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bInstitut für Physik, Universität Oldenburg,

Postfach 2503, D-26111 Oldenburg, Germany
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Abstract: We consider Einstein-Maxwell-dilaton gravity with the non-minimal exponen-

tial coupling between the dilaton and the Maxwell field emerging from low energy heterotic

string theory. The dilaton is endowed with a potential that originates from an electromag-

netic Fayet-Iliopoulos (FI) term in N = 2 extended supergravity in four spacetime dimen-

sions. For the case we are interested in, this potential introduces a single parameter α.

When α→ 0, the static black holes (BHs) of the model are the Gibbons-Maeda-Garfinkle-

Horowitz-Strominger (GMGHS) solutions. When α → ∞, the BHs become the standard

Reissner-Nordström (RN) solutions of electrovacuum General Relativity. The BH solutions

for finite non-zero α interpolate between these two families. In this case, the dilaton poten-

tial regularizes the extremal limit of the GMGHS solution yielding a set of zero temperature

BHs with a near horizon AdS2×S2 geometry. We show that, in the neighborhood of these

extremal solutions, there is a subset of BHs that are dynamically and thermodynamically

stable, all of which have charge to mass ratio larger than unity. By dynamical stability

we mean that no growing quasi-normal modes are found; thus they are stable against lin-

ear perturbations (spherical and non-spherical). Moreover, non-linear numerical evolutions

lend support to their non-linear stability. By thermodynamical stability we mean the BHs

are stable both in the canonical and grand-canonical ensemble. In particular, both the

specific heat at constant charge and the isothermal permittivity are positive. This is not

possible for RN and GMGHS BHs. We discuss the different thermodynamical phases for

the BHs in this model and comment on what may allow the existence of both dynamically

and thermodynamically stable BHs.
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1 Introduction

Stable configurations are the preferred configurations in (thermo)dynamics. For BHs, the

classical concept of stability is that of dynamical (or mechanical) stability. Is the BH

robust against small, mechanical perturbations? Perturbative stability of BHs is typically

assessed by computing the spectrum of quasi-normal modes (QNMs) of the isolated BH.

The absence of growing modes establishes mode stability. For the only static vacuum BH

of General Relativity, the Schwarzschild solution [1], its mode stability was established by

the seminal works of Regge and Wheeler [2] and Zerilli [3]. In this sense, the Schwarzschild

BH is a preferred configuration.

The advent of BH thermodynamics in the 1970s [4, 5], as a consequence of a semi-

classical treatment of gravity, yields a different angle on BH stability. Is a BH in thermody-

namical equilibrium with its environment robust against small fluctuations of, say, energy,

or another of its defining parameters? This question is, a priori, different, because the

BH is interacting with an environment, or reservoir, rather than being isolated. Different

reservoirs, or statistical ensembles, can be considered. For the case of a Schwarzschild BH,

whose only defining parameter is its mass, the question simplifies. Fixing the reservoir’s

temperature, one simply asks how does the BH temperature responds to a small fluctuation

of the BH energy. It turns out that the BH heats up/cools down when it loses/absorbs

energy. That is, it has a negative specific heat. Thus, under a small energy exchange,

Schwarzschild BHs run away from thermal equilibrium when placed in a reservoir at fixed
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temperature. They are (locally) thermodynamically unstable. Consequently, in this sense,

these BHs are not preferred configurations.

Consider now the addition of electric charge. In electrovacuum General Relativity,

the only static electrically charged BH solution with a connected horizon is the Reissner-

Nordström (RN) BH [6]. Dynamically, it is still perturbatively stable, since its QNMs decay

in time [7, 8]. Thermodynamically, however, one can now consider different interactions.

Firstly, consider the BH can exchange energy, but not electric charge, with the reservoir.

Thus, the BH charge is fixed. Is the heat capacity (at constant charge) still negative? It

must be for small charge, as the solution reduces to the Schwarzschild BH. For sufficiently

large charge to mass ratio, q ≡ Qe/M >
√

3/2, however, the specific heat (at constant

charge) becomes positive [9]. Thus, preventing any charge exchanges, RN BHs with suf-

ficiently large q are (locally) thermodynamically stable, oscillating around the reservoir’s

temperature when small exchanges of energy occur. This is the canonical ensemble. Under

these conditions, RN BHs with q >
√

3/2 are preferred.

Considering no electric charge exchanges is, however, non-generic. In a generic sit-

uations such exchanges do occur. The reservoir is now not only a reservoir of energy,

kept at constant temperature, but also of (charged) particles, kept at constant “chemical”

potential, which in this case corresponds to the electrostatic potential. This is the grand-

canonical ensemble. Now, the assessment of stability must also consider a possible run

away mode triggered by the wrong evolution of the BH’s chemical (electrostatic) potential.

As the BH absorbs (releases) positive charge, if its chemical potential decreases (increases),

this promotes more charge absorption (release), and hence a run-away mode. The response

function monitoring this effect is the isothermal permittivity (at constant temperature). It

so happens that for RN BHs it becomes negative precisely for q >
√

3/2, exactly when the

heat capacity (at constant charge) becomes positive. This can be understood as follows.

Fixing the temperature, an increase of charge implies an (even larger) increase of the BH

mass, for q >
√

3/2. This implies the BH size increases sufficiently so that, despite the

charge increase, the electrostatic potential decreases. The bottom line is that RN BHs are

always locally unstable in the grand canonical ensemble. For small charges, exchange of en-

ergy at constant charge (or at constant electrostatic potential) promotes a run-away mode.

For large charges, exchange of charge at constant temperature promotes the instability.

Thus, under these conditions, RN BHs are not preferred configurations. Intriguingly, how-

ever, the isothermal permittivity diverges as extremality (q → 1) is approached, suggesting

the RN family is on the verge of another thermodynamical phase.

The advent of supergravity and string theory naturally led to considering Einstein-

Maxwell models with an extra scalar field, a dilaton, non-minimally coupled to the Maxwell

field with a particular exponential coupling. In fact, such models naturally occur also in

the context of Kaluza-Klein theories. Gibbons [10], subsequently also with Maeda [11],

considered the charged BH solutions in these models. They are charged BHs that possess

scalar (dilaton) “hair”. The BH solutions of these Einstein-Maxwell-dilaton models were

later reobtained by Garfinkle, Horowitz and Strominger in the context of string theory [12].

