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Abstract We study cosmological inflation and its dynam-
ics in the framework of the Randall–Sundrum II brane model.
In particular, we analyze in detail four representative small-
field inflationary potentials, namely Natural inflation, Hilltop
inflation, Higgs-like inflation, and Exponential SUSY infla-
tion, each characterized by two mass scales. We constrain the
parameters for which a viable inflationary Universe emerges
using the latest PLANCK results. Furthermore, we investi-
gate whether or not those models in brane cosmology are
consistent with the recently proposed Swampland Criteria,
and give predictions for the duration of reheating as well
as for the reheating temperature after inflation. Our results
show that (i) the distance conjecture is satisfied, (ii) the de
Sitter conjecture and its refined version may be avoided, and
(iii) the allowed range for the five-dimensional Planck mass,
M5, is found to be 105 TeV � M5 � 1012 TeV. Our main
findings indicate that non-thermal leptogenesis cannot work
within the framework of RS-II brane cosmology, at least for
the inflationary potentials considered here.

1 Introduction

Standard hot big-bang cosmology, based on four-dimensional
General Relativity (GR) [1] combined with the cosmological
principle, is supported by the three main pillars of modern
cosmology. Those are (i) the Hubble’s law [2], (ii) the Pri-
mordial big-bang Nucleosynthesis (BBN) [3], and (iii) the
Cosmic Microwave Background (CMB) Radiation [4]. The
emerging cosmological model of the Universe seems to be
overall quite successful, however some issues still remain
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regarding the initial conditions required for the big bang
model, such as the horizon, the flatness, and the monopole
problem. Cosmological inflation [5–8] provides us with an
elegant mechanism to solve those shortcomings all at once.
Moreover, in the inflationary Universe, primordial curvature
perturbations with an approximately scalar-invariant power
spectrum, which seed CMB temperature anisotropies and the
structure formation of the Universe, are generated from the
vacuum fluctuations of a scalar field, the so called the inflaton
[9–15]. Therefore, inflationary dynamics is currently widely
accepted as the standard paradigm of the very early Universe,
although we do not have a theory of inflation yet. For a clas-
sification of all single-field inflationary models based on a
minimally coupled scalar field see [16], while for a large col-
lection of inflationary models and their connection to Particle
Physics see e.g. [17,18].

One can test the paradigm of cosmological inflation com-
paring its predictions on the r − ns plane with current cos-
mological and astronomical observations, and specially with
those related to the CMB temperature anisotropies from the
PLANCK collaboration [19,20] as well as the BICEP2/Keck-
Array data [21,22]. In particular, currently there only exists
an upper bound on the tensor-to-scalar ratio r , since the tensor
power spectrum has not been measured yet. The PLANCK
upper limit on the tensor-to-scalar-ratio, r0.002 < 0.10 at 95%
C.L., combined with the BICEP2/Keck Array (BK14) data,
is further tightened, r0.002 < 0.064. Besides, the tensor-to-
scalar ratio can be related to the variation of �φ of the field
during inflation through the Lyth bound, assuming that r is
nearly constant [23]

�φ

Mpl
�

√
r

8
Nk, (1)
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where Nk is the number of e-folds before the end of infla-
tion, and Mpl is the reduced Planck mass associated with
Newton’s gravitational constant by Mpl = 1/

√
8πG. Mod-

els with �φ < Mpl and �φ > Mpl are called small-field
and large-field models, respectively. If next-generation CMB
satellites, e.g. LiteBIRD [24], COrE [25] and PIXIE [26],
are not able to detect primordial B-modes, an upper limit of
r < 0.002 (95% C.L.) will be reached, implying that small-
field inflation models will be favored, since a particular fea-
ture of these models is that tensor modes are much more sup-
pressed with respect to scalar modes than in the large-field
models. In this type of models, the scalar field is rolling away
from an unstable maximum of the potential, being a charac-
teristic feature of spontaneous symmetry breaking. Let us
consider the inflaton potential of the form

V (φ) = �4 [1 −U (φ)] , (2)

where � is a constant having a dimension of a mass andU (φ)

is a function of φ.
Natural Inflation (NI) with a pseudo-Nambu Goldstone

boson (pNGB) as the inflaton [27,28] arises in certain particle
physics model [29]. The scalar potential, which is flat due to
shift symmetries, has the form

V (φ) = �4
[

1 − cos

(
φ

f

)]
. (3)

and it is characterized by two mass scales f and � with
f � �. It is assumed that a global symmetry is sponta-
neously broken at some scale f , with a soft explicit symme-
try breaking at a lower scale �. Natural Inflation has been
already studied in standard cosmology based on GR [30,31].
In particular, Natural Inflation is consistent with current data
[19,20] for trans-Planckian values of the symmetry breaking
scale f , for which it may be expected the low-energy effective
theory, on which (3) is based, to break down [32]. Another
type of small-field models supported by Planck data are Hill-
top inflation models, which are described by the potentials
[33,34]

V (φ) = �4
[

1 −
(

φ

μ

)p]
, (4)

where p is typically an integer power. In order to stabilize the
potential from below, the former potentials are often written
down as

V (φ) = �4
[

1 −
(

φ

μ

)p]
+ · · · , (5)

where higher order terms are included in the ellipsis. The
fashionable models with p = 2 and p = 4 are ruled out by
current observations for μ � Mpl regardless of the omitted
terms designated by the ellipsis. However, those models yield
predictions favored by PLANCK 2018 when μ � Mpl for
any value of the power p, which becomes indistinguishable

from those of linear inflation, i.e. V (φ) ∼ φ [35]. For numer-
ical as well as analytic treatments of Hilltop inflation in the
framework of GR, see Refs. [36–39]. A consistent modifica-
tion of the quadratic Hilltop model (p = 2) yields a Higgs-
like potential [35,36], which is used to describe dynamical
symmetry breaking

V (φ) = �4

[
1 −

(
φ

μ

)2
]2

, (6)

where the extra quartic term prevents the potential from
becoming negative beyond the vacuum expectation value
(VEV) μ. It has been shown that such a potential remains
favored by current data as long as the mass scales are high
[31,35]. Another small-field model, derived in the context
of supergravity, corresponds to Exponential SUSY inflation,
where the potential is given by [40]

V (φ) = �4
(

1 − e−φ/ f
)

(7)

which is asymptotically flat in the limit φ → ∞. This infla-
ton potential also appears in the context of D-brane inflation
[41] and it predicts a small value of the tensor-to-scalar for
f < Mpl [42], being inside the (68% C.L.) boundary con-
strained by PLANCK 2018 data [43]. Another supergravity-
motivated model is Kähler moduli inflation [44]

V (φ) = �4
(

1 − c1φ
4/3e−c2φ

4/3
)

, (8)

which predicts a very small tensor-to-scalar ratio, well inside
the (68% C.L.) contour [43].

The inflationary period ends when the equation-of-state
parameter (EoS) becomes larger than w = −1/3, i.e. the
slow-roll approximation breaks down, the expansion deceler-
ates, and the Universe enters into the radiation era of standard
Hot big-bang Cosmology [45]. The transition era after the end
of inflation, during which the inflaton is converted into the
particles that populate the Universe later on is called reheat-
ing [46,47] (for comprehensive reviews, see e.g. Refs. [48–
50]). As was shown Ref. [51], the EoS parameter presents a
sharp variation during the reheating phase due to the out-of-
equilibrium nonlinear dynamics of fields. Unfortunately, the
underlying physics of reheating is highly uncertain, com-
plicated, and it cannot be directly probed by observations,
although some bounds from BBN [52,53], the gravitino prob-
lem [54–58], leptogenesis [59–65], and the energy scale at
the end of inflation do exist [49,50]. There is, however, a strat-
egy that allows us to obtain indirect constraints on reheating.
First we parameterize our ignorance assuming for the fluid
a constant equation-of-state wre during reheating. Next, we
find certain relationships between the reheating temperature,
Tre, and the duration of reheating, Nre, with wre and the
inflationary observables [66–74].

Considering that inflation opens up the window to probe
physics in the very high energy regime, it is also tempting to
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construct inflationary models in string theory [75]. Although
we do not have a full quantum gravity theory yet, string theory
is believed to be a promising candidate, which possesses a
space of consistent low-energy effective field theories derived
from it, called the landscape [76–78]. The landscape consists
of a vast amount of vacua described by different effective
field theories (EFTs) at low energies. At the same time, there
is another set of EFTs, dubbed the swampland, which are
not consistent with string theory. Accordingly, one can ask
the question what criteria a given low-energy EFT should
satisfy in order to be contained in the string landscape. In
this direction, several criteria of this kind, dubbed swampland
criteria [79,80] have been proposed so far, with the following
implications for inflationary model-building

• The distance conjecture:

�φ

Mpl
< O(1), (9)

• The de Sitter conjecture:

Mpl
|V ′|
V

> c ∼ O(1). (10)

The distance conjecture implies that scalar fields cannot have
field excursions much larger than the Planck scale, since oth-
erwise the validity of the EFT breaks down [81]. As it can bee
seen from Eq. (1), in the context of inflation, field excursions
are related to the tensor-to-scalar ratio. Accordingly, this
conjecture limits the possibility of measuring tensor modes
and hence primordial B-modes in the CMB. Specifically, for
Nk � 50, it is found r � O(10−3), which lies on the edge
of detectability for future experiments [24–26]. In addition,
the de Sitter conjecture states that slope of the scalar field
potential satisfies a lower bound when V > 0 [82]. How-
ever, slow-roll inflation is in direct tension with those crite-
ria [82], implying that single-field models are ruled out as
claimed in [83–85]. Nevertheless, those criteria are satisfied
when studying inflation in non-standard, less conventional
scenarios. For a representative list of related works, see [86–
101]. Recently the refined de Sitter swampland conjecture,
proposed in [84,102], sates that:

• Refined de Sitter conjecture:

Mpl
|V ′|
V

> c ∼ O(1) or M2
pl
V ′′

V
< −c′ ∼ O(1). (11)

With this refinement, which allows for a scalar field potential
with maxima (hilltop) to exist, the conflicts with some small-
field potentials, such as Higgs-like, QCD axion [85,103,104]
and Hilltop [105,106], are resolved.

