually fixed by requiring that, in the fundamental representation, the corresponding matrices of 
the generators ta are normalized such as Tr (tatb) = 1

2δab [34]. Then the action becomes

S[Ka] = −1
∫

dσ(x)
[(

∇�
α K a

β − ∇�
β K a

α

)(
∇�αKβb − ∇�βKαb

)
δab + O(K3)

]
,

4

7
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where non-linear terms in the field equation appear in O(K3) and describe the interaction be-
tween the gauge potentials Ka

β . One can see that the gauge potential or connection Ka
β in the 

linear approximation is a massless vector field with action integral (2.17).
The gauge invariant Lagrangian density for the vector and spinor fields in the simplest form 

can be written as:

L(K,ψ) = −1

4
F a

αβ Fαβa + Hψ̄γ 4
(
−i/xγ · DK + 2i + ν

)
ψ . (3.8)

From the Euler-Lagrange equations one obtains [35]:

∇�
α Fαβ

a = gFβγbC c
ba Kcγ + gHψ̄(x)γ 4/xγ βtaψ(x) , (3.9)(

−iH /xγ · ∂� + 2H i + νH
)

ψ(x) = gH /xγ · Ka(x)taψ(x) . (3.10)

In this case the conserved current reads as:

Ja
α = J a(K)

α + J a(ψ)
α = −gFαβbC

ba
cK

cβ − gHψ̄i(x)γ 4/xγα(ta)ijψj (x) , (3.11)

where i, j = 1, 2, 3 are the color indexes of spinor fields. By using the equation (2.13), one 
verifies that this current satisfies the following conditions:

x · Ja = 0 , ∇� · Ja = 0 = ∂� · Ja . (3.12)

By comparing this current with the abelian case (2.13), we see that the term J a(K)
α is due to the 

color vector fields in dS space-time.
The two conditions of transversality, x · K = 0, and divergencelessness, ∇� · K = 0, are 

combined in one mathematical relation, ∂� · K = 0. It is called the generalized Lorenz gauge, 
which will be considered in this paper. For the infinitesimal gauge transformation, the equation 
(3.5) becomes:

(K�)aα = Ka
α + 1

g
∂�
α �a + C a

cbKb
α�c , (3.13)

and the generalized Lorenz gauge is rewritten as:

χa = 0 = ∂� · (K�)a = ∂� · Ka − H 2

g
Q0�

a + C a
cb∂� · Kb�c . (3.14)

This equation fixes the gauge parameter through the equation:(
δacH 2Q0 − gC a

cb∂� · Kb
)

�c = 0 . (3.15)

Like its Minkowskian counterpart, the Faddeev-Popov ghost procedure can be implemented by 
using the expression:

detMab = det

∣∣∣∣ δχ
a(y)

δ�b(x)

∣∣∣∣ = det
(
δabH 2Q0 − gC a

cb∂� · Kc
)

.

Let us introduce the ghost field � to absorb this factor in the Lagrangian density. The Lagrangian 
density of the ghost field for the generalized Lorenz gauge is obtained in the same way as its 
Minkowskian counterpart. By using the equation (3.14) and the path integral formulation, the 
Lagrangian density of the ghost field in the generalized Lorenz gauge is found to be:

L(�,�†) = �a†
[
δacH 2Q0 − gC a

cb∂� · Kb
]
�c(x) . (3.16)
8
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It is important to note that the field equation for the free ghost fields is the same as for the 
mmc scalar field. Within the dS context, the scalar free ghost fields transform analogously to 
the mmc scalar field [14] under the action of an indecomposable representation of the dS group. 
Concerning the gauge group indices a for �a , they transform under the adjoint representation 
analogously to the gluon fields. The many “particle” states are constructed from the Fermi-Dirac 
statistics resembling its Minkowskian counterpart.

