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Abstract The large N limit of SU(N )gauge theories is well
understood in perturbation theory. Also non-perturbative lat-
tice studies have yielded important positive evidence that
’t Hooft’s predictions are valid. We go far beyond the sta-
tistical and systematic precision of previous studies by mak-
ing use of the Yang–Mills gradient flow and detailed Monte
Carlo simulations of SU(N ) pure gauge theories in 4 dimen-
sions. With results for N = 3, 4, 5, 6, 8 we study the limit
and the approach to it. We pay particular attention to observ-
ables which test the expected factorization in the large N
limit. The investigations are carried out both in the con-
tinuum limit and at finite lattice spacing. Large N scaling
is verified non-perturbatively and with high precision; in
particular, factorization is confirmed. For quantities which
only probe distances below the typical confinement length
scale, the coefficients of the 1/N expansion are of O(1), but
we found that large (smoothed) Wilson loops have rather
large O(1/N 2) corrections. The exact size of such correc-
tions does, of course, also depend on what is kept fixed when
the limit is taken.

1 Introduction

An interesting approach to study quantum chromodynamics
(QCD) is to consider the order of the gauge group N as a free
parameter. As shown by ’t Hooft [1], by taking the large N
limit of the perturbative weak coupling expansion, the theory
simplifies in many ways, and in fact one can treat theories at
finite N as corrections in the “small” parameter 1/N . More-
over, the large N expansion predicts that quark loop effects
are suppressed by a power of 1/N , so that the weak coupling
expansion of large N QCD is dominated by planar diagrams
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with purely gluonic internal loops. All of these rather remark-
able properties of large N QCD, make it an interesting theory
to study not only from the theoretical perspective, but also
from a practical point of view, as results for real world QCD
could be obtained by considering corrections to the N = ∞
theory which are parametrized by powers of 1/N .

Although this 1/N scaling is obtained perturbatively, lat-
tice computations provide evidence that it also holds at the
non-perturbative level, both in D = 4 space-time dimen-
sions [2–9] and in D = 3 [9–14]. The evidence is usually
based on complicated observables, where typically one needs
to project onto ground states by large Euclidean times. It is
then difficult to obtain high precision at various N in order
to verify ’t Hooft scaling with good confidence. Let us stress
the fact that the validity of the 1/N scaling, beyond the weak
coupling expansion, is not a trivial statement. Hence, it is
desirable to test it by means of lattice simulations and with
statistically and systematically very precise observables.

Perturbatively, if one carries on with the ’t Hooft 1/N
topological expansion, another simplification arises, which
has to do with the property of factorization

〈O1O2〉 = 〈O1〉 〈O2〉 + O(1/N 2), (1.1)

where the Oi are local gauge invariant or Wilson loop oper-
ators, and the leading correction scales as 1/N 2 in the pure
gauge theory, which we focus on for the rest of this work.
Eq. (1.1) has several consequences, as it tells us that in the
large N limit, the dominant part of a correlator is the discon-
nected one. In particular, when O1 = O2, this means that
fluctuations are suppressed; and as discussed in Ref. [15],
this fact can be put in analogy with the classical limit of a
quantum theory, where 1/N plays the role of h̄. Related to
this is also the concept of the “master field”, i.e., the idea
that the path integral is dominated by a single gauge con-
figuration (or rather a gauge orbit) [16,17]. Although these
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ideas triggered hope to find the solution of large N QCD,
such an analytical solution is still lacking today. The situa-
tion in the Yang–Mills theories is similar in this respect to
two-dimensional SU(N )×SU(N ) spin models [18], while
for O(N ) models and CP(N ) models the large N limit is
solvable and one can therefore really carry out the expansion
[19–21].

One more aspect where Eq. (1.1) plays a crucial role has
to do with the idea of volume independence, which starting
from the work of the authors in Ref. [22], has been used in
the lattice formulation to study the large N limit of the Yang–
Mills theory by performing simulations in small spacetime
volumes [23,24], and even in single site lattices, provided a
clever choice of boundary conditions [25–27] is made.

The above indicates that factorization is not only relevant
in the theoretical context, but also on the practical level, as
it is a requirement for the single site lattice simulations to
be valid. To be more precise, the equivalence is expected
to hold between the single site and the infinite volume the-
ory in the N → ∞ limit. The equivalence is argued for on
the basis of the Makeenko–Migdal loop equations [28] on
the lattice. As originally shown in Ref. [22], the loop equa-
tions in both theories are equivalent, provided that the prod-
uct of the expectation value of the Wilson loops factorize as
stated in Eq. (1.1). Let us mention that shortly after volume
reduction was put forward, it was clear the situation is more
complicated, and phase transitions spoil the reduction in its
simplest form [23–25,29–31]. Workarounds this issue have
been presented in the literature [23,25–27] and show that
either full or partial volume reduction are a possible way to
make simulations of SU(N ) Yang–Mills theory at large N
more accessible, as there is a significant compensation of the
extra cost for increasing N by the much smaller number of
lattice sites.

Additionally, we would like to point out that important
physics is contained in the corrections to factorization. The
most obvious one is that glueball masses are obtained from
the connected correlation functions of Wilson loops.

The previous discussion motivates the search for a non-
perturbative proof, beyond the realm of weak coupling pertur-
bation theory. Several authors have investigated factorization
beyond perturbation theory [32–35]; and as mentioned ear-
lier, lattice simulations also suggest this result to be valid. In
particular, the results presented in Ref. [5], Sect. 6, provide
strong evidence for factorization. Here we go beyond this.
We consider several high precision normalized observables
by using the gradient flow to study the large N scaling, and
address the important issue of the size of the correction to
N = ∞ in a non-perturbative lattice computation.