Additionally, there is another Swampland conjecture pro-
posed recently in the literature, known as the Trans-Planckian
Censorship Conjecture (TCC). Roughly speaking, the TCC
claims that in a consistent quantum theory of gravity, quan-
tum fluctuations at sub-Planckian level are forbidden to exit
the Hubble horizon during inflation. As a consequence, cos-
mological inflation is in direct conflict with this conjecture as
far as the upper bound on the tensor-to-scalar ratio, the num-
ber of e-folds and the energy scale of inflation are concerned
[107,108]. In this regard, a direct consequence of the TCC
is an extremely small value of the tensor-to-scalar ratio, sat-
isfying the upper bound r < 10−30 assuming instantaneous
reheating [107]. If a reheating phase with a low reheating
temperature Tre is assumed, an improved upper bound on r
can be found, yielding r � 10−8 for wre � −1/3 [109].

A novel way to satisfy the refined swampland criteria is
to consider inflation on the brane [89] and related works
[93,98,99,105]. Furthermore, considering inflation in non-
standard cosmologies is motivated by at least two facts,
namely (i) deviations from the standard Friedmann equa-
tion arise in higher-dimensional theories of gravity, and
(ii) there is no observational test of the Friedmann equa-
tion before the BBN epoch. A well-studied example of
a novel higher-dimensional theory is the brane-world sce-
nario, which inspired from M/superstring theory. Although
brane models cannot be fully derived from the fundamen-
tal theory, they contain at least the key ingredients found
in M/superstring theory, such as extra dimensions, higher-
dimensional objects (branes), higher-curvature corrections to
gravity (Gauss-Bonnet), etc. Since superstring theory claims
to give us a fundamental description of Nature, it is important
to study what kind of cosmology it predicts.

Since there is a growing interest in studying inflationary
models that meet both observational data and Swampland
Criteria, the main goal of the present work is to study the
realization of some representative small-field inflation mod-
els, namely Natural inflation, Hilltop inflation, Higgs-like
inflation and Exponential SUSY inflation, in the framework
of the RS-II brane model, in light of the recent PLANCK
results and their consistency with the swampland crite-
ria. Furthermore, we give predictions regarding the dura-
tion of reheating as well as the reheating temperature after
inflation.

We organize our work as follows: After this introduction,
in the next section we summarize the basics of the brane
model as well as the dynamics of inflation and the basic
formulas for determining the duration of reheating as well as
for the reheating temperature after inflation. In Sects. 3 to 6
we analyze each of the proposed small-field inflation models
in the framework of RS-II model and present our results.
Finally, in the last section we summarize our findings and
exhibit our conclusions. We choose units so that c = h̄ = 1.
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2 Basics of Braneworld inflation

2.1 Braneworld cosmology

In brane cosmology our four-dimensional world and the Stan-
dard Model (SM) of particle physics are confined to live on a
3-dimensional brane, whereas gravitons are allowed to prop-
agate in the higher-dimensional bulk. Here we shall assume
that only one additional spatial dimension, perpendicular to
the brane, exists. Since the higher-dimensional Plank mass,
M5, is the fundamental mass scale instead of the usual four-
dimensional Planck mass, M4, the brane-world idea has been
used to address the hierarchy problem of particle physics,
first in the simple framework of a flat (4+n) space-time with 4
large dimensions andn small compact dimensions [110,111],
and later it was refined by Randall and Sundrum [112,113].
For excellent introduction to brane cosmology see e.g. [114].
In the RS-II model [113], the four-dimensional effective field
equations are computed to be [115,116]

(4)Gμν = −�4gμν + 8π

M2
4

τμν +
(

8π

M3
5

)2

πμν − Eμν, (12)

where �4 is the four-dimensional cosmological constant,
τμν is the matter stress-energy tensor on the brane, πμν =
(1/12)ττμν+(1/8)gμνταβταβ−(1/4)τματα

ν −(1/24)τ 2gμν ,

and Eμν = Cα
βρσnαnρgβ

μgσ
ν is the projection of the five-

dimensional Weyl tensor Cαβρσ on the brane, where nα is
the unit vector normal to the brane. Eμν and πμν are the new
terms, not present in standard four-dimensional Einstein’s
theory, and they encode the information about the bulk. The
four-dimensional quantities are given in terms of the five-
dimensional ones as follows [117]

M4 =
√

3

4π

(
M2

5√
λ

)
M5, (13)

�4 = 4π

M3
5

(
�5 + 4πλ2

3M3
5

)
, (14)

where Mpl = M4/
√

8π � 2.4 × 1018 GeV is the reduced
Planck mass, and λ is the brane tension.

The Friedmann-like equation describing the background
evolution of a flat FRW Universe is found to be [118,119]

H2 = �4

3
+ 8π

3M2
4

ρ
(

1 + ρ

2λ

)
+ E

a4 . (15)

where a is the scale factor, H is the Hubble parameter, ρ

is the total energy density of the cosmological fluid, and E
is an integration constant coming from Eμν . The term E

a4 is
known as the dark radiation, since it scales with a the same
way as radiation. However, during inflation this term will
be rapidly diluted due to the quasi-exponential expansion,
and therefore in the following we shall neglect it. The five-

dimensional Planck mass is constrained by the standard big-
bang nucleosynthesis to be M5 � 10 TeV [120], implying
that λ � (1 MeV)4 ∼ (10−21 Mpl)

4. A stronger constraint
on M5, namely M5 � 105 TeV, results from current tests for
deviations from Newton’s gravitational law on scales larger
than 1 mm [121].

In the discussion to follow we shall set the four-dimensional
cosmological constant �4 to zero, i.e. we shall adopt the
RS fine tuning �5 = −4πλ2/(3M3

5 ), so that the model can
explain the current cosmic acceleration without a cosmolog-
ical constant. Finally, neglecting the term E

a4 the Friedmann-
like equation (15) takes the final form

H2 = 8π

3M2
4

ρ
(

1 + ρ

2λ

)
, (16)

upon which our study on brane inflation will be based.

2.2 Inflationary dynamics

At low energies, i.e., when ρ 	 λ, inflation in the brane-
world scenario behaves in exactly the same way as stan-
dard inflation, but at higher energies we expect inflationary
dynamics to be modified.

We consider slow-roll inflation driven by a scalar field φ,
for which the energy density ρ and the pressure P are given

by ρ = φ̇2

2 +V (φ) and P = φ̇2

2 −V (φ), respectively, where
V (φ) is the scalar potential. Assuming that the scalar field
is confined to the brane, the usual four-dimensional Klein–
Gordon (KG) equation still holds

φ̈ + 3H φ̇ + V ′ = 0, (17)

where a prime denotes differentiation with respect to φ, while
an over dot denotes differentiation with respect to the cos-
mic time. In the slow-roll approximation the cosmological
equations take the form (16) and (17)

H2 � 8π

3M2
4

V

(
1 + V

2λ

)
, (18)

and

φ̇ � − V ′

3H
. (19)

The brane-world correction term V/λ in Eq. (18) enhances
the Hubble rate for a given potential. Thus there is an
enhanced Hubble friction term in Eq. (19), as compared to
GR, and brane-world effects will reinforce slow-roll for the
same potential.

That way, using those two equations, it is possible to write
down the expression for the slow-roll parameters on the brane
as [117]

ε ≡ εV
1 + V/λ

(1 + V/2λ)2 , (20)
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η ≡ ηV
1

1 + V/2λ
, (21)

where εV = M2
4

16π

(
V ′
V

)2
and ηV = M2

4
8π

V ′′
V are the usual slow-

roll parameters of standard cosmology for a canonical scalar
field. Considering the definition of εV for standard inflation,
the de Sitter swampland conjecture Eq. (10) and the first
equation of its refined version in (11) imply

εV ∼ c2/2 ∼ O(1), (22)

which rules out slow-roll inflation, since the former is in
conflict with εV 	 1. Slow-roll inflation on the brane implies
that ε 	 1 and |η| 	 1, which can be achieved in the high-
energy regime, i.e., V � λ, despite the fact that both εV
and ηV are large due to the large slope of the potential. This
feature is crucial for avoiding the refined swampland criteria
[89]. In the high-energy limit, Eqs. (20) and (21) become

ε � εV

(
4λ

V

)
, (23)

η � ηV

(
2λ

V

)
, (24)

while in the low-energy limit V 	 λ, Eqs. (20) and (21) are
reduced to the usual slow-roll parameters of standard cosmol-
ogy. Clearly, the deviations from standard slow-roll inflation
can be seen in the high-energy regime, as both parameters
are suppressed by a factor V/λ.

The number of e-folds in the slow-roll approximation,
using (16) and (17), yields

Nk � − 8π

M2
4

∫ φend

φk

V

V ′

(
1 + V

2λ

)
dφ, (25)

where φk and φend are the values of the scalar field when the
cosmological scales cross the Hubble-radius and at the end
of inflation, respectively. As it can be seen, the number of e-
folds is increased due to an extra term of V/λ. This implies
a more amount of inflation, between these two values of the
field, compared to standard inflation.

2.3 Perturbations

In the following we shall briefly review cosmological per-
turbations in brane-world inflation. We consider the gauge
invariant quantity ζ = −ψ − H δρ

ρ̇
. Here, ζ is defined on

slices of uniform density and reduces to the curvature per-
turbation at super-horizon scales. A fundamental feature of
ζ is that it is nearly constant on super-horizon scales [122],
and in fact this property does not depend on the gravitational
field equations [123]. Therefore, for the spatially flat gauge,
we have ζ = H δφ

φ̇
, where |δφ| = H/2π . That way, using

the slow-roll approximation, the amplitude of scalar pertur-

bations is given by [117]

PS = H2

φ̇2

(
H

2π

)2

� 128π

3M6
4

V 3

V ′ 2

(
1 + V

2λ

)3

. (26)

On the other hand, the tensor perturbations are more involved
since the gravitons can propagate into the bulk. The major
uncertainty comes from the tensor Eμν , which describes the
impact on the four-dimensional cosmology from the five-
dimensional bulk, and whose evolution is not determined
by the four-dimensional effective theory alone. In our work
we make an approximation neglecting back-reaction due to
metric perturbations in the fifth dimension, and setting Eμν

= 0. This approximation may be justified in the following
way: The modes are characterized by their eigenvalue, −m2.
If we are interested in a period of quasi-de Sitter inflation on
the brane, and in large scales (i.e. neglecting k2 terms), the
continuum of heavy modes remains under-damped and hence
those modes are strongly suppressed [124]. Therefore, only
the massless mode becomes relevant, as it is over-damped
and acquires a spectrum of classical perturbations on super-
horizon scales [124].