The gauge fixing classical Lagrangian density for the interaction between color charged par-
ticles reads as:

Lc(ψ, ψ̄,Ka,�,�†) = Hψ̄γ 4
(
−i/xγ · DK + 2i + ν

)
ψ − 1

4
F a

αβ Fαβa

− ζ

2
∂ · K a∂ · K a + �a†

[
δabH 2Q0 − gC a

cb∂� · Kc
]
�b ,

(3.17)

where ζ is a gauge fixing parameter. The spinor fields correspond to the quarks with three col-
ors, and the vector fields correspond to the gluons with eight combinations of the three colors. 
Eight colors ghost fields are also presented. In the quantization of the ghost field appears an IR 
divergence in the propagator, and its regularization, thanks to a cut-off (see [36]), breaks the dS 
invariance. The mmc scalar field is invariant under the global transformation (φ + const.). On the 
quantum level this feature is equivalent to a gauge theory [14] and also to the two-dimensional 
QFT [37].

4. Quantization problems

For the quantization of the Yang-mills theory, i.e. quantization of the Lagrangian density 
(3.17), first, the quantization of the free fields are considered, and then, by using the pertur-
bation theory, the quantization of the interaction part is presented. For the free field quantization, 
the propagator has to be calculated. For the interaction field, the renormalized effective action is 
a significant quantity that must be obtained. There are three types of free fields in the Yang-Mills 
theory: spinor fields, massless vector fields, and mmc scalar fields. The quantization of the spinor 
field can be performed without any problem. The quantization for the vector field is discussed in 
the next section. In this section, we describe the quantization of the mmc scalar fields.

In the quantization procedure for the mmc scalar field, three problems emerge that are related 
to each other: (1) appearance of IR divergence, (2) breakdown of dS background symmetry, 
and (3) absence of de Sitter-invariant Fock vacuum state [5,36]. These difficulties arise from 
the zero-mode problem associated with a global transformation of the field equation (φ′ = φ

+ const.). Similar problems exist in quantum gauge theory. An indefinite metric quantization 
can be used to solve them [38]. In the case of the mmc scalar field the so-called Krein space 
quantization, which was developed in [13,14], represents a consistent alternative to overcome 
these obstacles: removing the infrared divergence and preserving the dS invariance. Concerning 
the third problem, the alternative is to introduce the Krein-Fock vacuum state as a workable 
remedy.

As proved by Allen [5], the covariant canonical quantization procedure with positive norm 
states fails in the mmc case. The Hilbert space generated by the positive modes, including the 
zero mode (φ0), is not de Sitter invariant [5,14]:

H =
⎧⎨
⎩

∑
αkφk;

∑
|αk|2 < ∞

⎫⎬
⎭ .
k≥0 k≥0

9
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It means that the positive modes solutions are not closed under the action of the de Sitter group 
generators. Nevertheless, one can obtain a fully covariant quantum field operator by adopting a 
new construction, which consists in adding all the conjugate modes to the original ones. Conse-
quently, one now deals with an orthogonal sum of a positive and a negative inner product space, 
which is closed under an indecomposable representation of the dS group [14].

Since the spinor field and vector field are studied in ambient space formalism, and for the 
unification of the formalism, the mmc scalar field is presented in ambient space formalism, which 
permits us to better understand the breaking of dS invariance. In the ambient space formalism 
one easily constructs the mmc scalar field �mmc in terms of the massless conformally coupled 
scalar field (mcc) �mcc, and an arbitrary constant five-vector A = (Aα) [8,39]:

�mmc(x) ≡
[
A · ∂� + 2H 2A · x

]
�mcc(x) . (4.1)

It is reminiscent of the arbitrariness in the choices of the vacuum state. The mcc scalar field 
two-point function is constructed on the Bunch-Davies vacuum state (2.21).

Using the equation (4.1), the analytic (in its domain) two-point function for the massless 
minimally coupled scalar field can be written as:

Wmmc(z, z
′;A) =

[
A · ∂� + 2H 2A · z

] [
A · ∂ ′� + 2H 2A · z′]Wmcc(z, z

′) , (4.2)

where z = x + iy, z′ = x′ + iy′ and Wmcc is the analytic two-point function of the mcc scalar 
field [7]:

Wmcc(z, z
′) = H 2

8π2

−1

1 −Z(z, z′)
.

