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We perform a numerical study of higher order saturation corrections to the dilute-dense approximation 
for multi-particle production in high-energy hadronic collisions in the framework of the Color Glass 
Condensate. We compare semi-analytical results obtained by performing a leading order expansion in 
the dilute field of the projectile with numerical simulations of the full Classical Yang-Mills dynamics for 
a number of phenomenologically relevant observables. By varying the saturation momentum of the target 
and the projectile, we establish the regime of validity of the dilute-dense approximation and assess the 
magnitude and basic features of higher order saturation corrections. In particular, we find that dilute-
dense approximation faithfully reproduces dense-dense results if restricted to the range of its validity.
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1. Introduction

Describing multiple production of semi-hard particles in high-
energy hadronic collisions is a challenging task, which in general is 
not well understood theoretically. At asymptotically high energies, 
the Color Glass Condensate effective theory (see e.g. [1]) provides 
a viable approach to describe multi-particle production, including 
correlations between the produced particles. In its simplest form 
the colliding hadrons are approximated by two sheets of Classical 
Yang-Mills field A ∼ O(g−1) with quantum corrections suppressed 
by extra powers of strong coupling constant g . Particle production 
can be described by the classical gluon fields after the collision in 
the forward light cone. Within this framework, an analytical ap-
proach is possible when one of the objects can be considered as 
“dilute” A ∼ O(g0). This allows one to perform the expansion in 
the measure of the diluteness, usually quantified by the projectile 
saturation momentum Q (P )

s . Conversely, if both colliding objects 
are “dense” A ∼ O(g−1), a full set of classical Yang-Mills equa-
tions has to be solved. The authors are not aware if even a distant 
possibility of having an analytical result exists in this case (see 
however, Refs. [2,3], where starting from a reasonable ansaetz, an 
expression for the gluon spectrum in dense-dense collisions was 
put forward).

* Corresponding author.
E-mail address: vskokov@ncsu.edu (V. Skokov).
https://doi.org/10.1016/j.physletb.2020.135511
0370-2693/© 2020 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
1.1. Particle production in classical approximation

In order to review the current theoretical status of particle pro-
duction in the saturation/CGC formalism, let us first consider sin-
gle inclusive particle production. Schematically, the single inclusive 
particle gluon spectrum can be expressed as (see Ref. [4] for more 
details):

dN

d2kdy
= 1

αs
f

⎛
⎝ Q (P )

s
2

k2
,

Q (A)
s

2

k2

⎞
⎠ , (1)

where Q (P )
s and Q (A)

s are the saturation momenta for the pro-
jectile and target and αs is the strong coupling constant. In the 
pioneering works of [5–8], the function f was studied numerically 
by solving Classical Yang-Mills (CYM) equations and projecting the 
classical field onto transversely polarized gluon states (see e.g. 
Ref. [9]); we will perform similar calculations in this work. So far 
the only known situation which is analytically tractable, is an ex-

pansion of f in either one of its arguments Q (P )
s

2

k2 and/or Q (A)
s

2

k2 . In 
the dilute-dense approximation designed for asymmetric collision 
systems (e.g. p-A), one assumes that for a given transverse mo-

mentum k of interest the projectile is a dilute object, Q (P )
s

2
/k2 � 1. 

This allows for a systematic expansion of the production cross sec-
tion in this parameter
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Specifically, the function f1 is known analytically for about two 
decades (see Refs. [10–12]); at this (leading) order the number of 
produced gluons for given projectile and target configurations is 
given by

dN

d2kdy

∣∣∣∣
ρp,ρt

= 2g2

(2π)3

∫
d2q

(2π)2

d2q′

(2π)2
�(�k⊥, �q⊥, �q′⊥)ρa

p(−�q′⊥)

×
[

U †(�k⊥ − �q′⊥)U (�k⊥ − �q⊥)
]

ab
ρb

p(�q⊥), (3)

for a fixed configuration of color charges ρp, ρt in the dilute pro-
jectile (p) and dense target (t). Here �(�k⊥, �q⊥, �q′⊥) is the square of 
Lipatov vertex, see Ref. [13] or the main body of the paper for de-
tails. Although, equation (3) is only quadratic in ρp, it contains all 
orders of ρt, which are re-summed in the adjoint Wilson line U , 
representing the eikonal scattering matrix for scattering of a single 
gluon on the target.