The amplitude of tensor perturbations is given by [117]

PT = 64π

M2
4

(
H

2π

)2

F2(x), (27)

where

F(x) =
[√

1 + x2 − x2 ln

(
1

x
+

√
1 + 1

x2

)]2

=
[√

1 + x2 − x2 sinh−1
(

1

x

)]−1/2

, (28)

and x is given by

x = HM4

√
3

4πλ
. (29)

The expressions for the spectra are, as always, to be eval-
uated at the Hubble radius crossing k = aH . As expected,
in the the low-energy limit the expressions for the spec-
tra become the same as those derived without considering
the brane effects. However, in the high-energy limit, these
expressions become

PS � 16π

3M6
4λ3

V 6

V ′ 2 , (30)

PT � 32 V 3

M4
4 λ2

. (31)

The scale dependence of the scalar power spectra is deter-
mined by the scalar spectral index, which in the slow-roll
approximation obeys the usual relation

ns = 1 + d lnPS

d ln k
,
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ns � 1 − 6ε + 2η. (32)

The amplitude of tensor perturbations can be parameter-
ized by the tensor-to-scalar ratio, defined to be [45]

r ≡ PT
PS

, (33)

At low energies the massless mode is confined close to the
brane [124], and we recover the standard four-dimensional
result, r � 16εV , where εV is the standard slow-roll param-
eter. In the high-energy limit the massless mode extends into
the five-dimensional bulk [124] and we find [48]

r � 24ε, (34)

with ε corresponding to Eq. (23).
As we have seen, at late times the brane-world cosmology

is identical to the standard one. During the early Universe,
particularly during inflation, there may be changes to the per-
turbations predicted by the standard cosmology, if the energy
density is sufficiently high compared to the brane tension.

2.4 Reheating

Here we shall briefly describe how to compute the number of
e-folds of reheating Nre as well as the reheating temperature
Tre in terms of the scalar spectral index for single-field infla-
tion in the high-energy regime of RS-II brane-world scenario.
For the derivation of the main formulas, we mainly follow
Refs. [67,69,71].

Reheating after inflation is important for itself as a mecha-
nism achieving what we know as the hot big-bang Universe.
The energy of the inflaton field becomes in thermal radia-
tion during the process of reheating through particle creation
while the inflaton field oscillates around the minimum of
its potential. If one considers that during reheating phase
the main contribution to the energy density of the Universe
comes from a component having an effective equation-of-
state parameter (EoS) wre, and its energy density can be
related to the scale factor through ρ ∝ a−3(1+wre), we can
write down the following relation

ρend

ρre
=

(
aend
are

)−3(1+wre)

, (35)

where the subscripts end and re denote the end of inflation
and the end of reheating phase, respectively.

The number of e-folds of reheating are related to the scale
factor both at the end of inflation and reheating according to

e−Nre = aend
are

. (36)

Then, by combining Eqs. (35) and (36), we can write the
number of e-folds of reheating as

Nre = 1

3(1 + wre)
ln

(
ρend

ρre

)
. (37)

On the other hand, we consider the Friedmann-like equa-
tion (16) in the high-energy limit ρ � λ

H2 � 4π

3M2
4 λ

ρ2, (38)

and the slow-roll parameter ε, defined as

ε = − Ḣ

H2 . (39)

By combining the time derivative of Eq. (16) with the con-
tinuity equation for the scalar field ρ̇ = −3H(ρ + P), ε is
expressed as follows

ε = 6φ̇2/2

φ̇2/2 + V
. (40)

From the last equation, we solve for the kinetic term φ̇2

2 ,
yielding

φ̇2

2
= V ε

6 − ε
. (41)

So, we can write down the expression for the energy density

of the scalar field ρ = φ̇2

2 + V in terms of the slow-roll
parameter ε and the scalar field potential V as follows

ρ = V

(
φ̇2

2V
+ 1

)
, (42)

ρ = V

(
ε

6 − ε
+ 1

)
. (43)

Accordingly, the relationship between the energy density and
the potential at the end of inflation (ε(φend) = 1) is given by

ρend = 6

5
V (φend) = 6

5
Vend , (44)

which is slightly different from those already obtained in
[125], where ρend = 7

6Vend . Otherwise, in GR it is found
that ρend = 3

2Vend [67,69,71].
Replacing (44) in Eq. (37) we obtain

Nre = 1

3(1 + wre)
ln

(
6

5

Vend
ρre

)
. (45)

At the end of reheating phase, the energy density of the uni-
verse is assumed to be

ρre = π2

30
greT

4
re, (46)

where gre is the number of internal degrees of freedom of
relativistic particles at the end of reheating. Assuming that the
degrees of freedom come from the particles in the Standard
Model, gre = O(100) for � 175 GeV [49,50], while for a
Minimal Supersymmetric Standard Model (MSSM), gre =
O(200) [98,126].

On the other hand, the entropy is defined as

s = 2π2

45
gT 3, (47)
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where the temperature is inversely proportional to the scale
factor for radiation (T ∝ a−1). Then, by replacing the tem-
perature in Eq. (47), we have that s ∝ a−3. Assuming the
conservation of entropy, it yields gT 3a3 = const. Now, if we
apply the entropy conservation between reheating and today

greT
3
rea

3
re = g0T

3
0 a

3
0, (48)

where g0 denotes the number of internal degrees of freedom
of relativistic particles today, which comes from photons and
neutrinos. Then, Eq. (48) becomes

greT
3
re =

(
a0

are

)3 [
2T 3

0 + 21

4
T 3

ν0

]
. (49)

For the contribution coming from neutrinos at the right-hand

side of (49), we use Tν0 = ( 4
11

)1/3
T0, where T0 = 2.725 K

is the temperature of the universe today. The ratio a0
are

can be
written as
a0

are
= a0

aeq

aeq
are

, (50)

where we introduce e−NRD = are
aeq

, with NRD being the dura-
tion in e-folds of the radiation dominated epoch. Accord-
ingly, Eq. (49) is rewritten as

Tre = T0

(
a0

aeq

)
eNRD

(
43

11gre

)
. (51)

Furthermore, we may compare the wavelength (λ0 � a0
k )

with the Hubble radius (dH � 1
H0

) today , so

dH
λ0

= k

a0H0
(52)

= ak Hk

a0H0
, (53)

where the subscript k denotes when the scale crosses the
Hubble radius. Incorporating the intermediates eras, for the
ratio a0

aeq
we have (see, e.g. [71])

a0

aeq
= a0Hk

k
e−Nk e−Nree−NRD . (54)

Using this result in (51) we find

Tre =
(

43

11gre

)1/3 (
a0T0

k

)
Hke

−Nk e−Nre . (55)

Upon replacement of Eq. (55) in Eq. (45), one solves for Nre

giving

Nre = 4

1 − 3 wre

[
−1

4
ln

(
36

π2gre

)
− 1

3
ln

(
11gre

43

)

− ln

(
k

a0T0

)
− ln

(
V 1/4
end

Hk

)
− Nk

]
. (56)

By assuming gre ∼ O(100) and using the pivot scale k
a0

=
0.05 Mpc−1 from PLANCK, we arrive to the final expression

for the number of e-folds of reheating

Nre = 4

1 − 3 wre

[
61.6 − Nk − ln

(
V 1/4
end

Hk

)]
, (57)

where Hk can be written down using the definition of the
tensor-to-scalar ratio r = PT /PS . Taking PS at the pivot
scale and using the expression for PT in the high-energy
limit (31), one finds

Hk =
(

π2

6
r PSM4

√
λ

12π

)1/3

. (58)

Finally, combining Eqs. (46) and (45) the reheating tem-
perature is computed as follows

Tre =
(

36

100 π2

)1/4 (
6

5
Vend

)1/4

e− 3
4 (1+wre)Nre . (59)

Here, the model-dependent expressions are the Hubble
rate at the instant when the cosmological scale crosses the
Hubble radius, H−1

k , the number of e-folds Nk , and the infla-
ton potential at the end of the inflationary expansion, Vend .
Thus, it is implicit that Nre, Tre depend on the observables Ps ,
ns and r that we have already discussed. It is also remarkable
the dependence of Nre and Tre on the 5-dimensional Planck
mass, which enters into Vend and Hk .

3 Natural inflation on the brane

3.1 Dynamics of inflation

Natural inflation on the brane was studied by two of us (G. P.
and N. V.) a few years ago [128]. In that work we used
PLANCK 2015 results, whereas here we use PLANCK 2018
results. Moreover, in the previous work neither reheating nor
leptogenesis were discussed.

The Natural inflation potential is given by Eq. (3)

V (φ) = �4
[

1 − cos

(
φ

f

)]
. (60)

Applying Eqs. (23) and (24) to this potential, we obtain the
slow-roll parameters in the high-energy regime

ε = α
(1 + cos(y))

(1 − cos(y))2 , (61)

η = α
cos(y)

(1 − cos(y))2 , (62)

where y and α are dimensionless parameters, which by def-
inition are given by

y ≡ φ

f
, (63)

α ≡ M2
4 λ

4π f 2�4 , (64)
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respectively. An important quantity to be computed is the
field at Hubble horizon crossing φk , at which observables,
such as the scalar power spectrum, the spectral index and
the tensor-to-scalar ratio, are evaluated. In doing so, we first
impose the condition ε ≡ 1, which allows us to compute the
value of the inflaton field at the end of inflation

cos(yend) = cos

(
φend

f

)
= 1

2

(
2 + α − √

α
√

8 + α
)

.

(65)

Replacing this value of the field and the potential in Eq.
(25) and performing the integral, the number of e-folds Nk

is computed to be

Nk = 1

α

[
cos(yk) − cos (yend) − 2 ln

(
1 + cos(yk)

1 + cos(yend)

)]
.

(66)

Then, we solve for yk = φk
f , yielding

cos(yk) = cos

(
φk

f

)
= −1 − 2 W−1 [z(Nk, α)] , (67)

where W−1 denotes the negative branch of the Lambert func-
tion [127], and its argument is given by

z(Nk, α)

≡ 1

4

√
e−2−

√
α

2

(√
α+2Nk

√
α−√

8+α
) (

4 + α − √
α
√

8 + α
)2

.