We shall refer to them as GMGHS solutions.
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The GMGHS BHs, with the particular coupling emerging from string theory, are some-

times regarded as a sort of generalisation of the RN BH of electrovacuum, albeit they do

not reduce to the latter, except in the uncharged limit. Moreover, GMGHS BHs introduce

three qualitative new physical aspects. Firstly, the excited dilaton around the BH creates

an effective medium with electric properties, which can be faced as, say, inducing a vary-

ing magnetic permeability. Secondly, in the standard electrovacuum-like description (the

Einstein frame), the GMGHS BHs do not have a smooth extremal limit; they are singular

in that limit. Thirdly, these BHs allow a charge to mass ratio greater than unity.

The GMGHS BHs can be made more RN-like, in particular concerning the second

property of the previous paragraph, by augmenting the model with a particular dilaton

potential that has been shown to emerge in N = 2 supergravity in four spacetime dimen-

sions, extended with vector multiplets and deformed by a Fayet-Iliopoulos term [13]. In [14],

Anabalon, Astefanesei and Mann obtained exact charged BH solutions in this model, that

we shall refer to as AAM BHs. The potential introduces one single extra parameter, α.

Then, as α → 0, the stringy GMGHS BHs are recovered. On the other hand, as α → ∞,

the potential confines the scalar field to vanish but the electric charge may remain non-zero,

yielding the RN electrovacuum family. In this sense, the AAM family of BHs interpolates

between the RN and the GMGHS families. Now, it turns out that the dilatonic poten-

tial regularises the extremal limit, yielding a family of extremal BHs with a near horizon

geometry of Robinson-Bertotti type, AdS2 × S2, analogue to the extremal RN solution.

Nonetheless, the AAM solution retains the GMGHS property that it still allows overcharged

BHs with q = 1. The AAM family of solutions, therefore, presents itself as an arena to test

the hypothesis that the q → 1 RN BHs are on the verge of another thermodynamical phase.

In this work we therefore investigate the dynamical and thermodynamical stability of

the AAM BHs. It was recently pointed out [15] that some of these BHs are thermodynam-

ically stable in both the canonical and grand-canonical ensemble, unlike RN BHs. In this

paper we perform a thorough scanning of the domain of existence, precisely identifying the

subset of thermodynamically stable AAM BHs. Our analysis makes clear that this only

occurs in the overcharged regime, q > 1. Indeed, the AAM solutions have three thermody-

namical phases: i) a Schwarzschild-like phase, which is unstable since the specific heat (at

constant charge or at constant electrostatic potential) is negative; ii) a near-extremal RN-

like phase, which is unstable since the isothermal permittivity is negative; and iii) a new sta-

ble phase, for which a necessary, but not sufficient, condition is that the BH is overcharged.

In this sense the AAM BHs are an extension of RN BHs into the overcharged regime, which

is made possible by the conjugation of the dilaton non-minimal coupling and potential.

Our work also clarifies that, like RN BHs, GMGHS BHs are never thermodynamically

stable in both the canonical and grand-canonical ensemble. Moreover, we show that, like

RN BHs, the AAM family is dynamically perturbatively stable, in the sense that no grow-

ing quasi-normal modes are found, building upon the recent work [16], see also [17]. The

dynamical robustness of AAM solutions is furthermore confirmed by fully non-linear numer-

ical simulations with the Einstein-Maxwell-dilaton system. Even starting with initial data

far off from the equilibrium solutions, the evolutions relax to the latter. These simulations

were performed using a similar code and setup to the ones reported in [18–20]. All this put
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together means that there is a subset of AAM solutions that are preferred, both dynami-

cally and thermodynamically. To the best of our knowledge, this is the first such example

for asymptotically flat BHs, without using artefacts such as box boundary conditions.

This paper is organised as follows. In section 2 we describe the model and the AAM

family of solutions. In particular we consider the extremal limit showing the existence of

AdS2 × S2 geometries, unlike in the GMGHS sub-family. In section 3 we present a linear

analysis of dynamical stability. We consider separately spherical, axial and polar pertur-

bations. Then we discuss the spectrum of QNMs showing that, within our scanning, they

always decay in time, providing strong evidence of mode stability. In section 4 we consider

a non-linear analysis of dynamical stability, showing that fully non-linear dynamical evo-

lutions within the Einstein-Maxwell-dilaton model, starting from initial data which can be

considered a highly perturbed AAM BH, the evolution converges to the latter. In section 5

we discuss thermodynamical stability in both the canonical and grand-canonical ensemble,

spelling out the conditions and identifying the region of the domain of existence of AAM

BHs where thermodynamical stability holds. Finally, in section 6 we summarise our results

and provide a discussion of their significance.

2 Einstein-Maxwell-dilaton BHs with a supergravity potential

2.1 The model

The model under consideration is an Einstein-Maxwell-dilaton model endowed with a par-

ticular dilaton potential. It is described by the action:

S [gµν , Aµ, φ] =
1

16πG

∫
d4x
√
−g
[
R− eγφFµνFµν −

1

2
∂µφ∂

µφ− V (φ)

]
. (2.1)

Here, R is the Ricci scalar, Fµν ≡ ∂µAν − ∂νAµ is the Maxwell field and φ is the dilaton

field, which couples non-minimally to the Maxwell field with a coupling constant γ. In the

following, we use units where 8πG = 1 = c. The dilaton is endowed with the potential

discussed in [15], which has the form:

V (φ) = 2α(2φ+ φ coshφ− 3 sinhφ) , (2.2)

where α is a dimensionful constant, with dimensions length−2. This potential is plotted

in figure 1. For small φ, this potential behaves V ' αφ5/30; thus it contains no mass

term. We notice that V is invariant under the discrete symmetry α → −α, φ → −φ.

Thus, taking α > 0 without any loss of generality, the requirement V > 0 imposes that the

physical solutions necessarily have a positive φ.