While Eq. (3) provides the leading order in the dilute-dense 
expansion of Eq. (2), the function f2, is also termed as the first sat-
uration correction in the projectile, since it comes along with two 
powers of Q (P )

s
2
/k2⊥ , corresponding to interactions with two va-

lence sources in the projectile. Efforts to calculate f2 analytically 
are detailed in Ref. [14] and more recently in Ref. [15]. However, 
at present, f2 is known only partially.

In summary, higher order corrections, functions f i for i ≥ 2, to 
the strict dilute-dense approximation, f1, are presently not known 
analytically. Even if analytical forms of f i were known, they may 
still involve rather complicated momentum integrals of Wilson 
lines of the target field, see e.g. Eq. (3). Hence, it is practically 
inevitable to use numerical methods (typically involving lattice dis-
cretization) and we will therefore refer to this as a semi-analytical 
approach.

Nevertheless, in contrast to CYM simulations, semi-analytical 
calculations based on f i neither require a numerical solution of 
the gauge field evolution in the forward light-cone nor a numerical 
implementation of LSZ reduction. Besides, one additional advan-
tage of this semi-analytic dilute-dense approach is that it facilitates 
the inclusion of small-x evolution, running coupling corrections, as 
well as higher order αs corrections, in contrast to fully numerical 
CYM simulations. It is also superior in terms of simulation time 
and thus allows for an easier access to the continuum limit. How-
ever, the obvious drawback of this approach is that it may miss a 
potentially large contribution from the higher order expansion co-
efficients. Hence, the goal of this paper is to perform a systematic 
numerical study of the saturation corrections and to compare them 
with leading order dilute-dense approximation.

So far we have focused on single inclusive particle production; 
however an analogous discussion also applies to the multi-particle 
production. Specifically, the double inclusive two-gluon spectrum 
can be written in the following form,
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with a new unknown function h, where we assumed for simplic-
ity that the transverse momenta of the two gluons are identical 
in magnitude and direction, such that |k1| = |k2| = k to compact-
ify the notation. By considering a dilute projectile, we can again 
expand in Q (P )

s
2
/k2⊥ , which results in
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where the function h1 can be found from the results of Refs. [16–
18] and is also written in convenient form for numerical simula-
tions in Refs. [19]. Compared to f1 in Eq. (3), which features two 
target Wilson lines (dipole), the function h1 involves four Wilson 
lines (quadrupole). It is well known [16,17], that this part of the 
two-gluon production cross section is invariant under the reflec-
tion of either momenta k1 or k2 and thus generates only even 
harmonics of azimuthal anisotropy. More recently, in Refs. [4,20], 
it was shown that this accidental symmetry with respect to the 
reflection of one of the momenta is lifted by the first saturation 
contribution, h2, to double inclusive production. In particular, the 
part of h2 responsible for the odd harmonics was derived analyti-
cally [4,20]. Nevertheless, the full result for h2 (including also the 
first saturation corrections to the even part) is currently unknown 
and would require determination of f2.

In the current study, we will use semi-analytical results for f1, 
h1 and the odd part of h2 in order to compute the observables 
dN/dy, v2, v4 and v3 which are of particular relevance to phe-
nomenological CGC studies [9,13,19,21–24]. By explicitly compar-
ing the results for these observables with the corresponding ones 
obtained in full dense-dense calculations of Eqs. (1) and (4) based 
on CYM simulations, we will assess the quality of the dilute-dense 
approximation and the impact of higher order saturation correc-
tions.