(68)

3.2 Cosmological perturbations

Using the potential (60) in the expression for the scalar power
spectrum (Eq. (30)), it leads to

PS = 1

12π2α3 γ 4 (1 − cos(y))5

(1 + cos(y))
, (69)

whereγ = �
f is a new dimensionless parameter. If we replace

Eqs. (61) and (62) into (32), we obtain the expression for the
spectral index

ns = 1 − 2α
(3 + 2 cos(y))

(1 − cos(y))2 . (70)

The tensor-to-scalar ratio as a function of the scalar field
is obtained after replacing (60) in Eq. (33)

r = 24α
(1 + cos(y))

(1 − cos(y))2 . (71)

After evaluating those observables at the Hubble radius
crossing with (67), we find

PS = 4

3πα3 γ 4 (1 + W−1 [z(Nk, α)])5

(−W−1 [z(Nk, α)])
, (72)

ns = 1 − α

2

(1 − 4W−1 [z(Nk, α)])

(1 + W−1 [z(Nk, α)])2 , (73)

r = 12 α
(−W−1 [z(Nk, α)])

(1 + W−1 [z(Nk, α)])2 . (74)

The predictions for Natural Inflation regarding the ns − r
plane may be generated plotting Eqs. (73) and (74) paramet-
rically, varying simultaneously the dimensionless parameter
α in a wide range and the number e-folds Nk within the
range Nk = 60 − 70. In Fig. 1, we have considered the
two-dimensional marginalized joint confidence contours for
(ns, r ) at the 68% (blue region) and 95% (light blue region)
C.L., from the latest PLANCK 2018 results.

The allowed values for α are found when a given curve,
for a fixed number of e-folds, enters (from above) and leaves
(from below) the 2σ region. One obtains that for Nk = 65,
the predictions of the model are within the 95% C.L. region
from PLANCK data, for α being in the range

3.93 × 10−2 � α � 7.02 × 10−2. (75)

In that case, the prediction for the tensor to scalar ratio is
the following

0.068 � r � 0.035. (76)

Accordingly, for Nk = 70, the predictions are within the
95% C.L. for the following range of α

3.25 × 10−2 � α � 7.85 × 10−2, (77)

while r is found to be in the range

0.069 � r � 0.023. (78)

Thus, combining the previous constraints on α with
Eq.(72) and the amplitude of the scalar spectrum PS �
2.2 × 10−9, we obtain the corresponding allowed ranges for
the dimensionless parameter γ

6.58 × 10−4 � γ � 6.99 × 10−4, (79)

6.11 × 10−4 � γ � 6.61 × 10−4, (80)

for Nk = 65 and Nk = 70, respectively. The allowed ranges
for α and γ are summarized in Table 1.

After replacing the relation between the 4-dimensional
and 5-dimensional Planck masses (Eq. (13)) into the def-
inition of α (Eq.(64)) and using the fact that � = γ f , the
following expressions for the mass scales f and � are derived

f =
(

3

16π2αγ 4

)1/6

M5, (81)

� = γ f = γ

(
3

16π2αγ 4

)1/6

M5. (82)

Evaluating those expressions at the several values for α

and γ (Table 1), we may obtain a value for the brane tension
λ as well as the allowed ranges for the mass scales f and
� for any given value of M5. If we consider the lower limit
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Fig. 1 We show the plot of the tensor-to-scalar ratio r versus the scalar spectral index ns for Natural inflation on the brane along with the two-
dimensional marginalized joint confidence contours for (ns , r ) at the 68% (blue region) and 95% (light blue region) C.L., from the latest PLANCK
2018 results

Table 1 Results for the constraints on the parameters α and γ for Natural inflation in the high-energy of Randall–Sundrum brane model, using the
last data of PLANCK

Nk Constraint on α Constraint on γ

65 0.0393 � α � 0.0702 6.58 × 10−4 � γ � 6.99 × 10−4

70 0.0325 � α � 0.0785 6.11 × 10−4 � γ � 6.61 × 10−4

for the five-dimensional Planck mass, M5 = 105 TeV [121],
it yields λ = 1.60 × 10−3 TeV4, while the corresponding
constraints on the mass scales (in units of TeV) are shown in
Table 2.

In order to obtain an upper bound for the 5-dimensional
Planck mass, we take into account that the inflationary
dynamics takes places in the high-energy regime, V � λ. In
doing so, we realize that during inflation V � �4, then if we
solve Eq. (13) for the brane tension λ, the condition for the
high-energy regime imposes the following constraint on the
amplitude of the potential

�4 � 3M6
5

4πM2
4

. (83)

Combining Eqs. (82) and (83), one finds the following
upper bound for the 5-dimensional Planck mass

M5 	
√

4π

3
γ 2

(
3

16π2αγ 4

)1/3

M2
4 . (84)

If we replace the allowed values for α and γ in the last
equation, we find that the 5-dimensional Planck mass is such
M5 	 1014 TeV. So, if we assume that the maximum allowed
value for M5 is two orders of magnitude less, i.e. M5 =
1012 TeV, the brane tension is computed to be λ = 1.60 ×
1039 TeV4, while the constraints on f and � are displayed
in Table 3.

From Tables 2 and 3, the mass scales f and � take sub-
Planckian values and there is a hierarchy between them con-
sistent with f � �, achieving an almost flat potential. More-
over, the constraints already found on α and Eqs. (65) and
(67) imply that during inflation the dynamics is such that
φ ∼ f , therefore Natural Inflation in the high-energy regime
of the RS-II brane-model takes place at sub-Planckian values
of the scalar field. It is worth mentioingn that our results for
the mass scales differ almost by one order or magnitude in
comparison to those already found in Ref. [128] when using
M5 = 105 TeV. In addition, our results with the upper limit

123



485 Page 10 of 29 Eur. Phys. J. C (2021) 81 :485

Table 2 Results for the constraints on the mass scales f and � for Natural inflation in the high-energy of Randall–Sundrum brane model
M5 = 105 TeV, using the last data of PLANCK

Nk Constraint on f (TeV) Constraint on � (TeV)

65 1.17 × 107 � f � 1.02 × 107 7.70 × 103 � � � 7.14 × 103

70 1.27 × 107 � f � 1.04 × 107 7.76 × 103 � � � 6.88 × 103

Table 3 Results for the constraints on the mass scales f and � for Natural inflation in the high-energy of Randall–Sundrum brane model
M5 = 1012 TeV, using the last data of PLANCK

Nk Constraint on f (TeV) Constraint on � (TeV)

65 1.17 × 1014 � f � 1.02 × 1014 7.70 × 1010 � � � 7.14 × 1010

70 1.27 × 1014 � f � 1.04 × 1014 7.76 × 1010 � � � 6.88 × 1010

M5 = 1012 TeV are similar to those found in Ref. [99] so far,
where the authors used M5 = 5 × 1012 TeV.

After obtaining the allowed parameter space where Nat-
ural Inflation in the high-energy limit of Randall–Sundrum
brane model is viable, we want to see if the Swampland Cri-
teria are met in this model. Fig. 2 shows the distance con-
jecture (9) and the de Sitter conjecture (10) of the Swamp-
land Criteria: the top and bottom panels shows the behaviour
of �φ/Mpl ≡ �φ and Mpl |V ′|/V ≡ �V , respectively,
against the number of e-folds Nk for some values of α and
the lower (left) and upper (right) limits of M5. We note that
for the distance conjecture �φ, it increases as both Nk and
the 5-dimensional Planck mass increase, but the curves are
always less than the unity since the scale mass f is always
sub-Planckian, so the distance conjecture is fulfilled. For the
de Sitter conjecture, we note that �V decreases with Nk , but
it increases as M5 increases. In this case, we must be careful
because �V is related to the slow-roll parameter εV in Gen-
eral Relativity, yielding values much larger than this conjec-
ture requires. Nevertheless, as we discussed in Sect. 2, slow-
roll inflation on the brane implies that ε 	 1 and |η| 	 1,
which can be achieved in the high-energy limit, i.e., V � λ

despite the fact that both εV and ηV are large. In this way,
the de Sitter conjecture and its refined version are avoiding.
Additionally, our results for the distance conjecture are sim-
ilar to those found in Ref. [99] while although our plots have
the same behavior for the de Sitter conjecture, the values
of �V differ by several order of magnitude when we use
M5 = 1012 TeV.

3.3 Reheating

We now investigate the predictions regarding the number of
e-folds as well as the temperature associated with the reheat-
ing epoch Nre and Tre, respectively. In doing so, we plot para-
metrically Eqs. (73), (57), and (59) with respect to the number
of e-folds Nk for several values of the effective equation-

of-state parameter wre over the range − 1
3 ≤ wre ≤ 1, as

well as α, which encodes the information about the mass
scales f and �, and the brane tension λ. In Fig. 3, we show
the plots for reheating when using the lower limit of the 5-
dimensional Planck mass, namely M5 = 105 TeV and two
allowed values of α at Nk = 65. On the other hand, in
Fig. 4 we use the upper limit on M5, M5 = 1012 TeV for
the same values of α. For the other values of α, the pre-
diction of reheating has the same behaviour, however we
will show the plots that fit better with current observational
data. Firstly, we must note that, for the two values of M5,
the point at which the curves converge (implying instanta-
neous reheating, i.e. Nre → 0) is gradually shifted to the left
when we increasing the dimensionless parameter α. Another
important finding is that the temperature at which all curves
intersect, i.e. the maximum reheating temperature, increases
as the 5-dimensional Planck mass M5 increases. In partic-
ular, for M5 = 105 TeV the maximum reheating tempera-
ture is about 107 GeV, while for M5 = 1012 TeV, it is about
1014 GeV. Then, a new phenomenology arises in comparison
to the former analysis within the standard scenario, in which
the maximum reheating temperature (if reheating is instan-
taneous) is Tre � 7 × 1015 GeV. This dependence reheat-
ing temperature on five-dimensional Planck mass has been
realised in Ref. [125] so far, where the authors reconstructed
the inflationary potential in the RS-II brane-world. Further-
more, our reheating temperature, which depends strongly on
the five-dimensional Planck mass, for M5 = 1012 TeV is at
least two orders of magnitude greater than those found in
[99] in which case the temperature is more sensitive to the
number of e-folds.