The Wightman two-point function Wmcc(x, x′), Equation (2.21), is the boundary value of the 
analytic function Wmcc(z, z′) (in the distributional sense, according to the theorem A.2 in [7]).

After some calculations, one obtains from (4.2) [39]:

Wmmc(z, z
′;A) = −H 2

8π2 ×
(Z−3)

[
(H 2A · z)2 + (H 2A · z′)2 +H 4A · zA · z′Z

]+6H 4A · zA · z′ − (1−Z)H 2A ·A
[1−Z(z, z′)]3 .

(4.3)

This function is not dS invariant concerning the variables z and z′. Instead, we have to consider 
the A-labeled family of two-point functions (or “vacuum state”) for which the following dS 
invariance holds:

Wmmc(Rz,Rz′;RA) = Wmmc(z, z
′;A) for all R ∈ SO0(1,4) . (4.4)

This means that it is built from a one-particle state which does not transform under the unitary 
irreducible representation of the dS group. A is a constant five-vector. It is a sort of polarization 
vector [40] which can be chosen as one of the 5 vectors forming an orthonormal basis of R5, 
the latter carrying the fundamental five-dimensional representation of the dS group. Hence, the 
explicit form of the two-point function Wmmc depends on the chosen A. Its construction involves 
the tensor product of two representations of the dS group: (1) the complementary scalar repre-
sentation related to the massless conformally coupled scalar field [8], and (2) the fundamental 
five-dimensional representation [40].
10
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As a first simple example of a choice of orthonormal basis in R5 (for the dS metric), one 
considers the set {A(l) , l = 0, 1, 2, 3, 4} obeying [40]:

4∑
l=0

4∑
l′=0

A(l)
α A

(l′)
β = ηαβ , A(l) · A(l′) = ηll′ . (4.5)

With this choice and by summing the 5 corresponding two-point functions one obtains the con-
stant trivial solution (for z �= z′) [39]:

Wmmc(z, z
′) =

[
∂� · ∂ ′� + 2H 2z · ∂ ′� + 2H 2z′ · ∂� + 4H 4z · z′]Wmcc(z, z

′) = −H 2

8π2 .

(4.6)

It is precisely the constant solution obtained by Allen [5]. In this case, we have restored the trivial 
SO(1, 4) invariance, but then we meet the problem of the non-existence of a Fock vacuum state 
[5].

A second example is provided by the elementary choice

A ≡ (1,0,0,0,0) . (4.7)

We then obtain the O(4) invariant two-point function:

Wmmc(z, z
′)

= −H 2

8π2

(Z − 3)
[
(H 2z0)2 + (H 2z′0)2 + H 4z0 z′0 Z

] + 6H 4z0z′0 − H 2(1 −Z)

[1 −Z(z, z′)]3 .(4.8)

This two-point function is free of logarithmic divergence but it breaks the dS invariance, as 
expected. This result was previously discussed by Allen-Folacci in [5,36]. As a matter of fact, 
the Allen-Folacci expression has the following logarithmic divergence:

WAF
mmc(x, x′) ∝

[
1

1 −Z
− ln(1 −Z) + · · ·

]
. (4.9)

Going back to the general expression (4.3) for Wmmc, its dominant term at large values of Z ∼
(z − z′)2 ∼ −z · z′ −→ ∞, reads as

− H 4

8π2

[
A · zA · z′

z · z′ + (A · z)2 + (A · z′)2

(z · z′)2

]
:= f (z, z′,A) .

One observes that at large separated points, we get a A dependent value, which generally depends 
on the respective directions of z or z′ with respect to A. As an illuminating example, we fix 
z′ = (0, 0, 0, 0, H−1) and we choose z = H−1(sinhHt, 0, 0, 0, coshHt), with t −→ ∞, then we 
obtain: limz→∞ f = − H 4

4π2 (A4)
2. Importantly, A might be related to the cut-off introduced by 

Allen in [5]. Also, might this behavior explain the appearance of a mass, analogous to the Higgs 
mechanism?