This paper is organized as follows, in Sect. 2 we present the
observables that are used both to check the large N scaling, as
well as factorization. In Sect. 3 we discuss different ways of
defining the large N limit and in particular the two choices

we made for our investigation. In Sect. 4 we describe the
ensembles and lattice parameters used for the simulations
and in Sect. 5 we present our results, both at finite lattice
spacing, and in the continuum limit. We finish with a short
summary of the results.

2 Observables

The basic observables we consider are the Yang–Mills action
density E(t) at positive flow time [36] (defined below) and
rectangular Wilson loop operators

WC = 1

N
tr P

{
exp

(∮
C
Aμ(x) dxμ

)}
, (2.1)

where C is a closed rectangular path in space-time, and P
denotes the path ordering operator. The normalization factor
1/N is included in the definition of WC in order to have a
finite large N limit – already at tree-level. Wilson loops have
singularities which have to be removed before the continuum
limit can be taken. In particular, for our square Wilson loops,
one must remove not just the “perimeter” divergences but
also “corner” divergences [37–39]. One way to proceed is to
consider Creutz ratios [40], which however, for loops of large
size in lattice units, suffer from small signal to noise ratios.
As this would compromise our desire for a precision test, we
work instead with smooth Wilson loops. The smoothing is
provided by the Yang–Mills gradient flow [41,42]. It evolves
the gauge fields Aμ(x) according to the flow equation

∂t Bμ(t, x) = DνGνμ(t, x) , Bμ(0, x) = Aμ(x)

Gμν(t, x) = ∂μBν(t, x) − ∂νBμ(t, x) − [
Bμ(t, x), Bν(t, x)

]
,

(2.2)

where the dimension two parameter t is known as the flow
time. The loops at positive flow time are then simply

WC (t) = 1

N
tr P

{
exp

(∮
C
Bμ(t, x) dxμ

)}
. (2.3)

Choosing 8t to be of a typical QCD size, say of the order
of the inverse string tension, they benefit from small sta-
tistical errors even for large loops [43]. In particular, their
variance remains finite in the continuum limit. That property
is a particular manifestation of the most important feature of
observables which are built from the smoothed gauge fields
Bμ(t, x): they are renormalized operators at positive flow
time t [36,44]. In other words, there is no renormalization
scheme or scale dependence beyond t and the continuum
limit is unambiguous and well defined. Even the action den-
sity

E(x) = −1

2
tr

{
Gμν(x)Gμν(x)

}
, (2.4)

is finite. It will be one of our observables.
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2.1 The gradient flow coupling at large N

The gradient flow can also be used to define a renormalized
coupling [42]. Using the perturbative expansion of the Yang–
Mills energy density at positive flow time 〈E(t)〉, one has that

λ̄GF(μ) = 128π2

3

(
N

N 2 − 1

)
t2 〈E(t)〉

∣∣∣
μ=1/

√
8t

= λ̄MS(μ)
[
1 + c1λ̄MS(μ) + · · · ] , (2.5)

where λ̄MS(μ) = N ḡ2
MS

(μ) is the ’t Hooft coupling at the

scale μ = 1/
√

8t and c1 = 1
16π2

(
11
3 γE + 52

9 − 3 ln 3
)

is

N independent. With this definition, we can then define a
scale by setting the renormalized coupling λ̄GF to a given
value. A convenient choice for SU(3) is the reference scale
t0 [42], which corresponds to a value of the coupling such
that t2 〈E(t)〉 |t=t0 = 0.3. This particular choice can be gen-
eralized to SU(N ) if the right hand side is modified so that
it has the correct scaling with N . Clearly, we also want the
definition to remain what it is for N = 3. Thus, Eq. (2.5),
suggests to define t0 implicitly by the equation [2]

t2 〈E(t)〉|t=t0 = 0.1125
N 2 − 1

N
, (2.6)

for all N .

2.2 Smooth Wilson loops

The favourable properties of smooth Wilson loops have
already been exploited in the literature, as for example to esti-
mate the string tension at small values of t in Refs. [6,44], or
to study the large N phase transition in the eigenvalue spec-
trum of the Wilson loop matrices [45]. For our purpose, the
limit of small t is not required, as the smooth loops are used
to test factorization and the large N limit for well defined
renormalized observables, regardless of their relation to the
operators at t = 0.

In the end, we study the large N limit of square Wilson
loops, i.e. for loops where the path C in Eq. (2.1) is given by
a square of size R × R. In order to take the large N limit,
the loops are matched at different N relating their size to the
scale t0 introduced in the previous section. More precisely,
the large N and continuum limits are taken for loops of size
Rc = √

8ct0 (see Fig. 1), where the smoothing parameter
t = ct0, and c is a constant parameter.

To be more precise, let us denote a square loop with one
of its corners at the spacetime point (x0, �x) and extending
only in space as W (t, x0, �x, R). Its expectation value

W (c) = 〈W (t, x0, �x, Rc)〉 with t = ct0, Rc = √
8ct0,

(2.7)

is independent of the position �x due to translation invariance
and only depends on the parameter c. In our notation we

Fig. 1 Schematic representation of a smooth Wilson loop operator.
The size of the loop is chosen such that it has the same length as the
smoothing radius, i.e. R = √

8t

separate time and space-coordinates, as we will later use lat-
tices with different boundary conditions in time (open b.c.)
and space (periodic b.c.). While the independence on �x is
exact, x0 has to be sufficiently far away from the boundary
for Eq. (2.7) to hold.

Similarly, we define

W sq(c)=
〈
W 2(t, x0, �x, Rc)

〉
with t = ct0, Rc=√

8ct0,

(2.8)

which corresponds to the expectation value of the product of
a Wilson loop with itself.