If we assume that during reheating, the universe is gov-
erned by an effective equation-of-state of the form P =
wreρ, where P and ρ denote the pressure and the energy den-
sity, respectively, of the fluid in which the inflaton decays.
Then, it becomes important to find what EoS parameter wre is
preferred by current observational bounds. For doing that, we
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Fig. 2 Plots of the Swampland criteria for M5 = 105 TeV (left) and
M5 = 1012 TeV (right) in terms of the number of e-folds for the different
values of α. Top panels show the behaviour of the distance conjecture

where �φ/Mpl ≡ �φ, while the bottom panels show the de Sitter
conjecture where Mpl |V ′|/V ≡ �V

analyze when each curve of the reheating temperature plots
against the scalar spectral index enters to the purple region (at
1σ of ns) and meets the point at which all curves converges.
Therefore, an allowed range for the scalar spectral index ns
as well as Nk is found when fixing α. For consistency, we
display the results for the plots of Fig. 4 in Table 4. It is worth
noting that these values for the duration of reheating differ
from those obtained in [99] which are found to be Nre ≈ 20
for wre = 1 and Nk = 65 when they use M5 = 5×1012 TeV.
On the other hand, it should be noted that for α = 0.0702 and
α = 0.0785 (plots not shown), none of the curves enter to
the purple region, while for α = 0.0393 and M5 = 105 TeV
only one curve, corresponding to wre = 1 is inside but for
M5 = 1012 TeV two curves (wre = 2/3 and wre = 1) are
inside. For α = 0.0325 (plots not shown) the same two curves
are inside.

Table 4 Summary of the allowed range for the number of e-folds for
each EoS parameter wre for M5 = 1012 TeV when the dimensionless
parameter α is fixed to be α = 0.0393

wre Nk

2/3 59–62

1 59–65

We also want to know what are the allowed values for
the tensor-to-scalar ratio in terms of the reheating temper-
ature for some values belonging the allowed range of the
5-dimensional Planck mass. In doing so, we plot paramet-
rically Eqs. (74) and (59) with respect to the number of e-
folds, which varies according to the available found so far
with M5 and α fixed (see Table 4). The values obtained for
r must be consistent with the upper limit by PLANCK 2018
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Fig. 3 Plots of Nre and Tre as functions of ns using the lower limit of
the five-dimensional Planck mass (M5 = 105 TeV) for Natural infla-
tion. The blue, pink, green and black curves corresponds to the following
values of the EoS parameter: wre = −1/3, 0, 2/3 and 1, respectively.
The purple region indicates the observational constraints on the spec-

tral index, ns = 0.965 ± 0.004. The gray region show temperatures
being below the electroweak scale, T < 102 GeV. Also, in order to be
consistent with BBN, it is required Tre � 10 MeV. The two plots on
the left and on the right correspond to α = 0.0393 and α = 0.0702,
respectively

data in combination with the BICEP2/Keck Array (BK14)
data. In this way we can discard those values of α, Tre and
wre for which r does not meet this bound. We emphasize
that this method must be consistent with the previous anal-
ysis. The only values of α and wre in consistency with the
former, correspond to α = 0.0393 and wre = 1, as it is
shown in Fig. 5. Firstly, we observe that the curves starts
at Tre ≈ 102 GeV which is consistent with the previous
plots of reheating. In principle, temperatures within the range
10 MeV � Tre � 102 GeV (gray region from Figs. 3 and 4
may not be discarded, but would be interesting for baryoge-
nesis [129]. Next, we note that the curve for the lower limit
of M5 is well outside the upper limit on r , so we can discard
it in principle. Consequently, it is found that for wre = 1, the

reheating temperature must be in the range of

102 GeV � Tre � 103 GeV, (85)

when M5 = 1012 TeV.

4 Hilltop Inflation on the brane

4.1 Dynamics of inflation

Quadratic Hilltop inflation is driven by the potential (4)

V (φ) = �4

[
1 −

(
φ

μ

)2
]

(86)
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Fig. 4 Same as Fig. 3 but for the upper limit of the five-dimensional Planck mass, M5 = 1012 TeV

In this case, the slow-roll parameters in the high-energy
limit are given by

ε = α x2

(1 − x2)3 , (87)

η = − α

2 (1 − x2)2 , (88)

where the dimensionless parameters are defined as follows

x ≡ φ

μ
, (89)

α ≡ M2
4 λ

π2 μ2 �4 . (90)

Unlike Natural Inflation, for our quadratic Hilltop poten-
tial, the scalar field at Hubble-radius crossing φk is found by
means numerically. In that case, we start with the definition

of the number of e-folds in terms of the Hubble rate

dN = Hdt. (91)

Then, using the slow-roll approximation 3H φ̇ + V ≈ 0
within the high-energy limit and the relation between x and
φ, we have a differential expression which gives us x(N )

dN � −4πμV 2

λM2
4V

′ dx . (92)

We obtain the numerical solution for xk by means intro-
ducing the initial condition x(N = 0) = xend , where
xend = φend/μ is obtained from the condition at the end
of inflation, i.e. ε(xend) = 1 from Eq. (87).

4.2 Cosmological perturbations

Replacing the potential (86) into Eq. (30) we found the fol-
lowing expression for the scalar power spectrum as a function
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Fig. 5 Plot of the tensor-to-scalar ratio r against the reheating temper-
ature for Natural inflation for wre = 1 and α = 0.0393 when using
M5 = 1012 TeV

of the scalar field

PS = 4 γ 4 (1 − x2)6

3 π2 α3 x2 , (93)

where γ = �
μ

is a dimensionless parameter. To obtain the
scalar spectral index and the tensor to scalar ratio, both eval-
uated at the Hubble-radius crossing, one first replaces the
solution for xk in ε and η and uses Eqs. (32) and (33). Next,
we plot parametrically ns and r , varying simultaneously α

in a wide range and Nk within the range Nk = 55 − 65.
Figure 6 shows the tensor-to-scalar ratio against the spec-
tral index plot using the two-dimensional marginalized joint
confidence contours for (ns, r ) at the 68% (blue region)
and 95% (light blue region) C.L., from the latest PLANCK
2018 results. Using the same method as in Natural infla-
tion to found the allowed values of α, one obtains that the
predictions of the model are within the 95% C.L. region
from PLANCK data if, for Nk = 55, α lies in the range
1.35×10−2 � α � 3.19×10−2, and the corresponding pre-
diction for the tensor-to-scalar ratio is 0.070 � r � 0.036.
Accordingly, for Nk = 60, the allowed range of the dimen-
sionless parameter α is 1.04 × 10−2 � α � 3.72 × 10−2,
while r is found to be in the range 0.069 � r � 0.024. In the
same fashion, for Nk = 65, α is found to be in range range
9.10 × 10−3 � α � 3.96 × 10−2, while the prediction for r
is 0.065 � r � 0.017.

By combining Eq. (93) with the constraints on α, and
the amplitude of the scalar spectrum PS � 2.2 × 10−9, the
allowed values for γ are found to be in the range

3.33 × 10−4 � γ � 4.00 × 10−4, (94)

2.98 × 10−4 � γ � 3.85 × 10−4, (95)

2.77 × 10−4 � γ � 3.65 × 10−4, (96)

for Nk = 55, Nk = 60 and Nk = 65, respectively. The
allowed ranges for α and γ are summarized in Table 5.

The expressions for the mass scales μ and � are obtained
after replacing Eq. (13) into the definition of α (Eq. (90)),
yielding

μ =
(

3

4π2αγ 4

)1/6

M5, (97)

� = γμ = γ

(
3

4π2αγ 4

)1/6

M5. (98)

After evaluating those expressions at the several values
for α and γ (Table 5) and considering the lower limit for
the five-dimensional Planck mass, M5 = 105 TeV, the brane
tension is found to be λ = 1.60×10−3 TeV4 while the corre-
sponding constraints on the mass scales (in units of TeV) are
shown in the top panel of Table 6. Using the same method to
found an upper limit of the five-dimensional Planck mass as
in Natural inflation, we obtain that M5 	 1014 TeV. Assum-
ing as maximum allowed value M5 = 1012 TeV, we obtain
λ = 1.60×1039 TeV4 and the corresponding values for mass
scales are shown in the bottom panel of Table 6.

For this model, the plots for the Swampland criteria,
which are not shown, but these present the same behavior
that those shown in Fig. 2. For the distance conjecture, �φ

increases with the number of e-folds but also increases as
the 5-dimensional Planck mass grows, so this conjecture is
fulfilled. On the other hand, for the de Sitter conjecture, �V
decreases with both the number of e-folds and M5 which,
having in mind the discussion in Sect. 3, it is avoided.

4.3 Reheating

In the same way as Natural inflation, we can give predic-
tions for reheating plotting parametrically Eqs. (57) and (59)
with respect to α and Nk over the range of the effective EoS
− 1

3 ≤ wre ≤ 1. In despite this type of potential is unbounded
from below, i.e. does not present a minimum around which
the inflaton oscillates and reheating is achieved, we may
assume that the details of reheating are encoded in the effec-
tive EoS parameter wre. Yet another possibility to achieve
reheating is by adding extra terms as those in Eq. (5) for
p = 2, which stabilizes the potential and prevent it becomes
negative. In Fig. 7, we show the plots for reheating using
M5 = 105 TeV (left panels) and M5 = 1012 TeV (right pan-
els) for α = 0.0135 that corresponds to the constraints at
Nk = 55. Even though it is not shown in the plots, the behav-
ior of the convergence point is the same as in Natural inflation,
i.e., the point at which the curves converges shifts to the left
when α increases. As it can be seen, the maximum temper-
ature of reheating also increases with the five-dimensional
Planck mass, giving Tre ≈ 107 GeV for M5 = 105 TeV and
Tre ≈ 1014 GeV for M5 = 1012 TeV.
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Fig. 6 Plot of the tensor-to-scalar ratio r versus the scalar spectral index ns for quadratic Hilltop inflation on the brane along with the two-
dimensional marginalized joint confidence contours for (ns , r ) at the 68% (blue region) and 95% (light blue region) C.L., from the latest PLANCK
2018 results

Table 5 Results of the constraints on the parameters α and γ for Hilltop inflation in the high-energy of Randall–Sundrum brane model, using the
last data of PLANCK

Nk Constraint on α Constraint on γ

55 0.0135 � α � 0.0319 3.33 × 10−4 � γ � 4.00 × 10−4

60 0.0104 � α � 0.0372 2.98 × 10−4 � γ � 3.85 × 10−4

65 0.0091 � α � 0.0396 2.77 × 10−4 � γ � 3.65 × 10−4

Table 6 Results for the constraints on the mass scales μ and � for
quadratic Hilltop inflation in the high-energy limit of Randall–Sundrum
brane model using the last data of PLANCK. The top table shows the

results using M5 = 105 TeV while the bottom table shows the results
using M5 = 1012 TeV

Nk Constraint on μ (TeV) Constraint on � (TeV)

55 2.78 × 107 � μ � 2.13 × 107 9.24 × 103 � � � 8.51 × 103

60 3.12 × 107 � μ � 2.13 × 107 9.30 × 103 � � � 8.19 × 103

65 3.35 × 107 � μ � 2.18 × 107 9.28 × 103 � � � 7.97 × 103

55 2.78 × 1014 � μ � 2.13 × 1014 9.24 × 1010 � � � 8.51 × 1010

60 3.12 × 1014 � μ � 2.13 × 1014 9.30 × 1010 � � � 8.19 × 1010

65 3.35 × 1014 � μ � 2.18 × 1014 9.28 × 1010 � � � 7.97 × 1010
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Fig. 7 Plots of Nre and Tre as functions of ns for Hilltop inflation. The left panels shows the plots for M5 = 105 TeV while the right panels shows
the plot for M5 = 1012 TeV. The curves and the shading regions are the same as Fig. 3 and all plots corresponds to α = 0.0135

Analyzing when each curve of the reheating temperature
plots enters to the purple region and meets the converge point
of instantaneous reheating, an allowed range for Nk is found
when fixing α. For consistency, we display the results for
the plots of Fig. 7 in Table 7. It should be noted that for
α = 0.0104 and α = 0.0091 (plots not shown), all of the
four curves enter to the purple region, while for α = 0.0319,
α = 0.0372 and α = 0.0396 (plots not shown), none of the
curves enter.