In contrast, we assert that within the framework of Krein space quantization, as is described 
below in Subsection 5.2, de Sitter invariance is preserved, as exemplified with Equation (5.9), 
and we obtain a constant term for large separated points.
11
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5. Quantum Yang-Mills theory

In QFT, the two-point function and the time-ordered product propagator are the significant 
quantities that must be calculated. The first one is used for the construction of an axiomatic 
quantization [41] and the second one for the calculation of the effective action or S-matrix el-
ement in the perturbation theory [42]. It is well known that for a quantum gauge theory, an 
indefinite metric quantization must be used [38]. The covariant quantization of the massless vec-
tor field and mmc scalar field require an indecomposable representation of the de Sitter group. 
The indecomposable representations are not unique and depend on gauge fixing parameters.

The existence of an axiomatic quantization of the quantum Yang-Mills theory is considered 
in two different approaches. In the first approach, the positive frequency solution of the field 
equation is used, and it is called the standard approach. In this approach, the field operator is 
defined with the help of coordinate-independent dS plane waves (modes). The construction is 
based on the analyticity requirements in the complexified pseudo-Riemannian manifold. The 
field equation’s positive and negative frequency solutions are used in the second approach, which 
is based on Krein space quantization. It is called the Krein approach in this paper.

5.1. Standard approach

The axiomatic QFT in dS space was constructed from an analytic two-point function for 
massive and mcc scalar field by Bros et al. [6,7]. Then it was generalized to the spinor field [19]
and massless vector field Kβ [16]. Here, we generalize the previous work to the massless vector 
field Ka

β in the Yang-Mills theory. The free vector field equation for Ka
β is the same as for the free 

massless vector field Kβ in dS space. Differences appear at the interaction level or for the source 
of the fields. On the classical level for the vector field Kβ , the source originates in the electrically 
charged spinor fields, whereas in the present case, the source of the free vector field Ka

β stems 

from the colored spinor fields and as well the vector fields Kb
β , with a �= b, i.e. Ka

β is not a source 
for itself on the classical level, which means that there is no vertex with two same-colored vector 
fields Ka

β .
In the quantization procedure of the non-abelian gauge theory, Ka

β , two types of mmc scalar 
fields appear. The first type stands for the scalar and longitudinal modes of the free vector field, 
which is equivalent to the massless vector field Kβ . These scalar fields are necessary for a covari-
ant quantization of the free massless vector fieldf, and they appear in the Gupta-Bleuler triplet 
construction, i.e. the free vector field operator transforms under a specific indecomposable rep-
resentation of the dS group [16]. The other type appears as ghost fields, and they are needed to 
absorb the singularity of the Feynman path integral. These two types of auxiliary fields cannot 
propagate in the physical space or the external line of the Feynman diagrams. The first one is 
completely decoupled from the theory due to the conserved current, and it does not propagate in 
the internal line of the Feynman diagrams. However, the second one (ghost fields) interacts with 
the vector fields, which cannot be decoupled from the theory. Therefore it can propagate in the 
internal line of the Feynman diagrams, and it must be handled with precision.

It is important to remind that, as proved by Allen, an axiomatic quantum field for the mmc
scalar field does not exist in the standard approach, whereas its construction for the massive 
scalar field is possible and was implemented by Bros et al. [7].

Let us now consider the free massless vector field i.e. gluon fields. The standard approach is 
based on the following massless bi-tensor two-point function:
12
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Waa′
ββ ′ (x, x′) = 〈� | Ka

β(x)Ka′
β ′ (x′) | �〉 , (5.1)

where |�〉 can be chosen as the Bunch-Davies vacuum state and x, x′ ∈ XH . These functions 
have to satisfy the following requirements:

a) Indefinite sesquilinear form: For any 5-component test function 
(
f a

β

) ∈ D(XH ), we have 
an indefinite sesquilinear form that is defined by∫

XH ×XH

f ∗β
a (x)Waa′

ββ ′ (x, x′)f β ′
a′ (x′)dσ(x)dσ(x′) , (5.2)

where f ∗ is the complex conjugate of f [7]. D(XH ) is the space of C∞ functions with 
compact support in XH and with values in C5.