The equations of motion that follow from (2.1) are

Rµν −
1

2
gµνR =

1

2

(
T (φ)
µν + T (M)

µν

)
, ∂µ(

√
−geγφFµν) = 0 , (2.3)

1√
−g

∂µ(
√
−ggµν∂νφ) =

dV (φ)

dφ
+ γeγφF 2 , (2.4)
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Figure 1. The potential of the model, eq. (2.2).

where

T (φ)
µν ≡ ∂µφ∂νφ− gµν

[
1

2
(∂φ)2 + V (φ)

]
, T (M)

µν ≡ 4eγφ
(
FµαF

α
ν −

1

4
gµνF

2

)
, (2.5)

are the dilaton and electromagnetic energy-momentum tensors.

The potential (2.2) was first considered in [14]. It was originally engineered to obtain

exact solutions in Einstein-Maxwell-dilaton gravity. Subsequently, it was shown that the

Einstein-dilaton sector of (2.1) is a consistent truncation of N = 2 supergravity in four

spacetime dimensions, coupled to a vector multiplet and deformed by a Fayet-Iliopoulos

term [13]. Augmenting the latter model by introducing the standard Maxwell term with

the dilatonic coupling that emerges in low energy heterotic string theory [12] leads to the

action (2.1). It is possible, but it has not been explicitly shown, that the full model (2.1)

emerges from supergravity. That is an interesting open question. But both its F = 0 and

α = 0 truncations emerge from supergravity models.

2.2 The solutions in Schwarzschild-like coordinates

The charged, spherically symmetric BH solutions of the model (2.1) are the standard RN

BH for γ = 0 = α, the GMGHS solution [12] for α = 0 and arbitrary γ, and the AAM

BHs [14] for γ = 1 and arbitrary α. The last case will be the focus of our work. Obviously,

the AAM solutions reduce to the subset of the GMGHS solutions with γ = 1 when α = 0.

But, as shown below, they turn out also to reduce to RN BHs when α→∞.

As discussed in [15], these solutions form two branches distinguished by the sign of

the parameter α in the dilaton potential (2.2). In what follows we shall take α > 0.

Then, following [15], there is a family of BH solutions with strictly positive φ, thus only

probing the strictly positive region of the dilaton potential. Employing Schwarzschild-like
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coordinates,1 the geometry of these BH solutions takes the form

ds2 = −N(r)σ2(r)dt2 +
dr2

N(r)
+ r2(dθ2 + sin2 θdϕ2) , where N(r) ≡ 1− 2m(r)

r
, (2.6)

where the Misner-Sharp mass function m(r) [21] and the redshift function σ(r) read

m(r) =
r

2σ2(r)

{
Q2
e

r2
[χ(r)− 1]− α

[
Q2
s

2
χ(r)− r2φ(r)

]}
− Q2

s

8r
, σ(r) =

(
1 +

Q2
s

4r2

)−1/2

,

(2.7)

where

χ(r) ≡

√
1 +

4r2

Q2
s

, (2.8)

while the matter fields take the form:

eφ(r)/2 =
Qs
2r

[1+χ(r)] , and A = a0(r)dt , where a0(r) =
QeQs
2r2

[1−χ(r)]+A0 ; (2.9)

A0 is an arbitrary constant. Besides A0, this solution contains two arbitrary parameters

Qe and Qs, which correspond to the electric charge and scalar charge respectively, as read

e.g. from the 1/r terms in the asymptotic expansion of the scalar and gauge field. Observe,

however, that Qe is a gauge charge associated to a gauge symmetry, whereas Qs is not.2

The far-field asymptotics of the solutions is also of interest, the leading order terms

being

m(r) =
Q2
e

Qs
− α

12
Q3
s−

4Q2
e+Q2

s

8r
+O(1/r2), σ(r)=1− 1

8

(
Qs
r

)2

+
3

128

(
Qs
r

)4

+O(1/r6),

φ(r) =
Qs
r
− 1

24

(
Qs
r

)3

+O(1/r6), a0(r)=A0+
Qe
Qs
−Qe
r

+
QsQe

2

1

r2
+O(1/r3). (2.10)

The ADM mass is read off from the asymptotic value of m(r), with

M =
Q2
e

Qs
− α

12
Q3
s . (2.11)

Thus, the scalar charge is not independent from the mass and gauge charge. We conclude

that the scalar hair of the solution is of secondary type — see [23] for a discussion of scalar

hair for asymptotically flat BHs.

For a certain parameter range the above solution describes BHs. Then, there is a BH

horizon at r = rH > 0. The relation between the electric charge Qe, scalar charge Qs and

1In [15] the solution was considered in a different coordinate system, which makes its properties less

transparent. The relation between the radial x−coordinate in [15] and the r-coordinate herein is x =

(1+2η2r2 +
√

1 + 4η2r2)/(2η2r2), with η = 1/Qs. Also, the parameter q in ref. [15] should not be confused

with q = Qe/M cf. (2.21) in this work.
2We also emphasise that unlike [22], due to the existence of the potential, to obtain asymptotically flat

solutions the asymptotic value of the scalar field should be kept fixed.
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event horizon radius rH reads:3

Qe =
Qs
2

√
[1 + χ(rH)]

{
1 +

αQ2
s

2

[
χ(rH)−

2r2
Hφ(rH)

Q2
s

]}
. (2.13)

For these BHs, the Hawking temperature TH and the event horizon area AH read

TH =
1

4π
N ′(rH)σ(rH) =

Qs
8πr2

H

[(
1− αQ

2
s

2

)
[χ(rH)−1]+αr2

H {6+[1−3χ(rH)]φ(rH)}
]
,

AH = 4πr2
H . (2.14)

Also, of relevance for the analysis below, working in a gauge with At(rH) = 0 we find

the electrostatic potential at infinity, which corresponds to the chemical potential in the

thermodynamical analysis, is

Φ =
2

1 + χ(rH)

Qe
Qs

. (2.15)