Plotting parametrically Eqs. (34) and (59), both evaluated
at the Hubble radius crossing, with respect to the number of
e-folds, it is possible to express the tensor-to-scalar ratio, r , in
terms of Tre. Then, one constrains simultaneously r and Tre
when α is fixed, and for certain values of the EoS parameter
and the 5-dimensional Planck mass. From Fig. 8, it is found
that for wre = −1/3 and wre = 0, the available values of Tre
are 106 GeV, 109 GeV, and 1014 GeV, when M5 is fixed to

Table 7 Summary of the allowed range for the number of e-folds for
each EoS parameter wre when the dimensionless parameter α is fixed
to α = 0.0135. The left and right tables corresponds to a 5-dimensional
Planck mass of M5 = 105 TeV and M5 = 1012 TeV respectively

wre Nk wre Nk

− 1/3 49–56 − 1/3 49–56

0 53–56 0 49–56

2/3 56–58 2/3 56–61

1 56–59 1 56–65

105 TeV, 108 TeV, and 1012 TeV, respectively. Consequently,
the allowed ranges for Tre when wre is set to 2/3 and 1, read

102 GeV � Tre � 106 GeV, (99)

102 GeV � Tre � 109 GeV, (100)
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Fig. 8 Plots for the tensor-to-scalar ratio against the reheating temperature for quadratic Hilltop inflation for wre = −1/3, 0, 2/3, 1 and α =
0.0135. The green, red and blue lines corresponds to a mass of M5 = 105 TeV, M5 = 108 TeV and M5 = 1012 TeV respectively

102 GeV � Tre � 1014 GeV, (101)

when M5 is set to 105 TeV, 108 TeV, and 1012 TeV, respec-
tively.

5 Higgs-like Inflation on the brane

5.1 Dynamics of inflation

The potential for Higgs-like inflation is given by Eq. (6)

V (φ) = �4

[
1 −

(
φ

μ

)2
]2

(102)

The slow-roll parameters in the high-energy limit are com-
puted to be

ε = 4 α x2

(1 − x2)4 , (103)

η = 2 α x2

(1 − x2)4 − α

(1 − x2)3 , (104)

where the dimensionless parameter are defined as

x ≡ φ

μ
, (105)

α ≡ M2
4 λ

πμ2�4 . (106)

Similarly to Hilltop inflation, we solve numerically the
expression for the scalar field at the Hubble-radius cross-
ing. Using the definition of the number of e-folds and the
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Fig. 9 Plot of the tensor-to-scalar ratio r versus the scalar spectral index ns for Higgs-like inflation on the brane along with the two-dimensional
marginalized joint confidence contours for (ns , r ) at the 68% (blue region) and 95% (light blue region) C.L., from the latest PLANCK 2018 results

KG equation in the slow-roll approximation, a first order dif-
ferential equation for xk = φ/ f is obtained. The former is
solved by using using as initial condition x(N = 0) = xend ,
where xend = φend/μ is obtained from the condition at the
end of inflation, i.e. ε(xend) = 1.

5.2 Cosmological perturbations

The scalar power spectrum is found replacing the potential
(102) into Eq. (30), which yields

PS = γ 4 (1 − x2)10

2 π2 α3 x2 , (107)

where γ = �
μ

. Evaluating the slow-roll parameters ε and
η at the solution for xk , and using Eqs. (32) and (33), we
may obtain both the scalar spectral index and the tensor-
to-scalar ratio, and generate the ns − r plane. Here, we vary
simultaneously the number e-folds Nk within the range Nk =
60 − 70, and α in a wide range. Figure 9 shows the tensor-
to-scalar ratio against the scalar spectral index plot using the
two-dimensional marginalized joint confidence contours for
(ns, r ) at the 68% (blue region) and 95% (light blue region)
C.L., from the latest PLANCK 2018 results.

Following the same procedure as before to find the allowed
values of α, one obtains the predictions of the model within
the 95% C.L. region from PLANCK data. For Nk = 60, α

must be within the range 1.15 × 10−2 � α � 1.55 × 10−2.

Consequently, the tensor-to-scalar ratio lies in the interval
0.061 � r � 0.044. For Nk = 65, the predictions are found
to be 8.00 × 10−3 � α � 1.88 × 10−2 and 0.070 � r �
0.027. Finally, for Nk = 70, α is found within the range
6.80 × 10−3 � α � 2.00 × 10−2, while the corresponding
values of the tensor-to-scalar ratio are given by 0.069 � r �
0.020.
Combining the constraints on α with Eq. (107) and the ampli-
tude of the scalar spectrum PS � 2.2 × 10−9 we obtain the
corresponding allowed ranges for γ

2.57 × 10−4 � γ � 2.67 × 10−4, (108)

2.30 × 10−4 � γ � 2.56 × 10−4, (109)

2.14 × 10−4 � γ � 2.42 × 10−4, (110)

for Nk = 60, Nk = 65 and Nk = 70, respectively. The
allowed ranges for α and γ are summarized in Table 8.

After replacing Eq. (13) into the definition ofα (Eq. (106)),
and using the fact that � = γ μ, the following expressions
for μ and � in terms of M5 are derived

μ =
(

3

4π2αγ 4

)1/6

M5, (111)

� = γμ = γ

(
3

4π2αγ 4

)1/6

M5. (112)

Evaluating those expressions at several values for α and
γ (Table 8) and considering the lower and upper limit for
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Table 8 Results of the constraints on the parameters α and γ for Higgs-like inflation in the high-energy limit of the Randall–Sundrum brane model,
using the last data of PLANCK

Nk Constraint on α Constraint on γ

60 0.0115 � α � 0.0155 2.57 × 10−4 � γ � 2.67 × 10−4

65 0.0080 � α � 0.0188 2.30 × 10−4 � γ � 2.56 × 10−4

70 0.0068 � α � 0.0200 2.14 × 10−4 � γ � 2.42 × 10−4

Table 9 Results for the constraints on the mass scales μ and � for
Higgs-like inflation in the high-energy limit of the Randall–Sundrum
brane model using the last data of PLANCK. The top table shows the

results using M5 = 105 TeV while the bottom table shows the results
using M5 = 1012 TeV

Nk Constraint on μ (TeV) Constraint on � (TeV)

60 3.39 × 107 � μ � 3.14 × 107 8.71 × 103 � � � 8.39 × 103

65 3.88 × 107 � μ � 3.13 × 107 8.92 × 103 � � � 8.01 × 103

70 4.18 × 107 � μ � 3.22 × 107 8.94 × 103 � � � 7.78 × 103

60 3.39 × 1014 � μ � 3.14 × 1014 8.71 × 1010 � � � 8.39 × 1010

65 3.88 × 1014 � μ � 3.13 × 1014 8.92 × 1010 � � � 8.01 × 1010

70 4.18 × 1014 � μ � 3.22 × 1014 8.94 × 1010 � � � 7.78 × 1010

the five-dimensional Planck mass, the brane tension is found
to be the same as in the previous models, i.e. λ = 1.60 ×
10−3 TeV4 for M5 = 105 TeV and λ = 1.60 × 1039 TeV4

for M5 = 1012 TeV. The top panels of Table 9 show the
corresponding values of the mass scales for the lower limit
of M5, while the bottom panels show the values of the mass
scales for the upper limit.

Following the analysis performed for Natural Inflation, it
can be shown that the plots for the two conjectures of the
Swampland Criteria, which are not shown, exhibit a similar
behavior with those shown in Fig. 2. For the distance con-
jecture, �φ increases with both the number of e-folds and
the 5-dimensional Planck mass, so this conjecture is fulfilled.
On the other hand, for the de Sitter conjecture, �V decreases
with the number of e-folds and M5. For the same arguments
given before, the de Sitter Swampland criteria and its refined
version are avoided.

5.3 Reheating

Following the same method as previous sections, we can give
predictions for reheating by means plotting parametrically
Eqs. (57) and (59) with respect to α and Nk over the range of
the effective EoS − 1

3 ≤ wre ≤ 1. In Fig. 10 we show the plots
for reheating using M5 = 105 TeV (left panels) and M5 =
1012 TeV (right panels) for α = 0.0115 (corresponding to
the constraints for Nk = 55). Our analysis indicates that the
behavior of the convergence point is the same as in Natural
inflation and quadratic Hilltop inflation. As we can see, for
M5 = 105 TeV the maximum reheating temperature is about

Tre ≈ 107 GeV and for M5 = 1012 TeV is about Tre ≈
1014 GeV.

Analyzing the curves for the reheating temperature, we
found an allowed range for Nk for each value of wre when α

is fixed. The corresponding intervals are shown in Table 10.
For consistency, we only display the results for the plots of
Fig. 10 for M5 = 1012 TeV because the allowed range of
Nk for the lower limit of M5 is too small. It should be noted
that for α = 0.0080 and α = 0.0068 (plots not shown), all
four curves enter to the purple region, while for α = 0.0155,
α = 0.0188 and α = 0.0200 (plots not shown), none of the
curves enter.