b) dS Covariance: The two-point function satisfies the covariance property

R−1W(Rx,Rx′)R = W(x, x′) , (5.3)

where R ∈ SO0(1, 4).
c) Locality: For every space-like separated pair (x, x′), i.e. x · x′ > −H−2 or Z < 1, we have:

Waa′
ββ ′ (x, x′) = Wa′a

β ′β (x′, x) . (5.4)

d) Normal analyticity: Waa′
ββ ′ (x, x′) is the boundary value (in the sense of distributions) of an 

analytic two-point function Waa′
ββ ′ (z, z′). The analyticity properties of the tensor two-point 

function in the tuboid T12 = {(z, z′); z ∈T+, z′ ∈ T−} follow from the analyticity proper-
ties of the dS plane waves solutions [7].

e) Transversality: The transversality with respect to x and x′ is guaranteed since the dS modes 
solutions are transverse by construction,

x ·W(x, x′) = 0 = x′ ·W(x, x′) . (5.5)

The free vector field two-point function reads as:

Waa′
ββ ′ (x, x′) = δaa′

Dββ ′(x, x′, ∂x)Wmcc(x, x′) ,

where Dββ ′(x, x′, ∂x) is the bi-tensor differential operator (2.20) and Wmcc is the two-point 
function of the mcc scalar field (2.21). These functions must entirely encode the theory of the 
generalized free fields on the dS space-time XH and allow us to build the quantum field opera-
tors. Nevertheless, this approach does not work for the Yang-Mills theory due to the appearance 
of ghost fields as a necessary part of the vector fields quantization. In this theory, for fixing the 
gauge (3.15), the ghost field is necessary and appears in the Feynman propagators’ internal line. 
Within this framework, an axiomatic quantum Yang-Mills theory cannot be constructed due the 
non existence of an axiomatic quantum field theory for the mmc scalar field, as was reminded 
above.

Suppose we can ignore this difficulty and use the standard approach to quantize Yang-Mills 
theory. We then face serious difficulties with this construction, namely: a unique dS invariant 
vacuum state does not exist in this approach, the regularization of the IR divergence breaks the 
dS invariance, and it is not clear whether the theory is renormalizable or not at all orders of the 
perturbation due to the breaking of the dS invariance.
13
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5.2. Krein approach

In the standard approach the Faddeev-Popov ghost field quantization meets serious difficul-
ties. They are due to the non existence of an axiomatic quantum field theory, the appearance of 
an IR divergence, and the breaking of dS invariance symmetry. Since precisely the ghost field is 
the mmc scalar field, let us now focus on the quantization of this field. The generalization to the 
other fields is straightforward and will be briefly discussed.

In Krein space quantization, the decomposition of the field operator into positive and negative 
norm parts reads as [14,15]:

�mmc(x) ≡ 1√
2

[
ϕp(x) + ϕn(x)

]
, (5.6)

where

ϕp(x) =
∑
k≥0

akφk(x) + h.c. , ϕn(x) =
∑
k≥0

bkφ
∗
k (x) + h.c. . (5.7)

The positive mode part, ϕp(x), is the scalar field as was used by Allen. The crucial departure 
from the standard QFT based on CCR lies in the following commutation relations:

[ak, a
†
k′ ] = δkk′ , [bk, b

†
k′ ] = −δkk′ . (5.8)

It is important to note that we now have a Krein-Fock vacuum state. Within this Krein space 
framework, the two-point function is the imaginary part of the two-point function of the positive 
mode solutions and it reads as [43]:

Wk
mmc(x, x′) = i Im

(
WAF

mmc(x, x′)
)

= 〈�k | �mmc(x)�mmc(x
′) | �k〉

= iH 2

8π
ε(x0 − x′0)[δ(1 −Z(x, x′)) − θ(Z(x, x′) − 1)] ,

(5.9)

where θ is the Heaviside step function, and |�k〉 is the Krein-Fock vacuum state. The func-
tion (5.9) is free of IR divergence, is dS invariant, and tends to a constant quantity in the large 
separated points limit. It is built on an indefinite metric space.