2. Dilute-dense vs. dense-dense – explicit results and comparison

2.1. General Setup

We consider the color charge distribution in the dilute projec-
tile as

〈ρ(p)
a (�x⊥)ρ

(p)

b (�x′⊥)〉

=
(

g2μ

Q s

)2

Q (P )
s

2
(

�x⊥ + �x′⊥
2

)
δab δ(2)(�x⊥ − �x′⊥) , (6)

where the local saturation scale Q (P )
s

2 (�x⊥
)

is determined by

Q (P )
s

2 (�x⊥
) = 2π R2

p T (�x⊥) (Q (p)
s,0 )2 = (Q (p)

s,0 )2 exp

(
− �x 2⊥

2R2
p

)
(7)

such that the dilute projectile can be thought of as a minimal sat-
uration model for the proton. We note that in order to scrutinize 
the particle production mechanism we restrict ourselves to such 
a minimal model, and have not included additional ingredients, 
such as e.g. sub-nucleonic constituents [25,26] or saturation scale 
(Q (p)

s,0 –) fluctuations [27] commonly invoked in phenomenological 
CGC calculations. Similarly, we consider a spatially homogeneous 
color charge distribution of the dense target, i.e.

〈ρ(t)
a (�x⊥)ρ

(t)
b (�x′⊥)〉 =

(
g2μ

)2

(Q (A)
s,0 )2 δab δ(2)(�x⊥ − �x′⊥) (8)
Q s
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which likewise, can be thought of as a simplistic saturation model 
of a very large nucleus. We note that the parameter (Q (A)

s,0 )2 char-
acterizes the saturation scale everywhere in the large nucleus, 
whereas (Q 2(p)

s,0 )2 gives the saturation scale of the proton in the 
center, such that on average the saturation momentum in the pro-
ton is somewhat smaller, e.g. 〈Q 2

s (�x⊥)〉||�x⊥|<R p
≈ 0.79 (Q (p)

s,0 )2.

Since the common prefactor 
(

g2μ
Q s

)
can always be absorbed 

into a redefinition of the saturation momenta Q (p/A)

s,0 , we will al-

ways fix its value to 
(

g2μ
Q s

)
= 1.42857 – a typical value employed 

in phenomenological studies in IP-Glasma [28,29]. Besides the pro-
jectile size R p and the saturation momenta Q (p/A)

s,0 of the projectile 
and target, our model then only has one additional parameter m
which regulates the infrared behavior of the color charge distri-
butions. We again follow previous works [28,29], and adopt the 
common procedure to replace

ρa(�p⊥) → �p 2⊥
�p 2⊥ + m2

ρa(�p⊥) (9)

in our numerical calculations. In applications to phenomenology, 
to minimize the sensitivity to the infrared regulator one should 
require Q 2(p/A)

s,0 � m2; in this work, we are interested in exploring 
dependence on Q (p)

s,0 in the widest possible range and thus violate 
this condition. That said, one should not try to map our results to 
phenomenology for small values of Q (p)

s,0 .

If not stated otherwise, we will fix R p = 2 GeV−1 and m =
0.5 GeV in the following and compare results for particle pro-
duction in dilute-dense and dense-dense calculations as a function 
of the saturation scales Q (p)

s,0 and Q (A)
s,0 of the projectile and tar-

get.1 Details of the individual calculations proceed as described as 
outlined below, and are described in detail in Ref. [24] for dilute-
dense and Ref. [9] for dense-dense calculations.

2.2. Dilute-dense approximation

We briefly review the dilute-dense expressions derived previ-
ously in Refs. [4,10–12,16,17,20]). Starting from a statistical sam-
pling of the color charge distribution ρp and ρt of the projectile 
and target according to Eqns. (6, 8), the leading contribution to the 
configuration-by-configuration spectrum is then given by Eq. (3)
with

�(�k⊥, �q⊥, �q′⊥) =
(�k⊥

k2
− �q⊥

q2

)
·
(�k⊥

k2
−

�q′⊥
q′2

)
. (10)