Evaluating Eqs. (34) and (59) at the Hubble radius cross-
ing, and plotting parametrically with respect to the number
of e-folds, we can find the allowed values for the tensor-to-
scalar ratio in terms of the reheating temperature. The only
values of α and wre consistent with the current bounds on
the tensor-to-scalar ratio, correspond to α = 0.0115 and
wre = 2/3, 1 for values of M5 greater than its lower limit,
as it is shown in Fig. 11. In this case, it is found that for
M5 = 1012 TeV and wre = 2/3 the reheating temperature
must be in the range of

102 GeV � Tre � 107 GeV, (113)

while for wre = 1, one finds that the allowed values for Tre
are found within the ranges

102 GeV � Tre � 105 GeV, (114)

102 GeV � Tre � 109 GeV, (115)

when M5 is fixed to 105 TeV and 1012 TeV, respectively.
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Fig. 10 Plots of Nre and Tre as functions of ns for Higgs-like inflation. The left panels shows the plots for M5 = 105 TeV while the right panels
shows the plots for M5 = 1012 TeV. The curves and the shading regions are the same as Fig. 3 and all plots corresponds to α = 0.0115

Table 10 Summary of the allowed range for the number of e-folds for
each EoS parameter wre when the dimensionless parameter α is fixed
to be α = 0.0115 and M5 = 1012 TeV

wre Nk

2/3 60–61

1 60–65

6 Exponential SUSY inflation on the brane

6.1 Dynamics of inflation

The last potential we study in the present work is a well moti-
vated one from SUGRA, namely Exponential SUSY infla-
tion, given by Eq. (7)

V (φ) = �4 (1 − eφ/ f ) (116)

Replacing this potential into Eqs. (23) and (24) we obtain
the set of slow-roll parameters in the high-energy regime as

ε = α e−2x

(1 − e−x )3 , (117)

η = − α e−x

(1 − e−x )2 , (118)

where the dimensionless parameter are defined by

x ≡ φ

f
, (119)

α ≡ M2
4 λ

4 π2 f 2 �4 . (120)

Similarly to the quadratic Hilltop and Higgs-like inflation
models, we solve the expression for xk(Nk) numerically, and
using as initial condition x(Nk = 0) = xend , where xend =
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Fig. 11 Plots for the tensor-to-scalar ratio against the reheating temperature for Higgs-like inflation for wre = 2/3, 1 and α = 0.0115. The red
line corresponds to a mass of M5 = 108 TeV and the blue line corresponds to a mass of M5 = 1012 TeV

φend/ f is obtained from the condition at the end of inflation,
i.e. εend = 1.

6.2 Cosmological perturbations

Replacing the potential (116) into Eq. (30), we obtain the
following expression for the scalar power spectrum

PS = γ 4 e2x (1 − e−x )6

12 π2 α3 , (121)

where γ = �
f . Evaluating ε and η at the solution for xk

and using Eqs. (32) and (33) to obtain ns and r , we plot
the predictions on the ns-r . In doing so, we vary simulta-
neously the dimensionless parameter α in a wide range and
the number e-folds Nk within the range Nk = 50 − 60.
Figure 12 shows the tensor-to-scalar ratio against the scalar
spectral index plot using the two-dimensional marginalized
joint confidence contours for (ns, r ) at the 68% (blue region)
and 95% (light blue region) C.L., from the latest PLANCK
2018 results.

As we have seen already, the allowed values for α are
found when a given curve, for a fixed Nk , enters and leaves
the 2σ region. We note that in this model, unlike previous
potentials already studied, the trajectories never leave the 2σ

region, achieving a very small tensor-to-scalar ratio, which is
well inside the (68% C.L.) contour for large values of α. The
latter implies that we only have a lower bound on α for each
value of Nk . So, following the same method as before, one
obtains that the predictions of the model are within the 95%
C.L. region from PLANCK data, for Nk = 50, ifα is such that
α � 1.85 × 10−2. Therefore, an upper bound for the scalar-
to-tensor ratio is achieved, yielding r � 0.070. For Nk = 55,
the lower bound on α is α � 1.29 × 10−2, while r is found

to be r � 0.069. Finally, for Nk = 60, the corresponding
constraint on α is found to be α � 1.14 × 10−2, while the
tensor-to-scalar ratio is such that r � 0.064. Taking the limit
α → ∞, one finds the asymptotic limit of the tensor-to-
scalar ratio, that yields r → 0, whereas the asymptotic limit
for the spectral index is found to be ns → 0.960 for Nk = 50,
ns → 0.964 for Nk = 55 and ns → 0.967 for Nk = 60.

Combining the previous constraints on α with Eq. (121)
and the amplitude of the scalar spectrum PS � 2.2 × 10−9,
we obtain the corresponding allowed ranges for the dimen-
sionless parameter γ

γ � 8.70 × 10−4, (122)

γ � 7.46 × 10−4, (123)

γ � 6.91 × 10−4, (124)

for Nk = 50, Nk = 55 and Nk = 60, respectively. The
allowed ranges for α and γ are summarized in Table 11.

Replacing Eq. (13) into the definition of α (Eq. (120)) and
using the fact that � = γ f , we found the expressions for
the mass scales f and � as

f =
(

3

16π2αγ 4

)1/6

M5 (125)

� = γ f = γ

(
3

16π2αγ 4

)1/6

M5 (126)

After evaluating these expressions at several values for
α and γ (Table 11), we found that λ = 1.60 × 10−3 TeV4

for M5 = 105 TeV and λ = 1.60 × 1039 TeV4 for M5 =
1012 TeV. The top panels of Table 12 show the corresponding
values of the mass scales for the lower limit of M5, while the
bottom panels shows the values of the mass scales for the
upper limit.
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Fig. 12 Plot of the tensor-to-scalar ratio r versus the scalar spectral index ns for Exponential SUSY inflation on the brane along with the two-
dimensional marginalized joint confidence contours for (ns , r ) at the 68% (blue region) and 95% (light blue region) C.L., from the latest PLANCK
2018 results

Table 11 Results of the constraints on the parameters α and γ for Expo-
nential SUSY inflation in the high-energy limit of Randall–Sundrum
brane model, using the last data of PLANCK

Nk Constraint on α Constraint on γ

50 α � 0.0185 γ � 8.70 × 10−4

55 α � 0.0129 γ � 7.46 × 10−4

60 α � 0.0114 γ � 6.91 × 10−4

Table 12 Results for the constraints on the mass scales f and �

for Exponential SUSY inflation in the high-energy limit of Randall–
Sundrum brane model using the last data of PLANCK. The top table
shows the results using M5 = 105 TeV while the bottom table shows
the results using M5 = 1012 TeV

Nk Constraint on f (TeV) Constraint on � (TeV)

50 f � 1.10 × 107 � � 9.59 × 103

55 f � 1.30 × 107 � � 9.67 × 103

60 f � 1.39 × 107 � � 9.63 × 103

50 f � 1.10 × 1014 � � 9.59 × 1010

55 f � 1.30 × 1014 � � 9.67 × 1010

60 f � 1.39 × 1014 � � 9.63 × 1010

Like previous models, we find numerically that the dis-
tance Swampland conjecture, �φ increases as both the num-
ber of e-folds and the 5-dimensional Planck mass increase,

so this conjecture is fulfilled, while for the de Sitter conjec-
ture, �V decreases as the number of e-folds increases, and
also as M5 grows.

6.3 Reheating

If one follows the same procedure as in the previous sections,
we can give predictions for reheating plotting parametrically
Eqs. (57) and (59) with respect to α and Nk over the range of
the effective EoS − 1

3 ≤ wre ≤ 1. Unlike previous models,
this kind of potential is derived from SUGRA, hence the
corresponding degrees of freedom of relativistic particles at
the end of reheating appearing in the expressions for Nre

and Tre are gre = O(200). In Fig. 13 we show the plots
of reheating using M5 = 105 TeV (left panels) and M5 =
1012 TeV (right panels) for α = 0.0185 that corresponds to
the constraints of Nk = 55. As we can see, the maximum
reheating temperature increases with the five-dimensional
Planck mass, giving Tre ≈ 107 GeV for M5 = 105 TeV and
Tre ≈ 1014 GeV for M5 = 1012 TeV.

Analyzing the curves of the plots for reheating, we found
the allowed values for number of e-folds Nk when fixing α

for a certain value of the EoS parameter wre. For consistency,
we display the results for the plots of Fig. 13 in Table 13. It
should be noted that for α = 0.0129 and α = 0.0114 (plots
not shown) all the four curves enter to the purple region.
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Fig. 13 Plots of Nre and Tre as functions of ns for Exponential SUSY inflation. The left panels shows the plot for M5 = 105 TeV while the right
panels shows the plot for M5 = 1012 TeV.The curves and the shading regions are the same as Fig. 3 and all plots corresponds to α = 0.0185

Table 13 Summary of the allowed range for the number of e-folds for
each EoS parameter wre when the dimensionless parameter α is fixed
to α = 0.0185. The left and right tables corresponds to a 5-dimensional
Planck mass of M5 = 105 TeV and M5 = 1012 TeV respectively

wre Nk wre Nk

− 1/3 46–56 − 1/3 44–56

0 53–56 0 47–56

Plotting parametrically Eqs. (34) and (59) with respect
to the number of e-folds, we express the allowed values for
the tensor-to-scalar ratio in terms of the reheating temper-
ature. The only values for α and wre in agreement with
current bounds on the tensor-to-scalar ratio, correspond to
α = 0.0185 and wre = −1/3, 0, as it is depicted in Fig. 14.
In particular, for wre = −1/3, the reheating temperature

must be in the ranges

104 GeV � Tre � 106 GeV, (127)

107 GeV � Tre � 1010 GeV, (128)

1011 GeV � Tre � 1014 GeV, (129)

when M5 takes the values 105 TeV, 108 TeV, and 1012 TeV,
respectively. On the other hand, for wre = 0, the allowed
ranges for Tre are found to be

102 GeV � Tre � 106 GeV, (130)

102 GeV � Tre � 1010 GeV, (131)

1011 GeV � Tre � 1014 GeV, (132)

when fixing M5 as 105 TeV, 108 TeV, and 1012 TeV, respec-
tively.