2.3 Observables to test factorization

In order to investigate the property of factorization from
Eq. (1.1), we define several observables based on the Yang–
Mills action density and the smooth Wilson loops at posi-
tive flow time. They are constructed such that factorization
implies that they vanish as N → ∞. First we consider the
simplest case of the observable GW defined in terms of the
smooth Wilson loops as

GW (c) = W sq(c) − W 2(c)

W 2(c)
. (2.9)

Then, we consider observables built from the space inte-
gral of the smooth Wilson loops and the Yang–Mills action
density. We define1

HO(c) =
(

1

t3/2
0

)
×∫

d3 �x
[〈
O(ct0, x0, �x)O(ct0, x0, �0)

〉
− 〈O(ct0, x0, �x)〉2

]

〈O(ct0, x0, �x)〉2 ,

(2.10)

1 In the lattice discretisation, one just needs to replace
∫

d3x → a3 ∑
�x .

123



35 Page 4 of 14 Eur. Phys. J. C (2019) 79 :35

Table 1 Parameters of the
simulations. For each of the
gauge groups SU(N ) we give
the inverse lattice coupling
β = 2N 2/λ0, the dimensions of
the lattice, the approximate
lattice spacing using√
t0 = 0.166 fm followed by the

number NW
meas of measurements

used for the computation of the
smooth Wilson loops, and NE

meas
for the action density, Eq. (2.4).
In the second to last column we
present the values of t0/a2: ∗
taken from Ref. [53] and ∗∗
taken from Ref. [2]

#run N β T/a L/a a[fm] NW
meas NE

meas t0/a2 L/
√

8t0

A(3)2 3 6.11 80 20 0.078 320 6720 4.5776(15)∗ 3.3050(5)

A(3)3 3 6.24 96 24 0.064 280 280 6.783(23) 3.258(6)

A(3)4 3 6.42 96 32 0.050 252 252 11.19(4) 3.382(6)

A(4)1 4 10.92 64 16 0.096 248 17,341 2.9900(7)∗∗ 3.2714(4)

A(4)2 4 11.14 80 20 0.078 300 35,960 4.5207(8)∗∗ 3.3257(3)

A(4)3 4 11.35 96 24 0.065 312 15,460 6.4849(16)∗∗ 3.3321(4)

A(4)4 4 11.65 96 32 0.049 320 640 11.55(3) 3.329(4)

A(5)1 5 17.32 64 16 0.095 320 9871 3.0636(7)∗∗ 3.2319(4)

A(5)2 5 17.67 80 20 0.077 240 21,680 4.6751(8)∗∗ 3.2703(3)

A(5)3 5 18.01 96 24 0.064 248 8007 6.8151(18)∗∗ 3.2504(4)

A(5)4 5 18.21 96 32 0.049 328 328 11.51(3) 3.334(4)

A(6)1 6 25.15 64 16 0.095 320 19,360 3.0824(4)∗∗ 3.2220(2)

A(6)2 6 25.68 80 20 0.076 264 11,392 4.8239(9)∗∗ 3.2195(3)

A(6)3 6 26.15 96 24 0.063 288 6704 6.9463(13)∗∗ 3.2195(3)

A(8)2 8 32.54 20 80 0.076 320 320 4.782(5) 3.2336(17)

with the factor 1/t3/2
0 rendering HO(c) dimensionless, and

where O is either a smooth Wilson loop, or the Yang–Mills
action density. Notice that H is a type of susceptibility, as
we are integrating over the contributions from the correlation
function of O at different distances. The integration does
not extend over x0 due to our choice of boundary condi-
tions and x0 is again supposed to be far away from the time-
boundaries. In comparison to the simple observable GW , this
probes longer distances, but introduces also more noise and
affects the statistical errors in the measurements. Nonethe-
less, as will be shown in Sect. 5, the statistical precision that
can be achieved for HO remains good. In particular, we will
consider HE (c), defined by inserting

O(t, x0, �x) = E(t, x0, �x), (2.11)

into Eq. (2.10) and HW by

O(t, x0, �x) = W (t, x0, �x, Rc). (2.12)

We remind the reader of our choice Rc = √
8ct0.

Equation (1.1) means

HE
N→∞∼ 1/N 2, GW

N→∞∼ 1/N 2, HW
N→∞∼ 1/N 2.

(2.13)

2.4 Finite volume

For a numerical test, we need to choose a finite volume. We
chose our parameters such that L/

√
8t0 ≈ 3.3. Table 1 shows

the actual values used in our simulations. Since L is thus
approximately constant, it is omitted as an argument of the
observables. We note that the large N limit and factorization
can be tested in infinite or in finite volume. To be on the safe

side, we chose the latter, even though we are not far from the
infinite volume limit for most observables.

3 Defining the approach to the large N limit

The complete definition of a quantum field theory involves a
regularization (here Wilson’s lattice theory) as well as a non-
trivial renormalisation before the regulator can be removed.
Although this is usually not discussed, quantitative state-
ments about the approach to the large N limit, such as the
ones we are seeking here, do depend on the renormalisation
scheme if the renormalisation scheme defines which quantity
is held fixed as we take N → ∞.

While the O(1/N 2) corrections depend on these details,
the true limit is expected to be unique in the following sense. It
is independent of the scheme, as long as the ’t Hooft coupling
λ̄s(μ) = N ḡ2

s (μ) in any scheme is kept fixed as one takes
the limit. This statement becomes most transparent when we
replace couplings by the associated �-parameters,

�s = lim
μ→∞ μ

(
48π2

11λs(μ)

)51/121

exp

(
− 1

b0λs(μ)

)
,

b0 = 11

24π2 . (3.1)

Now any renormalization group invariant quantityO of mass
dimension n, has a large N limit

lim
N→∞

O
�n

s
= lim

N→∞ rn(N )
O
�n

s′
= rn∞ lim

N→∞
O
�n

s′
, (3.2)

where

r(N ) = exp(css′(N )/b0), (3.3)
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λs′ = λs + css′(N )λ2
s + O(λ3

s ). (3.4)

and

r∞ = exp

(
lim

N→∞ css′(N )/b0

)
. (3.5)

Examples for n = 1 are glueball masses and t0 defined
above is a RGI scale with n = −2. When the observable O
depends on external momenta or coordinates, they have to
be fixed in units of � in a specified scheme, e.g. �MS, when
taking N → ∞.