However, as alluded to in the Sec. 1, the form (3) is, not partic-
ularly useful for numerical calculations, as it involves two two-
dimensional, not obviously factorizable integrals. Instead one can 
recast (3) in fully equivalent form

dNeven(�k⊥)

d2kdy

[
ρp,ρt

]
= 2

(2π)3

δi jδlm + εi jεlm

k2
�a

i j(
�k⊥)

[
�a

lm(�k⊥)
]	

(11)

with �(�k⊥) defined as the Fourier transform of

�a
i j(�x⊥) = g

[
∂i

∂2
ρb

p(�x⊥)

]
∂ j Uab(�x⊥) , (12)

and εi j(δi j) denotes the Levi-Civita symbol (Kronecker delta). The 
adjoint Wilson line Uab is a functional of the target charge density:

1 Stated differently we set the dimensionless parameter mR p = 1 and use R p =
2 GeV−1 to set the scale in our calculation.
U (�x⊥) = P exp

(
ig2

∫
dx+ 1

∂2
ρa

t (x+, �x⊥)Ta

)
. (13)

The expression in Eq. (11) explicitly demonstrates that numerical 
evaluation of the even component boils down to a straightfor-
ward computation of two combination εi j�

a
i j(�x⊥) and δi j�

a
i j(�x⊥)

complemented by the fast Fourier transformation. As discussed in 
Introduction, the odd component of the particle production cross 
section is given by higher order corrections to the strict dilute-
dense limit. The leading contribution is

dNodd(�k⊥)

d2kdy

[
ρp,ρt

]
= 2

(2π)3
Im

{
g
�k2⊥

∫
d2l

(2π)2

Sign(�k⊥ ×�l⊥)

l2|�k⊥ −�l⊥|2
× f abc�a

i j(
�l⊥)�b

mn(
�k⊥ −�l⊥)

[
�c

rp(�k⊥)
]	

×
[(�k2⊥ε i jεmn −�l⊥ · (�k⊥ −�l⊥)(ε i jεmn + δi jδmn)

)
εrp

+ 2�k⊥ · (�k⊥ −�l⊥)ε i jδmnδrp
]}

. (14)

We emphasize that in a Gaussian model for the projectile the 
above expression does not contribute to single inclusive cross sec-

tion due to 
〈

dNodd(�k⊥)

d2kdy
[ρp,ρt]

〉
= 0, but does contribute to the dou-

ble inclusive production.
Based on the configuration-by-configuration spectrum, the sin-

gle and double inclusive gluon production cross section are then 
given in terms of the statistical averages of the respective opera-
tors

dN(�k⊥)

d2kdy
=

〈
dN(�k⊥)

d2kdy

[
ρp,ρt

]〉
, (15)

d2N( �k1⊥, �k2⊥)

d2k1dy1d2k2dy2
=

〈
dN( �k1⊥)

d2k1dy1

[
ρp,ρt

]dN( �k2⊥)

d2k2dy2

[
ρp,ρt

]〉
(16)

where brackets 〈.〉 denote the statistical average over different re-
alizations of the color charge configurations of the projectile and 
target, and

dN(�k⊥)

d2kdy

[
ρp,ρt

]
= dNeven(�k⊥)

d2kdy

[
ρp,ρt

]
+ dNodd(�k⊥)

d2kdy

[
ρp,ρt

]
.

(17)

We note that Eq. (16) relies on the fact that to leading order 
in αs , the two-particle correlation function dN

dy1 �p1⊥dy2 �p2⊥

∣∣∣
ρp ,ρt

=
dN

dy1 �p1⊥
dN

dy2 �p2⊥

∣∣∣
ρp ,ρt

factorizes into a product of single particle dis-

tribution when evaluated for a fixed configuration of color charges 
of the projectile and target [9,30–32]. Genuinely non-factorizable 
(“non-flow”) two-particle correlations e.g. due to di-jet production 
only appear at next-to-leading order in αs; however they have not 
been calculated in the dense-dense limit so far.