For any choice of the dilaton potential (and a vanishing dilaton at infinity), one can verify

that the solutions satisfy the first law of BH thermodynamics in the form

dM =
1

4
THdAH + ΦdQe . (2.16)

Also, one can prove that solutions satisfy the following Smarr-law

M = 2THS + ΦQe +Mφ , with Mφ =

∫
d3x V (φ) , (2.17)

where the space integral is taken over a domain bounded by the event horizon and the

sphere at infinity.4 Moreover, as usual in Einstein gravity, the entropy is given by the

Bekenstein-Hawking formula

S =
1

4
AH . (2.19)

The model possesses the scaling symmetry

r → λr , α→ α/λ2, (2.20)

where λ > 0 is a constant. Under this scaling symmetry, all other quantities scale appro-

priately, e.g. M → λM , Qe → λQe and Qs → λQs. We frame the physical discussion using

quantities which are invariant under this transformation. These are the following reduced

quantities

q ≡ Qe
M

, aH ≡
AH

16πM2
, tH ≡ 8πTHM . (2.21)

3The electric charge can be computed by the covariant form of Gauss’ law

Qe =
1

8π

∮
S

dSµνe
γφFµν . (2.12)

Since there are no sources to Maxwell’s equations (2.3) outside the horizon, the value of the charge is

independent of the choice of the surface S. The scalar charge Qs is computed from the leading order term

in the asymptotics of the scalar field, as displayed in the relation (2.10).
4The expression (2.17) holds for a generic model (2.1). For the AAM solution, the explicit form of Mφ

reads

Mφ = αQsr
2
H

[
1

2
χ(rH)φ(rH) − Q2

s

12r2H
− 1

]
. (2.18)
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Figure 2. Domain of existence of the AAM BH solutions in a reduced area vs. q (left panel) or tH
(right panel) diagram — shaded region. The RN (GMGHS) limit is given by the dashed blue (solid

red) lines. Black dashed lines correspond to αM2 =constant. The solid green line corresponds to

the extremal limit.

The domain of existence of these solutions in the (q, aH) and (tH , aH)-planes is shown in

figure 2, where the parameter α spans the whole positive real line. Since α is dimensionful,

a dimensionless parameter is obtained as αM2. One can see that the solution (2.6)–(2.9)

interpolate between the dilatonic GMGHS BHs, occurring for α = 0 and RN BHs, which

are approached as αM2 → ∞ in which case φ → 0. The latter limit can be shown as

follows. First define a new constant Q as

Qs =
√

2Q

(
3

α

)1/4

; (2.22)

introducing in the solution (2.6)–(2.9), the limit α→∞ yields

Qs = O
(

1

α

)1/4

, Qe = Q+O
(

1

α

)1/4

, M =
Q2 + r2

H

2rH
+O

(
1

α

)1/4

. (2.23)

This corresponds to RN BH with charge Q and horizon radius rH . The metric and gauge

functions can be checked to have the correct limit. In figure 3 we plot the profile functions

defining the solution for a RN (α =∞), a AAM (α = 100) and a GMGHS (α = 0) BH, all

with q = 0.9. One observes, in particular, that the behaviour of the AAM solutions is “in

between” the RN and the GMGHS solutions.

Setting the electric charge to zero, the AAM solutions (2.6)–(2.9) trivialise. This does

not, by itself, exclude the existence of Einstein-scalar field BH solutions of the model (2.1),

without electric charge. However, one can easily prove that no such solutions exist. The

proof is based on a Bekenstein-type argument [23] and uses the equation for the scalar

field, which, for (2.6) takes the form

1

σr2

d

dr

(
r2σNφ′

)
=
dV

dφ
. (2.24)

Multiplying this equation by φ, a simple manipulation yields

d

dr

(
r2σNφφ′

)
= σr2

(
Nφ′2 + φ

dV

dφ

)
. (2.25)
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Figure 3. The metric functions m(r) (top left panel) and σ(r) (top right panel), the scalar field

profile φ(r) (bottom left panel) and the electric potential At(r) (bottom right panel), for the RN

BH (α =∞), a AAM solution (α = 100) and a GMGHS (α = 0), all with q = Qe/M = 0.9.

When integrating the above relation between rH and infinity, the left hand side vanishes

for a regular configuration, since N(rH) = 0 and φ(∞) = 0; the integrand of the right

hand side, on the other hand, is strictly positive (since dV/dφ > 0). Thus, only φ ≡ 0 is

possible. The presence of an electromagnetic field results in a strictly negative extra-term

in the right hand side of (2.25), which allows circumventing this argument.

2.3 The extremal limit and near horizon geometry

Unlike the α = 0 case (the GMGHS solutions), the AAM BHs with α 6= 0 possess a regular

extremal limit, with a nonzero event horizon area, mass, and electric charge. For GMGHS

solutions, the effective potential [24] does not have a critical point at the horizon and so

the extremal solution is a naked singularity. This can be also understood from the fact

that the inner horizon is singular, the Kretschmann scalar is divergent there, and so in the

extremal limit the singularity is pushed to the outer horizon. In the case of AAM solution,

the effective potential has a new contribution coming from the dilaton potential, yielding

a regular near horizon geometry of the extremal solution.

The extremal limit is found by imposing the constraint TH = 0, which results in an

involved relation between rH and Qs (or, equivalently, rH and Qe, cf. (2.14)). Therefore,

similarly to the RN case, the extremal AAM solutions are characterized by a single pa-
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rameter, which is more conveniently taken as the event horizon radius, rH . A different

route to study this limit is to impose that the general model (2.1) possesses an AdS2 × S2

geometry as a solution and obtain the horizon data by using the entropy function formal-

ism [25–27].5 This configuration describes the near horizon geometry of an extremal BH,

and has a Robinson-Bertotti-type line element [29, 30], with

ds2 = v0

(
−r2dt2 +

dr2

r2

)
+ v1(dθ2 + sin2 θdϕ2) . (2.26)

The matter fields ansatz is

A = ẽ r dt , φ = φH . (2.27)

Here, v0, v1, ẽ, φH are constants that determine the near geometry and the values of the

electric field and dilaton at horizon. Under this ansatz, the equations of the model reduce

to the following three algebraic relations

ẽ2 = e−φH
v0(v0 + v1)