Due to the existence of the limit Eq. (3.2), we may also
scale distances with respect to any one particular reference
scale (choice of O). In our numerical work we have chosen
t0, Eq. (2.6), because of its high precision.

The preceding discussion is about the continuum theory. It
thus saliently assumes that first we take the continuum limit
at finite N and then we perform N → ∞. However, we may
also proceed in the opposite order: first take the large N limit
at fixed lattice spacing and then send the lattice spacing to
zero.2 Let us briefly discuss that this order of limits is indeed
the same as above; the limits are interchangeable.

3.1 Large N limit at fixed lattice spacing

The existence of the large N limit at fixed finite lattice spacing
is expected due to the following consideration. We start from
the Lambda-parameter,�lat in the lattice minimal subtraction
scheme, which satisfies Eq. (3.1) withμ = 1/a andλlat(μ) =
λ0 in terms of the lattice spacing, a, and the bare coupling,
λ0 = Ng2

0. In fact, having a specific scheme, the lat-scheme,
we can give the more detailed formula,

a�lat =
(

48π2

11λ0

)51/121

exp

(
−24π2

11λ0

)

×
(

1 + c1(N )λ0 + O(λ2
0)

)
, (3.6)

where c1 = 0.1048 + O(1/N 2) [46]. Equation (3.6) shows
that the large N limit can be taken at fixed bare coupling
which is equivalent to fixed lattice spacing a. Apart from
O(1/N 2) terms in c1 and higher order terms, fixed lattice
spacing is the same as fixed �lat and therefore also fixed �s

in other schemes. See also an early discussion of �MS/�lat

including its N dependence [47].
In general, taking the large N limit at fixed lattice spacing

has to be followed by the a → 0 limit at N = ∞. How-
ever, when we investigate factorization, the second step is

2 Numerically this is of interest because at not-so-small lattice spacing
the first step can easily be investigated with a larger range in N . Even
more, as shown in the next section, the results at finite lattice spacing can
be obtained with higher precision as only an interpolation to a common
lattice spacing for all N is needed, and thus the statistical and systematic
errors are greatly reduced when compared to the results of a continuum
limit extrapolation.

not expected to be necessary. This is because the perturba-
tive proof of factorization holds in the lattice regularization
[48] at finite a. If factorization holds non-perturbatively we
thus also expect Eq. (2.13) at any fixed a. In any case, veri-
fying Eq. (2.13) at arbitrary finite lattice spacing implies that
it holds in the continuum limit.

Note also that even the large N limit of divergent quan-
tities, such as Wilson loops at t = 0, is expected to exist.
A high precision numerical test has recently been performed
[8].

4 Lattice details

In this section we give the details of our lattice simulations.
We simulate the pure gauge theory with N = 3, 4, 5, 6, 8
at several lattice spacings. The lattice action is the Wilson
gauge action and we use open boundary conditions in the time
direction [49]. The simulations are performed using a combi-
nation of heatbath and overrelaxation local updates using the
Cabibbo–Marinari strategy [50] to refresh the SU(N ) matri-
ces. The ratio of overrelaxation to heatbath updates is fixed
to L/(2a).

For convenience, we present the values of the lattice spac-
ing, as well as lattice sizes in physical units by assigning a
value to t0 such that

√
t0 = 0.166 fm. This choice is moti-

vated by the result in SU(3) for
√

8t0/r0 = 0.941(7) [51] and
the value of the reference scale r0 ≈ 0.5 fm [52]. Notice that
this choice is somewhat arbitrary, as apart from the miss-
ing quark loops, for N �= 3 the theory cannot be directly
identified with Nature.

The parameters of the simulations are displayed in Table 1.
The configurations used for the measurements are a sub-
set of those reported in Ref. [2] for all ensembles except
for those at N = 3, 8, and for the finest lattice spacings in
the case of N = 4, 5. As announced above, all the lattices
considered in Table 1 are of approximately the same spatial
size L ≈ 1.55 fm. In addition, we have used two additional
ensembles with L ≈ 2.35 fm at the coarsest lattice spacing
(a ≈ 0.1 fm) for N = 4, 5 in order to check for effects due to
small variations in the volume. Notice that for the ensembles
which have been reported in Ref. [2], we have a very large
number of measurements for the Yang–Mills action density.

The flow equations are integrated using a third order
Runge–Kutta integrator [42] and the observables are mea-
sured at intervals 	t of t of 	t/a2 ≈ 2 − 3 × 10−2. After-
wards, they are interpolated using a second order polynomial
in order to obtain their values at arbitrary t . The action density
is defined exactly as in [42], using the clover discretization
and it is measured from t = 0 up to t ≈ 1.2 t0. The loops,
W (c), are measured only in the vicinity of t = ct0, with
c = 1/2, 1, 9/4, and then interpolated to the exact value of t .
For the loops, one has to do an additional interpolation to Rc,
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and since their statistical precision is very high, one has to be
careful with small potential systematic effects. The details of
this interpolation were already presented in Ref. [54].

We end this section with the precise definition of the
observables introduced in Eqs. (2.7)–(2.10) on the lattice.
First, for the Wilson loops we use translation invariance in
the form

W (c) = a4

(T − 2d) L3

T−d−a∑
x0=d

∑
�x

〈W (ct0, x0, �x, Rc)〉 ,

W sq(c) = a4

(T − 2d) L3

T−d−a∑
x0=d

∑
�x

〈
W (ct0, x0, �x, Rc)

2
〉
,

(4.1)

where 〈·〉 corresponds to the estimator of the true expectation
value computed on the lattice.