2.3. Dense-dense CYM

Notably the dense-dense calculation proceeds along very sim-
ilar lines. Starting from the statistical sampling color charges in 
the projectile and target, one computes the light like Wilson lines 
of both projectile and target in fundamental representation. Sub-
sequently, the initial gauge fields in the forward light-cone (at 
τ = 0+) are determined according to the solution of the classi-
cal Yang-Mills equations, but now including the full non-linearity 
of projectile and target fields. Starting from these initial conditions, 
one then solves the classical Yang-Mills equations of motion in the 
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Fig. 1. Single inclusive multiplicity 〈dN/dy〉 and its variance (left) as a function of Q (p)
s,0 and (right) as a function of Q (A)

s,0 . Different curves show results obtained from 
dilute-dense and dense-dense (Class. Yang-Mills) calculations. Gray line show an additional semi-analytic calculation based on kt -factorization [10–12], which is equivalent to 
the leading order dilute-dense approximation for single inclusive production. Classical Yang-Mills results obtained for different times τ = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 fm/c are 
shown as different symbols and have been offset horizontally for better visibility. Bottom panels show the ratio of dilute-dense to dense-dense at τ = 0 (open circles) and 
τ = 1 fm/c (full squares).
forward light cone up to the time where observables are measured. 
Ultimately, one exploits the residual gauge freedom to fix Coulomb 
gauge at the time of the measurement and determines the spec-
trum of produced gluons dNg

dyd�p⊥ by projecting the gauge fields onto 
transversely polarized modes (cf. [33]). Details of the numerical 
procedure can be found in Ref. [9].

2.4. Numerical results

We now turn to the discussion of our numerical results and 
first study the overall multiplicity2 per unity rapidity 

〈
dNg
dy

〉
≡∫

m/2 d2 �p⊥ dNg

dyd2 �p⊥
and its variance 

〈
dNg
dy

dNg
dy

〉
−
〈

dNg
dy

〉2
which are pre-

sented in Fig. 1. We first focus on the left panel, where we fix 
the saturation scale of the target Q (A)

s = 2.5 GeV and investigate 
the dependence on the saturation scale Q (P )

s of the projectile, 
which as discussed in Sec. 1, corresponds to the expansion pa-
rameter for the dilute-dense approximation. Since the multiplicity 

in dilute-dense calculations is directly proportional to 
(

Q (P )
s

)2
it 

is in fact sufficient to perform a single set of calculations shown 
as the single data point for Q (P )

s = 1 GeV. Based on the analyt-

ical scaling 〈dN/dy〉 ∝
(

Q (P )
s

)2
of the dilute-dense formulae for 

the single inclusive production and 
(

Q (P )
s

)4
for the variance, one 

then obtains the result for all other values of Q (P )
s shown in terms 

of the solid lines. By comparing to the data-points of the full 
dense-dense (CYM) calculation, we find that such scaling is in-
deed well reproduced for Q (P )

s � 1 GeV, where there is a good 
quantitative agreement between dilute-dense and dense-dense cal-
culations.

However, for Q (P )
s � 1 GeV higher order saturation corrections 

become increasingly important and the dilute-dense approxima-
tion tends to over-predict particle production. While for single in-

2 We note that in dilute-dense calculations the integral ∫ d2 �p⊥ dN g

dyd2 �p⊥
is loga-

rithmically divergent in the infrared. In order to make our calculations finite we 
therefore introduce an infrared cut-off kIR on the order of the non-perturbative 
mass scale m. While this cut-off is in principle arbitrary, the results only exhibit 
a logarithmic sensitivity and we choose kIR = m/2 = 0.25 GeV, which corresponds 
to the lowest value of Q (p)

s,0 investigated in our calculations.
clusive particle production higher order corrections remain on the 
order of ∼ 50% even up to Q (P )

s ∼ 4 GeV, we find that double in-
clusive observables, such as the variance of the multiplicity, appear 
to be significantly more sensitive to higher-order saturation correc-

tions. When considering 
〈

dNg
dy

dNg
dy

〉
−

〈
dNg
dy

〉2
, sizeable discrepancies 

on the order of ∼ 50% between dilute-dense and dense-dense cal-
culations already emerge for Q (P )

s ∼ 2 GeV and steadily increase 
for larger values of Q (P )

s where the dilute-dense approximation 
breaks down.