2v1
,

1

v1
− 1

v0
= V (φH) ,

2ẽ2eφH

v2
0

= V ′(φH) . (2.28)

The constants v0 and v1 determine the AdS2 ‘radius’ and S2 radius, respectively. The

radius of the horizon can be computed, as usual, from the relation v1 = r2
H and the

constant ẽ determines the electric charge Qe via the conservation of the flux,

Qe = ẽ
v1

v0
eφH . (2.29)

Thus, one finds that the parameters v0 and v1, which enter the near horizon geometry,

as well as the electric charge Qe, are fixed by the value of the scalar field at the horizon

φH, yielding a continuum of solutions with

v0 =
2

V ′(φH)− V (φH)
, v1 =

2

V ′(φH) + V (φH)
, Qe =

eφH/2
√
V (φH)

V ′(φH) + V (φH)
. (2.30)

Equivalently, one can obtain all horizon data as a function of the physical electric charge,

but since we can not solve analytically the last equation to obtain the value of the dilaton

at the horizon, we prefer to work with φH rather than with Qe. We can explicitly check

that all the expressions (2.30) are finite at the horizon for the potential (2.2).

Since the entropy, S, of the BHs with this near horizon geometry is given by the

Bekenstein-Hawking formula, it can be computed as S = πv1. Consequently, (2.30) to-

gether with (2.2) imply a relatively simple expression for the entropy of extremal AAM

solutions as a function of the scalar field at the horizon:6

S =
π

α

[
2 + 2φH + eφH(φH − 2)− sinh(φH)

]−1
. (2.31)

5The corresponding extremal BH solution in Anti-de Sitter spacetime, for a general potential, was studied

in [28].
6A straightforward computation using the effective potential method of [24] produces the same result.
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If α = 0 (the GMGHS limit) there is no regular AdS2 × S2 geometry. Following the

corresponding analysis in the section 2.2, to recover the RN limit we first define

φH =

√
2

Q

(
3

α

)1/4

, (2.32)

with Q a new constant. Then, the limit α→∞ yields v0 = v1 = Q2 and S = πQ2, which

are the results for an extremal RN solution with Qe = Q.

3 Mode stability — linear analysis

Let us now consider the dynamical stability of the AAM BHs described in section 2.

Following the analysis in [16], we first consider mode stability against linear perturbations of

the metric and fields. We perform the analysis first for spherically symmetric perturbations

and, subsequently for generic non-spherical perturbations.

3.1 Spherical perturbations

Following the standard method, we consider linear spherically symmetric perturbations of

the AAM BHs (see for example [31]). This can be implemented using the following ansatz:

ds2 = −S(r, t)dt2 + P (r, t)dr2 + r2(dθ2 + sin2 θdϕ2) , A = a0(r, t)dt , φ = φ(r, t) , (3.1)

where

P (r, t) =
1

N(r)
+ εP1(r)e−iωt , S(r, t) = f(r)[1 + εS1(r)e−iωt] , (3.2)

φ(r, t) = φ0(r) + εφ1(r)e−iωt , a0(r, t) = a0(r) + εV1(r)e−iωt .

Here N(r), f(r) = N(r)σ2(r), φ0(r) and a0(r) correspond to the unperturbed solu-

tions (2.6)–(2.9); P1(r), S1(r), φ1(r), V1(r) are the perturbation functions all associated to

a Fourier mode with frequency ω, and ε is an infinitesimal parameter. The frequency is in

general a complex number, ω = ωR + iωI . The real part ωR is related with the oscillation

frequency of the perturbation. If the imaginary part ωI is negative, then the perturbation

is exponentially damped with damping time 1/ωI . Mode instabilities would occur if QNMs

with ωI > 0 exist.

A straightforward computation shows that both the metric and the matter fields per-

turbations are determined by φ1. As such, the study of the system reduces to a single

equation for the scalar field perturbation. This equation can be written in the standard

1D Schrödinger form: (
− d2

dx2
+ Uω

)
Ψ = ω2Ψ , (3.3)

where we have defined the ‘tortoise’ coordinate x, and the new function Ψ by

dx

dr
≡ 1√

fN
, and Ψ ≡ rφ1 . (3.4)
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The perturbation potential Uω has the unenlightening form

Uω=f

[
V ′′(φ0)+rφ′0V

′(φ0)−V (φ0)

2
+
e−φ0Q2

e(1−2rφ′0)

r4
−N

2
φ′20

(
1+

rf ′

f
− r

2φ′20
4

)
+

1−N
r2

]
.

(3.5)

Expressed in this 1D Schrödinger form, the diagnosis of an unstable mode solution of (3.3)

would be ω2 < 0 (or more explicitly, ωR = 0 and ωI > 0 with Ψ|rH = Ψ|∞ = 0). Since the

potential is regular in the entire x−range and it vanishes at the BH event horizon and at

infinity, this would be a bound state. A standard result in quantum mechanics is that (3.3)

will have no bound states if the potential Uω is everywhere greater than the lower of its

two asymptotic values. Although the potential is not manifestly positive definite, scanning

the space of solutions, this positivity is indeed satisfied. This means that ω2 is positive

and the AAM BHs are stable against spherical perturbations.

3.2 Non-spherical perturbations

After a decomposition using tensor spherical harmonics, the generic non-spherical per-

turbations can be differentiated in two decoupled channels, axial perturbations and polar

perturbations, depending on how they transform under reflection of the angular coordi-

nates [32–35].

The axial channel only perturbs the metric and the gauge field; not the scalar field [16].

The ansatz for this sort of perturbations introduces three perturbation functions, h0, h1

and W2. It reads:

ds2 = −f(r)dt2 +
dr2

N(r)
+ r2(dθ2 + sin2 θdϕ2)

−2εe−iωt
[
h0(r)dt+ h1(r)dr

] [
∂φYlm(θ, φ)

sin θ
dθ − sin θ∂θYlm(θ, φ)dφ

]
, (3.6)

A = a0(r)dt− εW2(r)e−iωt
[
∂φYlm(θ, φ)

sin θ
dθ − sin θ∂θYlm(θ, φ)dφ

]
, (3.7)

where Ylm(θ, φ) are the usual spherical harmonics. The system of equations obtained from

the linearised Einstein-Maxwell-dilaton equations consists of two first order differential

equations for h0 and h1 (the metric perturbations) coupled to a second order differential

equation for W2 (the electro-magnetic perturbation).