The “Feynman” propagator or time-ordered product propagator in Krein space quantization 
reads as:

Gk
T (x, x′) = −i〈�k | T �mmc(x)�mmc(x

′) | �k〉

= H 2

8π

[
δ(1 −Z(x, x′)) − θ(Z(x, x′) − 1)

]
, (5.10)

where T is the time ordering operator relative to the ambient coordinate x0 [7]. This function 
is causal and free from any IR and ultraviolet divergence. It owns light-cone singularity. This 
singularity can be absorbed in the fluctuation of the quantum metric and does not appear in the 
calculation of the vacuum expectation value of the physical quantity [24].

The Krein approach is based on the massless two-point function (5.9) and it must satisfy the 
following requirements (to be compared with those for the function (5.1)) [14,15,44]:

A) Indefinite sesquilinear form: For any test function f (x) ∈ D(XH ), we have an indefinite 
sesquilinear form that is defined by
14
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∫
XH ×XH

f ∗(x)Wk
mmc(x, x′)f (x′)dσ(x)dσ(x′) , (5.11)

where f ∗ is the complex conjugate of f . D(XH ) is the space of C∞ functions with compact 
support in XH and with values in C.

B) dS Covariance: The two-point function satisfies the covariance property

Wk
mmc(Rx,Rx′) = Wk

mmc(x, x′) , (5.12)

where R ∈ SO0(1, 4).
C) Locality: For every space-like separated pair (x, x′), i.e. x · x′ > −H−2 or Z < 1, we have:

Wk
mmc(x, x′) = Wk

mmc(x
′, x) . (5.13)

These properties are not sufficient to generalize the Krein space quantization to the quantum 
theory for interacting fields such as Yang-Mills theory. For this purpose, we need the analyticity 
properties of the vacuum expectation value of the field operators [7,41]:

〈�k | T φ(x1)φ(x2) · · ·φ(xn) | �k〉 . (5.14)

Since there is not yet rigorous mathematical proof for the analyticity properties of the vacuum 
expectation value of the field operators in Krein space quantization, we use the Krein space 
quantization, including quantum metric fluctuations, as a method of quantum field regularization 
(for more details, see [24]). Then we impose a supplementary condition on the two-point function 
in view of generalization to the quantum theory for interacting fields:

D) Light-cone fluctuations: The delta function of the internal line in the vacuum expectation 
value of the time-order product of field operators (5.14), is regularized in the following way:

δ(1 −Z0(x, x′)) �→ 1√
π(1 − 〈Z1〉)2

exp

(
− (1 −Z0)

2

(1 − 〈Z1〉)2

)
, (5.15)

where Z0 is given by the equation (2.22). Z1 is the first-order gravitational perturbation and 
the expectation value is related to the effect of first-order quantum metric fluctuations [45].

The regularization of the light-cone singularity by the fluctuation of the light cone is universal 
[24,45], but the above Gaussian regularization scheme is not unique. This is a simple choice 
that reduces to the delta function form when the light cone fluctuations disappear, i.e. Z1 =
1. Condition D) supersedes the previous analyticity property d) requested for (5.1). 〈Z1〉 is a 
complex function of the space-time coordinates xα [45]. We nevertheless have 〈Z1〉 �= 1 due to 
the quantum fluctuations, and then the replacement (5.15) results in a regular function on the 
light-cone.

The generalization of the approach à la Krein to spinor and vector fields is straightforward 
and can be constructed by replacing the two-point function with its imaginary parts and the 
condition D). Some of the advantages of this approach can be mentioned, namely: the existence 
of a unique Krein-Fock vacuum state, preservation of dS invariance, explanation of mass gap 
and color confinement issues in a covariant way, as is discussed in the next section. By choosing 
Condition D) as a principle in Krein space quantization (for more details see [24]), then we 
might expect to obtain an axiomatic quantum Yang-Mills theory with the mass gap and color 
confinement within the framework of the dS ambient space formalism.
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6. Mass gap and confinement

The IR divergence of the massless minimally coupled scalar field resembles features of a 
massless field theory in 2-dimensional space-time [46]. The regularization of the infrared di-
vergence in 2-dimensional massless field theory results in a mass gap [47]. Motivated by these 
facts, let us examine if a similar mechanism can be relevant to the Yang-Mills theory in dS space-
time. Here two approaches for this problem, which were presented in the previous section, are 
discussed.