In order to compute HW , we define

W sq
int(c) = a

(T − 2d)

T−d−a∑
x0=d

〈(
a3

L3

∑
�x

W (ct0, x0, �x, Rc)

)2〉
,

(4.2)

so that

HW (c) =
(

L3

t3/2
0

)
W sq

int(c) − W 2(c)

W 2(c)
, (4.3)

and we proceed in a similar way to define HE after replacing
W (ct0, x0, �x, Rc) by t2E(ct0, x0, �x)|t=ct0 . The parameter d
is introduced to deal with the systematic effects from the
open boundary conditions. It is chosen in a similar way as
described in Ref. [55], so that the effects coming from the
boundaries are negligible with respect to the statistical error
in the bulk.

5 Results

5.1 Large N scaling

In order to test and provide a precise verification of 1/N 2

scaling, we analyse our results for W (c) and for the gradient
flow coupling λ̄GF. Let us first discuss our results for the
latter.

5.1.1 The gradient flow coupling

In Fig. 2 we plot λ̄GF as a function of t for several gauge
groups and different lattice spacings. Within the scale of the
plot, the results are hard to distinguish for all gauge groups,
which already shows the small size of the N dependent cor-
rections. While at t = t0 independence of N is enforced by

0

12

24

36

48
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A(6)1
A(4)1
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A(4)3

λ̄
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F A(6)1

A(4)1
A(6)3
A(4)3

Fig. 2 λ̄GF as a function of t for several values of N and a (see Table 1).
In the lower plot, we present a closer look at the small t region

Eq. 2.5 or equivalently

λ̄GF

(
1/

√
8t0

)
= 0.3 × 16π2, (5.1)

the different N curves remain remarkably close when t is a
factor of 5 away from t0. At a closer look, corrections to N =
∞ are present and the data agrees very well with a polynomial
in 1/N 2 as expected. We verified this by interpolating the data
to several values of t in a regular interval from t = 0.1 t0 to
t = 1.1 t0, and then taking the large N limit once at a fixed
lattice spacing and once in the continuum.

As can be observed in Fig. 2, cut-off effects are large at
small t . At t = 0.1 t0 the relative difference between the
results at the finest lattice spacing (a ≈ 0.05 fm) and at the
coarsest (a ≈ 0.1 fm) one, is around 20%; while the errors
in the measurements themselves is at the per-mill level. The
situation is better at larger values of t , so let us first focus on
values of t/t0 ≥ 0.3, where the relative size of cut-off effects
is reduced tenfold, when compared to the case at t/t0 = 0.1.
In Fig. 3 we show a plot of the continuum extrapolation of
λ̄GF at t/t0 = 0.8 and the large N extrapolation both at finite
lattice spacing and in the continuum. In order to be able to
use the dataset at N = 8, in addition to the continuum limit
extrapolations, we consider a2/t0 = 0.2091, the value on
ensemble A(8)2. We then interpolated the results for all the
other gauge groups to that lattice resolution.

On the left panel of Fig. 3 we show the continuum limit
extrapolations. The strategy chosen for the extrapolation is
the following: all continuum extrapolations are performed by
linear fits in a2/t0 to those data which satisfy a2/t0 ≤ 1/4
(default fit). Such a restriction has been well motivated in
Ref. [56] for N = 3 and we find smaller discretization effects
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for larger N . As an estimate of the systematic uncertainty
associated with this choice, we perform a second fit linear in
a2 with a data point at larger a2; if the latter fit does not have
a good χ2 we add an a4/t2 term to the fit-function (control
fit). If necessary, the error of the default fit is enlarged until it
covers the full 1−σ band of the control fit. The uncertainties
of the continuum limit points are usually dominated by the
systematics which arises from different fits and which is not
necessarily independent for different N .

All values ofχ2/dof are excellent except for SU(4), where
we obtain a value of 2.2 and 2.7 for the linear and quadratic
fits respectively. After performing the fits in a2/t0, on the
right panel of Fig. 3 we plot the large N extrapolations both
in the continuum and at finite lattice spacing. As discussed,
N = 8 is available only at finite lattice spacing, where in
addition, errors are much smaller due to the fact that we
performed an interpolation instead of the continuum limit
extrapolation. The large N extrapolation uses the form

Y (1/N 2) = a0

(
1 + a1

N 2 + a2

N 4

)
. (5.2)

As seen in Fig. 3, the fit to the function Y is excellent, with
a χ2/dof = 1.02 at finite lattice spacing; for the continuum
points we do not consider χ2 since the errors are strongly
correlated due to the dominating systematic uncertainty of the
continuum extrapolations. Notice also that the results suggest
that cut-off effects decrease with increasing N .

As an example of results at smaller t , we show our analysis
at t/t0 = 0.4 in Fig. 4. In this case, the magnitude of the cut-
off effects is larger, but the same analysis as before can be
carried out.

As mentioned earlier, dealing with λ̄GF at values of t/t0 ≤
0.3 presents a bigger challenge, so one cannot reach the same
level of accuracy as the results presented in this section. How-
ever, we have proceeded to do a similar analysis for such
small values of t , including corrections of higher order in
a2/t0. Details are found in Appendix B.