The polar channel, on the other hand, perturbs all the fields: the metric, the gauge

field and the scalar field. The ansatz in this case introduces eight perturbation functions,
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H0(r), H1(r), L(r), T (r), a1(r), W1(r), V1(r) and φ1(r). Now it reads:

ds2 = −f(r)dt2 +
dr2

N(r)
+r2(dθ2 +sin2 θdϕ2) (3.8)

−εe−iωtYlm(θ,φ)

{[
H0(r)dt+2H1(r)dr

]
dt+

L(r)

N(r)
dr2 +2T (r)

(
dθ2 +sin2 θdϕ2

)}
,

A = a0(r)dt+εe−iωt
{
Ylm(θ,φ)

[
a1(r)dt+W1(r)dr

]
+V1(r)

[
∂θYlm(θ,φ)dθ+∂φYlm(θ,φ)dφ

]}
,

φ = φ0(r)+εe−iωtYlm(θ,φ)φ1(r) . (3.9)

It is convenient to define

−iωW1(r)− dW1

dr
≡ F0(r) ,

−iωV1(r)− a1(r) ≡ F1(r) , (3.10)

−W1(r) +
dV1

dr
≡ F2(r) ,

Introducing this ansatz on the field equations and performing a number of algebraic ma-

nipulations, it is possible to see that the polar perturbations are described by: two first

order differential equations for H1 and T (metric perturbations), another two first order

differential equations for F0 and F1 (electro-magnetic perturbations), and a second order

differential equation for φ1 (scalar perturbation). These six functions determine the rest

of functions (H0, L and F2) via some algebraic equations.

As a summary, the minimal system of equations for the non-spherical perturbations

can be written like [16]

∂rΨj = MjΨj , (3.11)

where j = {Axial,Polar} and we have the perturbation functions for each of these channels:

ΨAxial = [h0, h1;W2, ∂rW2] ,

ΨPolar = [H1, T ;F0, F1;φ1, ∂rφ1] .

We have separated with semicolons the space-time perturbations, electromagnetic pertur-

bations and scalar perturbations (only present in the polar channel). The coefficients of

the 4 × 4 matrix MAxial and the 6 × 6 matrix MPolar depend on the unperturbed metric

and field functions, the l harmonic index and the mode complex frequency ω.

3.3 The quasinormal modes

The AAM BH are solutions of the model (2.1), with γ = 1 and arbitrary α, and as we

have seen these solutions are known in closed form, cf. section 2. For the analysis of linear

stability and QNMs spectrum, however, we have obtained numerically the BHs in the more

general case of model (2.1) with both values of γ and α arbitrary. This allows us to better

explore limiting cases. For example, varying the dilaton coupling γ from γ = 1 to γ = 0,
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provides a simple procedure to recover the electrovacuum model. In this way, we can

continuously track the QNMs, connecting them to all known spectra: Schwarzschild, RN

and GMGHS [36]. This is an excellent cross-check on the numerical calculation of QNMs.

Following this methodology and the procedure described in [16] (see also [37]), we

have computed the spectrum of QNMs of the AAM BHs. When the model reduces to

electrovacuum γ = 0 = α, our results for the QNM of the RN BH reproduce the results

in [38]. In the other well known limit when α = 0, our results reproduce the spectrum

calculated in [36] for the GMGHS BHs. In these two limiting cases all the modes are stable.

After benchmarking the method with these two limiting cases, we have tackled the

AAM BHs in [15], scanning for possible unstable modes, in particular for the thermodynam-

ically stable solutions. In the illustrative case α = 1, rH = 2, we have scanned for unstable

modes several thermodynamically stable solutions between Qe = 3.305929 (extremal), and

Qe = 3.11784 (critical, separating thermodynamically stable from unstable solutions — cf.

section 5), as well as solutions close to the critical point (Qe = 3, 3.1). No unstable modes

were found for the l = 1, 2 cases (note l = 0 corresponds to the previous spherically sym-

metric perturbations). It is unlikely that unstable modes may exist for larger values of l.

In addition, by slowly varying α and γ, we have tracked the modes that for γ = 0 = α

correspond to the RN spectrum and for γ = 1, α = 0 correspond to the GMGHS spectrum.

It is possible to see that all of these modes remain stable when getting to the AAM

family with γ = 1 and (say) αr2
H = 4. This is shown in figure 4, where the left (right)

panels exhibits the scaled real (imaginary) part of ω versus q, for gravitational (top),

electromagnetic (middle) and scalar (bottom) perturbations. All the curves in these plots

are for l = 2 modes. With a solid thick grey line we show the RN modes. The GMGHS

modes are shown with a dashed red curve (axial) and a dashed orange curve (polar). The

AAM modes are shown with a dotted blue curve (axial) and a dotted cyan curve (polar).

In figure 4 we call grav-led modes to those that correspond to purely gravitational

modes when the couplings are turn to zero (Schwarzschild). Typically, for small and

intermediate values of q, the grav-led modes excite more strongly the gravitational per-

turbations; that is, the amplitude of the metric perturbation functions is larger than the

amplitude of the electromagnetic and scalar perturbations. Similarly, EM-led modes and

scalar-led modes correspond respectively to purely electromagnetic an scalar modes in the

Schwarzschild limit [16].

In figure 4 we can observe how the GMGHS and AAM modes diverge from the RN

modes as we increase q. In all cases, the AAM curves fit “in between” the RN and GMGHS

curves. We can also appreciate how the spacetime and electromagnetic modes split into

two (axial and polar) when the charge is increased, for both the GMGHS and AAM cases.

For the scalar modes, no such splitting occurs, since they only exist as polar modes. This is

related with the breaking of isospectrality in these dilatonic BHs. It is well known that RN

modes possess isospectrality, meaning axial and polar modes are equal. This isospectrality

is typically broken by the dilaton, as already noted in [16, 36] (see also [39, 40]).