From the classical Lagrangian (3.17), there is no explanation for the mass gap and the color 
confinement in the dS Yang-Mills theory. On the QFT level, the effective Lagrangian or “quantum 
Lagrangian” can be established through the loop correction to the classical Lagrangian:

Lq = Lc + h̄L1 + h̄2L2 + · · · . (6.1)

In the one-loop approximation the appearance of ghost field propagators occurs in the Feynman 
diagrams. By considering the gluon self-energy diagram (or gluon mass term) the following 
expression appears in the effective action, which contains two vertices (each vertice has one 
vector field and two ghost fields):

· · · +
∫

dσ(x)dσ(x′)T
[
�a†

(x)Cabc∂� · Kc(x)�b(x)
]

×
[
�a′ †

(x′)Ca′b′c′
∂ ′� · Kc′

(x′)�b′
(x′)

]
+ · · · . (6.2)

Having in view the finding of a mass term for the vector fields, we consider two vector fields 
that are connected with the two propagators of the mmc scalar field. Let us go through the two 
different approaches discussed in the previous section.

A) Standard approach: With the dS flat coordinates used by Allen, the Green functions are 
calculated by using continuous sums of the type 

∫ �

μ
dkf (k) [5,36], where μ is an IR cut-off 

or regulator, and � is an ultraviolet cut-off. This regulator excludes the range k ∈ [0, μ] from 
the mode sum, so the zero modes’ contribution is dropped. The introduction of the cut-off μ
and � in the propagator of the mmc scalar field entails the appearance in Equation (6.2) of a 
mass term of the following type for the gluon fields (see Appendix A):

∫
dσ(x)dσ(x′)Mαα′

cc′ (μ,�;x, x′, ∂, ∂ ′)Kc
α(x)Kc′

α′(x′) .

The explicit form of this integral is not essential for our purpose here. Although this mass 
term breaks dS invariance, it can explain the short-range force of the strong interaction and 
the mass gap problem of the quantum Yang-Mills theory in dS space.

B) Krein approach: In this approach the propagator of the mmc scalar fields is a regular function, 
and by replacing it in Equation (6.2) one obtains:

∫
dσ(x)dσ(x′)Mαα′

cc′ (H, 〈Z1〉;x, x′, ∂, ∂ ′)Kc
α(x)Kc′

α′(x′) .

In this method, the dS invariance is preserved, and one can explain the short-range force of 
the strong interaction and the mass gap problem. In this expression H and 〈Z1〉 play the role 
of the cut-off parameters.
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)

The behavior of the two-point function for the massless vector field in the inflationary epoch, 
(H → large value), allows us to understand better the color confinement problems in this limit. 
Let us here follow the standard approach. Let us pick up two points: Xμ = (t, χ, θ, ϕ) and X′μ =
(0, 0, 0, 0) in terms of the global coordinates system (2.3). Then in the limit of large H , we 
have: Z = −H 2x · x′ = cosχ coshHt ≈ 1

2 cosχeHt . In this limit the two-point function of the 
conformally massless scalar field reads as:

Wmcc(x, x′) = H 2

8π2

1
1
2 cosχeHt

= H 2

4π2 cosχ
e−Ht . (6.3)

Then the massless vector two-point function (2.19) can be written in terms of the mcc scalar 
two-point function as follows (Z �= 1) [16]:

Waa′
ββ ′ (x, x′) = δaa′

[
−θ ′

α′ · θα Z
d

dZ
+ H 2(θ ′

α′ · x)(θα · x′)
(

2
d

dZ
+Z

d2

dZ2

)]
Wmcc(x, x′

= δaa′ H 2

8π2

(
ηαα′ + H 2x′

αx′
α′ + H 2xαxα′ − H 2xαx′

α′Z
) Z

(1 −Z)2

− H 4

4π2

(
x′
αxα′ − x′

αx′
α′Z − xαxα′Z + xαx′

α′Z2
)(

1

(1 −Z)2 + Z

(1 −Z)3

)
. (6.4)

At large values of H the latter behaves as:

lim
H→∞Waa′

ββ ′ (x, x′) =⇒ − H 4

4π2 δaa′
xαx′

α′

(
3Z2

2(1 −Z)2 + Z3

(1 −Z)3

)
≈ − H 4

8π2 δaa′
xαx′

α′ .