From the above analysis, we find that the large N depen-
dence of λ̄GF is in excellent agreement with the 1/N 2 scaling
predicted by the ’t Hooft perturbative expansion. Moreover,
defining
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Table 2 Parameters of the large
N extrapolations, eq. (5.2), of
λ̄GF(1/

√
8ct0) and W (c) at

finite lattice spacing (L) and in
the continuum (C)

Obs. c Fit a0 a1 a2 χ2/dof η(1/9) δ(1/9)

λ̄GF 0.2 L 15.916(6) − 0.472(15) − 0.05(12) 0.79 0.05 0.03

λ̄GF 0.4 L 23.410(6) − 0.3567(90) − 0.043(70) 1.07 0.04 0.04

λ̄GF 0.8 L 39.011(3) − 0.1233(30) − 0.011(25) 1.02 0.014 0.06

λ̄GF 0.2 C 16.2(5) − 0.08(96) − 1.9(65) 0.44 0.03 0.02

λ̄GF 0.4 C 23.6(2) − 0.15(26) − 1.0(18) 0.01 0.03 0.03

λ̄GF 0.8 C 39.05(6) − 0.045(45) − 0.50(32) 0.02 0.011 0.05

W 1/2 L 0.7760(7) 0.355(33) − 0.09(24) 0.49 0.04 –

W 1 L 0.6575(3) 0.449(22) 0.66(22) 0.49 0.06 –

W 9/4 L 0.4228(7) 0.626(85) 2.67(82) 0.51 0.10 –

W 1/2 C 0.792(4) 0.17(19) 0.8(13) 0.11 0.03 –

W 1 C 0.666(3) 0.54(14) − 0.5(10) 0.01 0.05 –

W 9/4 C 0.426(9) 1.27(69) − 3.4(46) 0.24 0.10 –
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Fig. 5 Left: Continuum extrapolation of W (1) for all gauge groups.
Right: Large N extrapolations of W (1) in the continuum (solid line)
and at finite lattice spacing (dotted line). There is an excellent agree-

ment between the data and the expected scaling in powers of 1/N 2.
The points at finite lattice spacing have been slightly shifted for better
legibility

η(1/N 2) =
∣∣∣Y (0) − Y (1/N 2)

Y (0)

∣∣∣, (5.3)

we can determine the “distance” between SU(3) and SU(∞).
In the continuum, at t/t0 = 0.8 and t/t0 = 0.4 we find
η(1/9) = 1.1% and 2.8% respectively. Note also that the
large N limit is taken at fixed t0 and therefore η ≡ 0 at
t = t0 by definition. To account for this effect, we also fit
Y to λ̄GF(1/

√
8t) − λ̄GF(1/

√
8t0) instead of λ̄GF(1/

√
8t),

and define δ in a similar way to η. The results, together with
those obtained for η are displayed in Table 2. Let us remark
that the individual errors in our measurements are below the
per-mill level, so we can confidently quantify these percent
level deviations between SU(3) and SU(∞).

The magnitude of the 1/N 2 corrections can be read off
from the coefficients a1 and a2 collected in Table 2, together
with those of the smooth Wilson loops which we discuss
next.

5.1.2 Smooth Wilson loops

We have determined the smooth Wilson loops at three differ-
ent values of c, i.e. c = 1/2, 1, 9/4. As in the case of λ̄GF, we
are interested in the large N scaling at finite lattice spacing
and in the continuum. The strategy for the continuum limit
fits is the same as for λ̄GF. The fits for the loops at different
c are qualitatively similar, so in Fig. 5 we show the results at
c = 1 only.

Once again, to quantify the magnitude of the finite N cor-
rections, we collect in Table 2 the values of a1 and a2 from the
fit to Y . We observe that the relative magnitude of them grow
at larger values of c (or t equivalently). Similarly, the devia-
tion between SU(3) and SU(∞) also grows up to a value of
η(1/9) = 0.1 when c = 9/4. In all cases we find an excellent
fit to Y (the values of χ2/dof are reported in Table 2).
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Fig. 6 Left: Continuum extrapolation of HE (1) for all gauge groups. Right: Large N extrapolations of HE (1) in the continuum (solid line) and
at finite lattice spacing (dotted line). The points at finite lattice spacing have been slightly shifted for better legibility

5.2 Factorization

In order to verify the property of factorization from Eq. (1.1),
we take the large N limit of the observables defined in Sect.
2.3. The large N limits are taken in a similar way as described
earlier, but we modify the parametrization of the large N
fitting function for convenience, so that

Y (1/N 2) = b0 + b1

N 2 + b2

N 4 . (5.4)

For the continuum limit extrapolations we use the same
strategy as for W and for λ̄GF, and in all cases, the data can be
fitted very well with a linear or quadratic polynomial ina2/t0.
We also check for effects caused by variations of L/

√
8t in

all observables. As discussed in Appendix A, we find that
HW at c = 1/2 and c = 1, are potentially affected by large
effects. We tried to include them as a systematic error on the
measurements, but this yields errors which are too large to be
of interest as a test of factorization. Hence, we present only
results for HW at c = 9/4 .

Let us first discuss our results for HE (1). On the right
panel of Fig. 6 we show the large N fits both in the continuum
and at a finite lattice spacing. The fits are excellent, which
provides yet again confirmation of the scaling in powers of
1/N 2. It is worth mentioning that at finite lattice spacing,
where results are very precise, we find that a quadratic fit
in 1/N 2, excluding the SU(3) point, extrapolates to SU(3)

within one standard deviation. In this sense, SU(3) can be
used as validation of our fitting strategy. The values of the
parameters of the fitting function Y are displayed in Table 3.
At finite lattice spacing we include also the parameters from
the fit excluding SU(3).

Concerning the N → ∞ limit itself, the extrapolated
value is within two standard deviations from zero in the worst
case. Notice that at finite lattice spacing, the errors in the
extrapolation are two orders of magnitude smaller than the
value of HE (1) at N = 3. To further validate factorization,

an additional fit is performed for which b0 = 0 is fixed,
and only b1 and b2 are fitted to the data. This enforces fac-
torization, so the value of χ2/dof from the fit can be used
to asses the validity of the assumption (L∗,C∗ in Table 3).
To summarize, for HE (1) we find excellent agreement with
factorization in the continuum, and a deviation compatible
with two standard deviations in the worst case at finite lattice
spacing, still statistically consistent with factorization.