Moreover, the presence of the dilaton couples the scalar perturbations to the full polar

equations. Thus, while the axial channel retains two families of modes — spacetime (fig-

ure 4 top) and electromagnetic modes (figure 4 middle), as for RN, — the polar channel
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Figure 4. Real (imaginary) part of ω for l = 2 perturbations as a function of q are shown in the left

(right) panels. In the top we show grav-led modes (axial and polar), in the middle EM-led modes

(axial and polar), and in the bottom scalar-led modes (polar). We show results for RN (with a

continuous grey line), GMGHS (with dashed red/orange line for axial/polar modes) and the AAM

BHs with αr2H = 4 (with dotted blue/cyan curves for axial/polar modes).
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acquires three families of modes — the previous two plus the scalar modes (figure 4 bot-

tom). In the limit q = 0, all cases reduce to the Schwarzschild BH, and the modes converge

to the Schwarzschild spectrum. Isospectrality is restored, and polar modes merge with axial

modes of the same family. The dilatonic modes converge to the modes of a minimally cou-

pled scalar field on the Schwarzschild background. Moreover, considering the two limits of

the domain of existence shown in figure 2, in the limit α = 0 with γ = 1, the modes converge

to the QNMs of the stringy GMGHS BHs, where isospectrality is also broken. In the limit

α→∞, the modes tend to converge to the RN modes, and again isospectrality is restored.

In this scanning, we have observed that all modes remain stable, although close to

extremality there is a tendency to increase the damping time, corresponding to a smaller

values of the imaginary part of ω. This trend, however, occurs already for RN BHs.

To conclude, the spectrum of QNMs of the AAM BHs is qualitatively very similar to

the one studied recently for scalarised RN BHs in [16]: all QNMs are damped, although the

spectrum is richer due to the broken isospectrality and the non-trivial scalar degree of free-

dom. All these features strongly indicate that the AAM BHs are mode stable for arbitrary

values of α and q, in both the axial and polar channels, and for arbitrary l numbers.

4 Dynamical stability — non-linear analysis

The linear stability analysis, as discussed in section 3, does not rule out that large pertur-

bations can cause instabilities. One way to assess this possibility is by performing fully non

linear numerical simulations, within the framework of numerical relativity, starting with

a highly perturbed configuration. With this goal in mind, we have performed non-linear

evolutions of the model (2.1) with γ = 1.

To test the stability of an AAM BH against large perturbations we consider two sce-

narios. Firstly, we have started with a RN BH with some small scalar field profile around it.

We face this as a highly perturbed AAM BH. This initial data has the advantage of being

readily accessible within the framework of numerical relativity. It is, however, constraint

violating initial data, in the sense that it does not solve the constraint equations obtained

from (2.1). Nonetheless, as it often happens with constraint violating data, the evolution

converges to a true, stable, solution of the model, which in this case is an AAM BH. The

latter, however, has q < 1, similarly to the initial RN configuration. Thus, although such

evolutions confirm the stability of the AAM solutions, one cannot, in this way, probe the

overcharged regime, which is the most interesting one if one is interested in the thermo-

dynamically stable BHs. This issue can be solved in our second scenario, where we start

with a GMGHS BH configuration as initial data, but in a model with α 6= 0. Again, this

is constraint violating initial data. Unlike the RN case, however, there are GMGHS BHs

with q > 1; thus, we can start with such overcharged configurations and the evolutions

confirm an overcharged AAM configurations forms. In this way we show that even over-

charged AAM solutions are stable in a non-linear sense. We remark, however, that the

simulations we performed did not form AAM solutions precisely in the thermodynamically

stable region. Reaching this region is numerically challenging within our approach, as it

is very close to extremality. Nonetheless, the results herein establish that, in the sense we
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Figure 5. (Left panel) Radial profile of the scalar field φ(r) at t = 600 for the initial data consisting

of a RN BH with a small dilaton Gaussian profile. There is an excellent matching between the profile

obtained from the numerical evolution and the profile of a AAM BH with the same q and rH . (Right

panels) Time evolution of the electric charge at the horizon Qe and the amplitude of the scalar field

extracted at r0 = 11.09.

discussed, both undercharged and overcharge AAM solutions are non-linearly preferred.

We expect this extends to the thermodynamically stable region.

Accordingly, in the first scenario we take as initial data a RN BH configuration with

charge to mass ratio q = 0.2, with the following dilaton field initial Gaussian distribution

φ = A0e
−(r−r0)2/λ2 ; (4.1)

as an illustrative example, we have taken A0 = 3× 10−4, r0 = 10M and λ =
√

8. We have

evolved this system for the coupling γ = 1 and taken α = 0.01.

The framework for this numerical evolutions is the 3+1 spacetime decomposition. For

the metric, this split is given by

ds2 = −(α2
0 + βrβr)dt

2 + 2βrdtdr + e4χ
[
a dr2 + b r2dΩ2

]
, (4.2)

where the lapse α0, shift component βr, and the (spatial) metric functions, χ, a, b depend

on t, r. A conformally flat metric with a = b = 1 is chosen together with a time symmetry

condition, i.e. vanishing extrinsic curvature, Kij = 0. A description of the code to perform

the evolutions and previous numerical studies of dynamical scalarisation of RN BHs can

be found in [18, 19, 41–43]. The evolution are performed in spherical coordinates under

the assumption of spherical symmetry. The time integration uses a second-order Partially

Implicit Runge-Kutta (PIRK) method developed by [44, 45].