By fixing the saturation scale of the projectile Q (P )
s to a (small) 

value of 1 GeV we can further assess the Q (A)
s dependence of the 

dilute-dense approximation. We find that for such relatively small 
values of Q (P )

s , the dilute-dense approximation provides a more or 
less uniform approximation of the dense-dense result, as is shown 
in the right panel of Fig. 1. Higher order saturation corrections 
to 

〈
dNg
dy

〉
and it’s variance are typically � 20% except perhaps for 

very small values of Q (A)
s � 1 GeV, where the projectile effectively 

becomes more dense than the target. We also note that for the 
dense-dense calculation changes in the overall multiplicity as well 
as its fluctuations are relatively small over the course of the classi-
cal Yang-Mills evolution in the forward light-cone, indicating that 
the values inferred at τ = 0+ already provide a good estimate of 
the event-by-event gluon multiplicity.

We can further quantify the similarities and differences be-
tween the different calculations, by investigating the single inclu-
sive spectra depicted in Fig. 2, as was done previously in Ref. [8]. 
We first focus on the left panel, where we compare the spec-
trum for different values of Q (P )

s (at fixed Q (A)
s = 2.5 GeV), with 

the normalization of the spectrum (p⊥/Q (P )
s )2 dN

dyd2 p⊥
chosen such 

that dilute-dense calculations yield the same result irrespective of 
the value of Q (P )

s . We find that for p⊥ � Q (P )
s , the spectrum is al-

ways well described by the dilute-dense approximation, as can be 
anticipated from the expansion in Eq. (2). Conversely, for low mo-
menta p⊥ � Q P

s , the dilute-dense approximation over-estimates 
particle production and the spectrum exhibits more significant 
changes over the first fm/c of class. Yang-Mills evolution, as was 
also seen in Fig. 1. We find that this behavior depends only weakly 
on the saturation scale of the dense target, as can be seen in the 
right panel of Fig. 2, where we present the spectra for different 
values of Q (A)

s (at fixed Q (P )
s = 1 GeV).
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Fig. 2. Single inclusive spectra 〈 dN
dyd2 p⊥

〉 as a function of transverse momentum p⊥ for different values of Q (p)
s,0 (left) and Q (A)

s,0 (right). Different curves show results obtained 
from kT factorization, dilute-dense and dense-dense (Class. Yang-Mills) calculations for τ = 0.0 fm/c (open symbols) and 1.0 fm/c (full symbols).

Fig. 3. Azimuthal anisotropy vn{2} (left) a function of Q (p)
s,0 and (right) as a function of Q (A)

s,0 . Different curves show results obtained from dilute-dense and dense-dense 
(Class. Yang-Mills) calculations. Classical Yang-Mills results obtained for different times τ = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 fm/c are shown as different symbols and have been 
offset horizontally for better visibility. Bottom panels show the ratio of dilute-dense to dense-dense at τ = 0 (open circles) and τ = 1 fm/c (full squares). Solid lines in the 
left panel are obtained using the scaling argument of Ref. [23] and represent v2, v4 ∝ (Q (P )

s )0 and v3 ∝ Q (P )
s .
Next we investigate the effects on azimuthal correlations be-
tween the produced gluons, which we will quantify in terms of 
Fourier coefficients vn{2} of the �p⊥ integrated two-particle corre-
lation function

vn{2} =
√

〈bnb∗
n〉

〈b0b∗
0〉

, bn ≡
∫

m/2

d2 �p⊥
dNg

dyd2 �p⊥
einφ�p⊥ . (18)

Such initial state azimuthal correlations reflect intrinsic correla-
tions of gluons in the projectile and target [34,35]; they are cur-
rently of particular phenomenological interest, as various studies 
have argued for their importance in understanding collective phe-
nomena in small collision systems [21–24,36], including p/d/He3+A 
collisions at RHIC as well as p+p and p+A collisions at the LHC.