We now turn to the smooth Wilson loops. In Fig. 7 we dis-
play the results of the continuum and large N fits for GW (1).
The parameters of the extrapolations at the three values of
c are displayed in Table 3. Also in this case, we find that
SU(3) can be used as a validation point, and if it is excluded
from the fit, it agrees with the extrapolating function within
two standard deviations at c = 1, and within one standard
deviation at the remaining values of c.

For the fits with factorization enforced by fixing b0 =
0, the values of χ2/dof are also excellent. These values,
together with those of b0 reported in Table 3, give us confi-
dence on the validity of factorization. Notice that the errors
at large N are at least one order of magnitude smaller than
the value at SU(3) itself. Concerning the finite N corrections,
comparing the loops at different values of c, we observe that
those at large c are characterized by large coefficients in front
of the 1/N 2 and 1/N 4 correction terms.

Yet another interesting question is whether loops at fixed t
but different R have different finite N corrections. We explore
this issue at the end of the section. Let us first look at HW in
Fig. 8. The N → ∞ limits are less than two standard devi-
ations away from zero. Inspecting the continuum limit fits,
we observe that had we taken the three-point extrapolation
for N = 6 as our central result, the central value would have
been close to the upper end of the error bar in Fig. 8 and
the 1/N 2 extrapolation in full agreement with factorization.
In other words, one should not look too much at the central
value but at the full range of the error, as always.
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Table 3 Parameters of the large
N extrapolations of HE , GW
and HW . We present the results
for three different cases, L: at
finite lattice spacing, L4: at
finite lattice spacing excluding
SU(3), and C: in the continuum.
Additionally, we fit the data to a
function with b0 = 0, so that
factorization is imposed at finite
lattice spacing L* and in the
continuum C*. In this case, the
value of χ2/dof validates this
hypothesis

Obs. Fit b0 b1 b2 χ2/dof

HE (1) L 0.078(44) 66.3(19) 319(19) 0.30

HE (1) L4 0.069(75) 66.8(35) 314(43) 0.59

HE (1) C 0.04(84) 67(39) 293(373) 0.34

HE (1) L* 0.0 70.22(60) 276(12) 0.71

HE (1) C* 0.0 70.3(98) 237(200) 0.27

GW (1) L − 0.00029(34) 0.548(13) − 0.69(12) 0.02

GW (1) L4 − 0.00017(69) 0.540(44) − 0.59(54) < 0.01

GW (1) C − 0.00003(36) 0.49(13) − 0.48(86) < 0.01

GW (1) L* 0.0 0.5376(58) − 0.619(76) 0.25

GW (1) C* 0.0 0.485(28) − 0.48(27) < 0.01

GW (1/2) L 0.000045(373) 0.167(17) − 0.17(15) < 0.01

GW (1/2) L4 − 0.000008(646) 0.170(42) − 0.23(55) < 0.01

GW (1/2) C − 0.00049(247) 0.168(82) − 0.32(56) < 0.01

GW (1/2) L* 0.0 0.1686(70) − 0.188(90) < 0.01

GW (1/2) C* 0.0 0.152(19) − 0.22(18) 0.02

GW (9/4) L − 0.00124(63) 2.781(38) − 3.95(43) 0.13

GW (9/4) L4 − 0.0010(10) 2.760(74) − 3.6(10) 0.15

GW (9/4) C 0.0014(99) 2.43(40) − 1.8(29) 0.13

GW (9/4) L* 0.0 2.711(14) − 3.23(24) 1.39

GW (9/4) C* 0.0 2.485(73) − 2.22(81) 0.07

HW (9/4) L − 0.24(14) 120(9) − 129(84) 0.39

HW (9/4) C − 3.3(25) 226(88) − 1063(618) 0.26

HW (9/4) L* 0.0 106(3) − 7(40) 1.17

HW (9/4) C* 0.0 112(17) − 290(186) 0.99
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Fig. 7 Left: Continuum extrapolation of GW (1) for all gauge groups. Right: Large N extrapolations of GW (1) in the continuum (solid line) and
at finite lattice spacing (dotted line). The points at finite lattice spacing have been slightly shifted for better legibility

5.2.1 Loop size dependence

Finally, let us explore how the finite N corrections to fac-
torization change when the size of the loop is increased at a
fixed value of the smoothing parameter t . For a given value
of t , we consider square loops of size R(ξ) = ξ

√
8t . Given

the finite size of the lattices, we use the loops measured at
c = 1/2 (t = t0/2), so that we can consider larger values of

ξ . Thus, at a fixed value of t = t0/2, we define Ŵ and ĜW in
a similar way as W and GW , but in this case, as a function of
ξ instead of c. In addition to the already presented results at
ξ = 1, we also measured Ŵ and ĜW at ξ = 1.25, 1.5, 1.75
and 2. The coefficients obtained for the large N fits at finite
lattice spacing are displayed in Table 4 as a function of ξ .

We observe that in the case of the loops themselves, the
coefficients of the 1/N 2 expansion do not change signifi-
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and at finite lattice spacing (dotted line). The points at finite lattice spacing have been slightly shifted for better legibility

Table 4 Parameters of the large
N extrapolation of Ŵ and ĜW
as a function of ξ

ξ a0 a1 a2 b0 b1 b2

1.00 0.7760(7) 0.36(3) −0.09(24) 0.00005(37) 0.167(17) −0.17(15)

1.25 0.5956(7) 0.68(4) 0.40(34) 0.0003(13) 0.752(55) −1.13(44)

1.50 0.4087(5) 1.16(5) 1.34(48) 0.0005(31) 2.62(12) −5.05(92)

1.75 0.2512(4) 1.78(7) 3.16(71) 0.0053(65) 8.06(22) −18.7(17)

2.00 0.1390(3) 2.48(13) 6.7(12) 0.030(13) 26.12(50) −81.0(45)
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Fig. 9 Plot of the parameters a1 and log(b1) as a function of ξ . The interpolating function is a quadratic function in ξ in both cases

cantly with ξ , while those of ĜW grow rapidly for larger
loops. In fact, they grow exponentially fast as shown in Fig. 9.
At finite N , larger loops are much further away from N → ∞
than smaller loops.