The production of massive relics, such as gravitinos, is
an important issue when discussing supersymmetric models,

123



485 Page 24 of 29 Eur. Phys. J. C (2021) 81 :485

Fig. 14 Plots for the tensor-to-scalar ratio against the reheating temperature for Exponential SUSY inflation for wre = −1/3, 0 and α = 0.0185.
The green, red and blue lines corresponds to a mass of M5 = 105 TeV, M5 = 108 TeV and M5 = 1012 TeV respectively

since their overproduction might spoil the success of BBN
[54–58]. In the context of brane-world cosmology, the grav-
itino problem is avoided provided that the transition temper-
ature, Tt , is bounded from above, Tt ≤ (106 − 107) GeV
[56]. The transition temperature is the temperature at which
the evolution of the Universe passes from the brane-world
cosmology into the standard one, and it is given by [130]

Tt = 1.6 × 107
(

100

gre

)1/4 (
M5

1011GeV

)3/2

(133)

Clearly, the upper bound on Tt implies an upper bound on
M5, and therefore in the case of exponential SUSY inflation
the five-dimensional Planck mass is finally forced to take
values in the range

105 TeV ≤ M5 ≤ 108 TeV. (134)

7 Baryogenesis via leptogenesis

Finally, let us comment on the generation of baryon asym-
metry in the Universe. Any viable and successful inflationary
model must be capable of generating the baryon asymmetry,
which comprises one of the biggest challenges in modern
theoretical cosmology. Primordial Big Bang Nucleosynthe-
sis [131] as well as data from CMB temperature anisotropies
[132–136] indicate that the baryon-to-photon ratio is a very
small but finite number, ηB = 6.19×10−10 [137]. This num-
ber must be calculable within the framework of the particle
physics we know. Although as of today several mechanisms
have been proposed and analysed, perhaps the most elegant
one is leptogenesis [59]. In this scenario a lepton asymmetry
arising from the out-of-equilibrium decays of heavy right-

handed neutrinos is generated first. Next, the lepton asym-
metry is partially converted into baryon asymmetry via non-
perturbative “sphaleron” effects [138].

Of particular interest is the non-thermal leptogenesis sce-
nario [62,63,137,139–146], since the lepton asymmetry is
computed to be proportional to the reheating temperature
after inflation. Therefore, within non-thermal leptogenesis
the baryon asymmetry and the reheating temperature, two key
parameters of the Big Bang cosmology, are linked together.
Furthermore, in supersymmetric models the gravitino prob-
lem [54,55] puts an upper bound on the reheating temper-
ature after inflation [147], and therefore thermal leptogene-
sis [148,149], which requires a high reheating temperature
[150], is much more difficult to be implemented. Moreover,
contrary to thermal leptogenesis where one has to solve the
complicated Boltzmann equations numerically, in the non-
thermal leptogenesis scenario one can work with analytic
expressions.

The initial lepton asymmetry, YL = nL/s, is converted
into baryon asymmetry YB = nB/s via sphaleron effects
[138]

YB = aYB−L (135)

or

YB = a

a − 1
YL ≡ C YL (136)

where n is the number density of leptons or baryons, s is
the entropy density of radiation, s = (2π2h∗T 3)/45, and the
conversion factor a is computed to be a = (24+4NH )/(66+
13NH ) [151], with NH being the number of Higgs doublets
in the model. In SM with only one Higgs doublet, NH = 1,
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a = 28/79 and C = −28/51, while in MSSM with two
Higgs doublets, NH = 2, a = 8/23 and C = −8/15.

In the scenario of non-thermal leptogenesis, the lepton
asymmetry is computed to be

YL = 3

2

Tre
MI

3∑
i

BR(φ → Ni Ni )εi (137)

where ε is the CP-violation asymmetry factor, and BR(φ →
Ni Ni ) is the branching ratio of the inflaton decay channel
into a pair of right-handed neutrinos φ → Ni Ni .

Moreover, lepton asymmetry is generated by the out-of-
equilibrium decays of the heavy right-handed neutrinos into
Higgs bosons and leptons

N → Hl, N → l̄ H† (138)

provided that Tre < M1. The CP-violation asymmetry factor
is defined by [152]

ε = � − �̄

� + �̄
(139)

where � = �(N → lH) and �̄ = �(N → l̄ H†), for
any of the three right-handed neutrinos, and it arises from
the interference of the one–loop diagrams with the tree level
coupling [152]. In concrete SUSY GUT models based on the
SO(10) group it typically takes values ε ∼ 10−5 [153,154].

Assuming the mass hierarchy M1 	 M2,3, the inflaton
is not sufficiently heavy to decay into N2, N3, and therefore
the channels φ → N2N2 and φ → N3N3 are kinemati-
cally closed. Thus, we obtain for baryon asymmetry the final
expression

YB = 3C

2

Tre
MI

ε1 (140)

It thus becomes clear that the three relevant mass scales,
namely Tre, MI , M1, must satisfy the following hierarchy

Tre < M1 < MI (141)

and therefore within non-thermal leptogenesis the inflaton
mass must be always larger than the reheating temperature.

In the models discussed here the inflaton mass is given in
terms of the two mass scales, μ,�, as follows

MI ∼ �2

μ
(142)

while for any given value of M5 the allowed range for
μ,�, Tre is known, according to the analysis presented in
the previous sections. Given the numerical results already
presented, it is easy to verify that for a given M5, the inflaton
mass is always lower than Tre. Hence, we conclude that in
single-field inflationary models with a canonical scalar field
in the RS-II brane model non-thermal leptogenesis cannot
work, at least for the concrete inflationary potentials consid-
ered here.

Fig. 15 CP-violation asymmetry factor, ε, as a function of the reheat-
ing temperature after inflation, Tre , for the Higgs-like inflationary poten-
tial and M5 = 105 TeV. The solid curve corresponds to the SM, while
the dashed curve to the MSSM

Fig. 16 Same as previous figure, but for M5 = 1012 TeV

There is another way to see that non-thermal leptogenesis
cannot work here. Let us ignore for a moment the fact that the
mass scales violate the required hierarchy mentioned before,
and let us show graphically how the CP-violation asymme-
try factor depends on the reheating temperature after infla-
tion. This is shown in the Figs. 15 and 16 for M5 = 105

TeV and M5 = 1012 TeV, respectively. Clearly, it turns
out that for the reheating temperature obtained before, the
CP-violation asymmetry factor is many orders of magnitude
lower than what typically concrete particle physics models
predict, 10−5, as already mentioned before.

Therefore, for those two independent reasons we conclude
that non-thermal leptogenesis cannot work within the frame-
work of RS-II brane cosmology, at least for the inflationary
potentials considered here. Consequently, one must rely on
the mechanism of thermal leptogenesis, which in the frame-
work of RS brane cosmology has been analysed in [130,155],
and it requires a sufficiently high M5. In particular, in the
high-energy regime of brane cosmology, it is found that M5

must take values in the range 1012 GeV < M5 < 1016 GeV
[155].
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As a final remark, we point out that the predicted values
for the tensor-to-scalar ratio for each inflationary model stud-
ied in the present work are in conflict with the TCC, and they
remain problematic with those found in [109] and [98], since
according to our analysis a sufficiently high M5, and conse-
quently high values of Tre are required for achieving thermal
leptogenesis within the framework of RS brane cosmology.
It should be stressed, however, that the status of the Swamp-
land Criteria and TCC is quite open, and that testing models
against them does not offer any deep insight into the existence
of a swampland in Superstring Theory compactifications; it
just tests the validity of the proposed relations.
Note added As our work was coming to its end, another
work similar to ours appeared [99]. There, too, the authors
have studied different types of inflationary potentials in the
framework of five-dimensional RS brane model, and they
could determine models that satisfy both data and swampland
criteria at the same time. We find the following differences
compared to our analysis: (i) the allowed range for the free
parameters of each model is not determined, (ii) nothing is
mentioned about baryon asymmetry, and (iii) the tensor-to-
scalar ratio has been overlooked.

8 Conclusions

We have studied the dynamics of four concrete small-field
inflationary models based on a single, canonical scalar field
in the framework of the high-energy regime of the Randall–
Sundrum II brane model. In particular, we have considered
(i) an axion-like potential for the inflaton (Natural Inflation),
(ii) Hilltop potential with a quadratic term (quadratic Hilltop
inflation), (iii) a potential arising in the context of dynam-
ical symmetry breaking (Higgs-like inflation), and (iv) a
SUGRA-motivated potential (Exponential SUSY inflation).
Adopting the Randall–Sundrum fine-tuning, all the models
are characterized by 3 free parameters in total, namely the 5-
dimensional Planck mass, M5, and the two mass scales of the
inflaton potential. We have shown in the ns −r plane the the-
oretical predictions of the models together with the allowed
contour plots from the PLANCK Collaboration, and we have
determined the allowed range of the parameters for which
a viable inflationary Universe emerges. The mass scales of
the inflaton potential have been expressed in terms of the
five-dimensional Planck mass, which remains unconstrained
using the PLANCK results only. However, on the one hand
current tests for deviation from Newton’s gravitational law
at millimeter scales, and on the other hand the assumption
that inflation takes place in the high-energy limit of the RS-
II brane model force the five-dimensional Planck mass to
lie in the range 105 TeV � M5 � 1012 TeV, and therefore
all parameters are finally known. After that, we have shown
that for those types of potentials the inflation incursion is

sub-Planckian, then the distance Swampland conjecture is
satisfied. Nevertheless, the de Sitter Swampland Criteria and
its refined version may be evaded for these potentials in the
high-energy regime of the RS-II brane model instead. Finally,
we have computed the reheating temperature Tre as well
as the duration of reheating, Nre, versus the scalar spectral
index ns assuming four different values of the EoS parame-
ter wre = −1/3, 0, 2/3, 1 of the fluid into which the infla-
ton decays. Our results show that the reheating temperature
depends on the five-dimensional Planck mass, and particu-
larly that the maximum reheating temperature increases with
M5. Then, by applying the constraint on M5 already found,
an allowed range for the reheating temperature as well as for
the tensor-to-scalar ratio could be obtained for each model.
Furthermore, we have shown that non-thermal leptogenesis
cannot work within the framework of RS-II brane cosmology,
at least for the inflationary potentials considered here. Conse-
quently, one must rely on the mechanism of thermal leptoge-
nesis, which in the high-energy regime of the RS brane cos-
mology requires a sufficiently high five-dimensional Planck
mass, M5 > 1012 GeV. The predicted values for the tensor-
to-scalar ratio for each inflationary model studied in the
present work are in conflict with the TCC, and they remain
problematic with those found in [109] and [98], since accord-
ing to our analysis a sufficiently high M5, and consequently
high values of Tre are required for achieving thermal lepto-
genesis within the framework of RS brane cosmology.
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