We present a compact summary of our results for azimuthal 
correlations in Fig. 3, where we compare the results for v2, v3 and 
v4 in dilute-dense and dense-dense calculations as a function of 
Q (P )

s and Q (A)
s in the left and right panels. While for small values 

of Q (P )
s , the dense-dense calculation appears to well approximated 

by the semi-analytic dilute-dense calculation, and shows the ex-
pected scaling of the different harmonics v2, v4 ∝ (Q (P )

s )0 and 
v3 ∝ Q (P )
s [23], the dilute-dense approximation starts to overpre-

dict the azimuthal correlation strength for Q (P )
s � 1 GeV. We find 

that in this regime, the vn ’s obtained in the dense-dense calcula-
tion start to show a significant time dependence, clearly indicating 
the importance of re-scattering in the forward light cone (in the 
“final state”), which are always associated with saturation cor-
rections to the leading order dilute dense result. Specifically, the 
odd-harmonic v3 increases from v3 = 0 at τ = 0+ up to v3 ≈ 2%
over the course of the classical Yang-Mills evolution, while the 
even harmonics v2 and v4 decrease by a comparable amount (see 
also [9]). Since for Q (P )

s � 2 GeV the increase of v3 is rather 
well described by the first saturation correction to dilute-dense 
limit (which gives zero v3), it is conceivable that the observed 
decrease of the even harmonics could also be captured (at least 
partially) by the first saturation correction. Indeed, naive power 
counting argument in Q (P )

s predicts linear deviation of veven from 
the dilute-dense regime. However, it is impossible to make this 
argument stronger, because, as discussed in Sec. 1, the associ-
ated corrections to d2Neven/d2k1d2k2 have not been calculated to 
date.

We also observe from the left panel of Fig. 3 that in order to 
obtain the phenomenologically relevant ordering of the different 
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harmonics v2 > v3 > v4, one needs to access relatively large val-
ues of Q (P )

s which appear to be outside the range of validity of the 
dilute-dense approximation (as demonstrated e.g. by v3 deviating 
from its linear growth at lower Q (P )

s ). Vice versa for the relatively 
small values of Q (P )

s = 1 GeV shown in the right panel, the even 
harmonics v2 and v4 exhibit a significantly smaller time depen-
dence, resulting in v4 > v3 irrespective of the value of Q (A)

s . We 
find that in this regime, where the dilute-dense approximation is 
justified, the Q (A)

s dependence of the dense-dense calculation is 
indeed well reproduced by the semi-analytic dilute-dense calcula-
tion, with typical errors on the 10% level for. This is, however, not 
the case for v3 which is underpredicted by the dilute-dense ap-
proximation at large values of Q (A)

s .

3. Conclusions

In this article, we presented for the first time a numerical 
study of higher order saturation corrections to the leading or-
der dilute-dense approximation for different phenomenologically 
relevant observables. We explicitly demonstrated the expected de-
viations between the dilute-dense approximation and full dense-
dense CYM simulations for single and double inclusive observables 
and showed that these deviations increase with the saturation mo-
mentum of the dilute projectile, as we anticipated based on the 
expansion (1). While for single inclusive observables, such as the 
average multiplicity 〈dNg/dy〉, we find that the deviations remain 
on the order of 50% even when the saturation scale of the projec-
tile becomes on the same order as the saturation scale of the target 
(Q (P )

s ∼ Q (A)
s ), we find that double inclusive observables such as 

the azimuthal correlations vn are significantly more sensitive to 
higher order saturation corrections.

When restricted to the range of validity, i.e. for Q (P )
s � Q (A)

s , 
we find that the dilute-dense approximation faithfully reproduces 
the dense-dense results, with almost uniform accuracy as a func-
tion of the saturation scale of the target Q (A)

s . We find that in 
this regime, the dilute-dense approximation tends to over-predict 
particle production only by about 10(20)% compared to the corre-
sponding dense-dense result for the single (double) inclusive gluon 
production.
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