(6.5)

Terms linear in the coordinates xα’s and x′α’s respectively appear in this limit. Such a behavior of 
the two-point function may be used to explain the mass gap and the color confinement problems 
[9]. In the null curvature limit (H = 0) one can see that this behavior disappears as well.

Such terms of the propagator which are linear in coordinates may be interpreted as a force 
in the theory that increases with increasing distance and becomes zero with decreasing distance. 
In the one-loop approximation, the following coordinate dependent terms appear in the effective 
potential:

· · ·+H 2g2
∫

dσ(x)dσ(x′)T
[
ψ̄(x)γ 4γ α /K

a
taψ(x)

][
ψ̄(x′)γ 4γ α′

/K
b
tbψ(x′)

]
xαx′

α′ +· · · .

This linear force comes out from the dS geometry and vanishes at the null curvature limit. This is 
reminiscent of the de Sitter-Schwarzschild space-time when a term r2 appears in its metric [48]:

g00 =
(

1 − 2GM

r
− H 2r2

)
,

where M is the mass parameter and G is the gravitational constant. Since Equation (6.5) is the 
gluon propagator and explains the interaction between the color-charged particles or quarks, in 
the limit H −→ ∞, the force between quarks is approximately zero at small distance and the 
latter are largely coupled by increasing the distance. This feature is similar to the classical field 
theory in two-dimensional space-time with the study of the confinement of spinless particles 
through Coulomb potentials [49]. The mixture of scalar and vector potentials was used there 
to prove the existence of the confinement state. Inspired by this result we hope to formulate 
17
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explicitly the confinement problem in dS ambient space formalism by using the scalar and vector 
gauges unification within de Sitter ambient space formalism [50]. The explicit formulation of the 
confinement state is beyond the scope of this article and requires a separate paper, which will be 
considered in a future work.

7. Conclusions

The non-abelian gauge-invariant Lagrangian density is calculated in the dS ambient space 
formalism. We obtain that the ghost fields are the mmc scalar fields. We have examined the 
possibility of an axiomatic QFT for the Yang-Mills theory within the framework of Krein space 
quantization. Due to the regularization of IR divergences, a mass term is obtained for the gluon 
fields in the one-loop approximation. This mass term may be used to solve the mass gap and color 
confinement problems in dS Yang-Mills theory. We show that in the large curvature limit (H →
∞), early universe, or inflationary time, a term linear in the coordinates system appears in the 
vector two-point function. In a forthcoming paper, we plan to consider the cluster decomposition 
principle by using the dS covariance, locality, the mass gap, and the principle D) within our Krein 
approach.
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Appendix A

In this appendix a brief procedure for calculating Mαα′
cc′ (μ, �; x, x′, ∂, ∂ ′) is presented. We 

start out with the following expression,

T
[
�a†

(x)Cabc∂� · Kc(x)�b(x)
][

�a′ †
(x′)Ca′b′c′

∂ ′� · Kc′
(x′)�b′

(x′)
]
.

It can be divided into four terms where, for simplicity, solely one of them is considered:

CabcCa′b′c′
T

[
�a†

(x)�b(x)∂�αKc
α(x)

][
�a′ †

(x′)�b′
(x′)∂ ′�α′

Kc′
′(x′)

]
.
α
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Since we are looking for a mass term for the vector fields, then the vector fields do not participate 
in the time order product. For scalar fields, the time-ordered product and vacuum expectation 
value result in the following expression:

CabcCa′b′c′
δa
b′δb

a′
[
GT (x, x′)

]2
∂�α∂ ′�α′

Kc
α(x)Kc′

α′(x′) .

It is part of the expression Mαα′
cc′ in which GT (x, x′) is the time-ordered scalar Green function. 

The latter is different from what is yielded by the standard model and by the Krein approach.
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