6 Conclusions

We have taken the large N limit of a few observable of SU(N )

pure gauge theories numerically defining all dimensionfull
quantities in units of t0. This means that we held t0, or equiv-
alently the coupling λ̄GF, Eq. (2.5), at a low energy fixed in
defining the approach to the limit. As explained in Sect. 3,

the precise magnitude of 1/N 2 corrections do depend on
this choice. For each quantity, the continuum limit was taken
before the large N limit, but we have also investigated large N
scaling at finite lattice spacing, defined by a2/t0 = constant.

In both cases we find that finite N observables are very
well and very precisely described by a leading order term
and corrections ∼ 1/N 2 and ∼ 1/N 4. We recall for example
Fig. 4 where the excellent precision, in particular at finite a,
is visible. In the same way, factorization has been confirmed
very precisely. Of course, a numerical computation cannot
substitute a mathematical proof, but our results make it very
implausible that anything goes wrong with the large N limit
in general, or factorization in particular.
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However, themagnitude of corrections to the large N limit
is more complex. We found a strong dependence on the physi-
cal size of the observables. For example, we considered R×R
Wilson loops smoothed with a smoothing radius of size again√

8t = R. Table 2 shows the deviation, η, of SU(3) from
SU(∞) of these smooth loops to increase from 3% at a loop-
size of R = 0.2 fm to 10% at R = 1 fm.

When we increase the loop size R at fixed smoothing
radius

√
8t = 0.23 fm from R = 0.23 fm to R = 0.5 fm, the

corrections η(1/9) ≈ a1/9 (with a1 from Table 4 or Fig. 9)
grow from 4% to more than 30%. The growth with R of the
finite N corrections to factorization is even more dramatic as
seen on the right panel in Fig. 9. These large corrections may
also contribute to the fact that one has to go to very large N
to approach the large N limit in the 1-point model [8,57]. Of
course, the dominating effect is expected to be that the color
degrees of freedom provide the effective size of the system
in that model.

One may also speculate that the growth of factorization
violations with the loop size parameter ξ is so strong that
it spoils the large N limit all together. We do not think that
this is the case, but that indeed, it is important to take the
limits in the right order: take the N → ∞ limit first and
then the limit of large loop size. In order to investigate this
issue further, one should probably first understand the large
ξ limit at fixed N , maybe just N = 3. Here the relation to the
effective string theory of Yang–Mills is likely to play a role
[58–61]. In a second step, one may then consider N large.
Such a demanding programme is beyond the scope of our
present work.

In summary, for the quantities studied explicitly, large N
scaling is confirmed with high precision, but corrections to
large distance observables can be substantial. One thus has to
be careful when deriving quantitative information from large
N considerations in gauge theories.
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Appendix A: Volume dependence

In order to understand whether L is kept sufficiently close
to a fixed value, we have performed two additional simula-
tions at the coarsest lattice spacing for SU(4) and SU(5). The
parameters for these simulations are the same as for A(4)1

and A(5)1 respectively, with the difference that the lattice
sizes have been increased to 243 × 96. In physical units this
corresponds to L ≈ 2.4 fm. Although all the ensembles in
Table 1 have approximately the same lattice size, we find
that in the case of HW (c), at c = 1/2 and c = 1, the small
variations in the volume induces an uncertainty which may
be relevant. For the rest of observables, volume effects are
within the statistical uncertainty. To showcase this, in Fig.
10 we display a plot of HW (c) for c = 1/2 and c = 9/4.
Clearly, at the smaller c, volume effects are much larger.
Both at c = 1/2 and c = 1 we find that including the volume
effects as a systematic correction is difficult with just two
points in L . Attempting it in a conservative manner produces
errors which are too large to check for the large N scaling at a
similar precision as for the rest of observables, so we include
only HW (9/4) in the analysis. We note that we do not have
an explanation why small c appears to be more difficult than
a large one.

Appendix B: λ̄GF at small t

As stressed in Sect. 5.1.1, the continuum extrapolations
become more difficult at smaller values of t . Due to the large
cut-off effects, we find that a linear extrapolation in a2/t0
does not parametrize the data adequately, even using only
the finest lattice points. For that reason, we include in the fits
the O(a4/t2

0 ) and the O(a6/t3
0 ) corrections. The fit strategy

is similar to the one used for the rest observables, except that
higher degree polynomials are used. Briefly, the central point
is obtained by performing a quadratic fit in a2/t0 using those
data for which a2/t0 ≤ 1/4. Then, a second fit is performed,
either using a quadratic function, or a cubic one if the value
of χ2/dof of the first one is too large. Finally, the error is
chosen so that it covers the full 1 − σ band of both fits. We
show our results at t/t0 = 0.2 in Fig. 11. As expected, the
errors in our continuum extrapolations are larger than those
obtained at larger values of t , but within the errors, the large
N extrapolation is perfectly consistent with a polynomial in
1/N 2. At finite lattice spacing, the large N extrapolation is
cleaner, and once again it shows and excellent agreement
with the ’t Hooft expansion.
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Fig. 10 Finite volume checks for HW . On the left at c = 1/2, and on the right at c = 9/4. Notice that at the smaller c the finite volume corrections
are very significant
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