Let us briefly describe the evolution equations for the models (2.1) that are used in

our numerical evolutions, under the 3+1 split and assuming spherical symmetry. For the

electric field Er and an extra variable, Ψ, introduced to damp dynamically the constrains,

they take the form

∂tE
r = βr∂rE

r − Er∂rβr + (α0KE
r −DrΨ) + γα0 ΠEr ,

∂tΨ = α0(−γDrφE
r −DiE

i − κ1Ψ) , (4.3)

where K is the trace of Kij , we have taken κ1 = 1 and Π ≡ −na∇aφ.
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The Klein-Gordon equation is given by:

∂tφ = βr∂rφ− α0Π ,

∂tΠ = βr∂rΠ + α0KΠ

− α0

ae4χ

[
∂rrφ∂rφ

(
2

r
− ∂ra

2a
+
∂rb

b
+ 2∂rχ

)]
− ∂rφ

ae4χ
∂rα0 − 2γα0 e

γφ a e4χ(Er)2 + α0
dV (φ)

dφ
. (4.4)

The matter source terms for the scalar field, to be used in the Einstein equations, read

ESF ≡ nαnβT SF
αβ =

1

32π

(
Π2 +

∂rφ
2

ae4χ

)
+

1

16π
V (φ)

jSF
r ≡ −γαr nβT SF

αβ = − 1

16π
Π ∂rφ ,

SSF
a ≡ (T rr )SF =

1

32π

(
Π2 +

∂rφ
2

ae4χ

)
− 1

16π
V (φ) ,

SSF
b ≡ (T θθ )SF =

1

32π

(
Π2 − ∂rφ

2

ae4χ

)
− 1

16π
V (φ) . (4.5)

and for the electric field

Eem = −Sem
a = Sem

b =
1

8π
a e4χ(Er)2eγφ . (4.6)

The momentum density jem
r vanishes because there is no magnetic field in spherical sym-

metry.

Numerical evolutions are made under a spacetime discretisation. The logarithmic

numerical grid extends from the origin to r = 1500M and uses a maximum resolution of

∆r = 0.0125M .

Let us now describe the results obtained within this setup starting with the first sort of

initial data described above. In figure 5 (left panel) we exhibit the radial profile of the scalar

field at late times (t = 600), and we compare it with the corresponding analytic profile of

the AAM solution described in section 2 with the corresponding value of q and rH . In the

right panels we show the time evolution of the BH charge Qe and the amplitude of the

scalar field extracted at radius r0 = 11.09. These quantities clearly stabilise reaching an

equilibrium configuration, which matches the AAM solution. At the end of the evolution,

the final charge is Qe = 0.196.

To assess the dynamical stability of the AAM without imposing spherical symmetry, we

carried out numerical simulations in a 3D cartesian grid using the Einstein Toolkit [46,

47]. To perform the evolutions we have used a numerical grid with 11 refinement levels with

{(192, 96, 48, 24, 12, 6, 3, 1.5, 0.75, 0.375, 0.1875) (4.7)

(6.4, 3.2, 1.6, 0.8, 0.4, 0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625)} ,

where the first set of numbers indicates the spatial domain of each level and the second

set indicates the resolution. The evolution is identical to the spherically symmetric case.
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Figure 6. Snapshots of the time evolution of the scalar field profile on the equatorial plane in the

evolutions that do not impose spherical symmetry. One observes the initial RN configuration with

a small dilaton perturbation evolving towards a dilatonic AAM BH.
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Figure 7. (Left panel) Radial profile of the scalar field φ(r) at t = 1000 for the initial data

consisting of a GMGHS BH with q = 1.1, in three models with different α. There is an excellent

matching between the profile obtained from the numerical evolution and the profile of a AAM BH

with a slightly larger q and smaller Qs. (Right panel) Time evolution of the amplitude of the scalar

field extracted at r0 = 11.09.
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In figure 6 we plot snapshots of the evolution of the scalar field. Similar diagnostics as for

the 1+1 evolutions attest the convergence of the initial data towards an AAM BH.

The second sort of initial data is dealt with in a very similar way. We now start with a

GMGHS solution with q = 1.1. We consider three models with α = 0.1, 1, 10. The evolution

changes the value of the scalar field and increases slightly the value of the charge to mass

ratio of the BH. We obtain, respectively, q = 1.1001, 1.1001, 1.101. The radial profile of the

scalar field can be matched with a AAM BH with, respectively, Qs = 1.10, 1.03, 0.8. The

profiles of the scalar field at t = 1000 and the evolution (left panel) of the evolution of the

scalar field at some extraction radius (right panel) can be seen in figure 7.

These evolutions agree with our expectations. Starting from RN, but forcing the

system to evolve to an AAM solutions, due to the dilaton coupling, the BH grows a scalar

charge. Starting from GMGHS, but forcing the system to evolve to an AAM BH due to the

non-trivial potential, the BH loses some scalar charge. The first/second case establishes

the dynamical formation of an undercharged/overcharged AAM BH.

5 Thermodynamic stability

The thermodynamic stability of hairy black holes can be subtle [48, 49] because it depends

on the boundary conditions imposed on the scalar field. In flat spacetime, the usual ADM

mass does not satisfy the first law of thermodynamics when the asymptotic value of the

scalar can vary [48]. This case is quite common in string theory, where the scalar fields are

dynamical and control the coupling constants of the theory. In such a situation, one has

to reconsider the variational principle by consistently including new terms that take care

of the variation of the asymptotic value of the scalar field [22]. A similar situation appears

in AdS spacetime [49] when the conformal symmetry is broken at the boundary [50–52].

Interestingly, the thermodynamic of the class of asymptotically flat hairy black hole

solutions considered in our work is not affected by the previous considerations. A detailed

computation of the Euclidean action and energy using the quasilocal formalism of Brown

and York [53] can be found in section 3.2 of [15] and we do not repeat it here. However,

let us present a general physical argument based on comparison with the AdS case. In flat

space the scalar field has an asymptotic expansion as

φ = φ∞ +
Σ

r
+ . . . (5.1)

If the asymptotic value of the scalar is not fixed, the total energy has a contribution from the

scalar field [22] and, to get an integrable mass, one has to impose a constraint on φ∞ and Σ

similar with the one imposed in ‘designer gravity’ [54]. However, notice that in the presence

of the dilaton potential, the asymptotic flatness can be obtained only when the boundary

value of the dilaton is fixed. That is, the form (2.2) of the scalar field potential together with

the finite mass requirement imposes the boundary condition φ∞ = 0 (this is similar with,

e.g., Dirichlet boundary condition in AdS). In this case, the contribution of the scalar

is subleading and the total energy computed by the asymptotic observer is not affected

and matches the ADM energy. This can be also explicitly checked when evaluating the
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thermodynamic quantities for our exact solutions. We observe that the scalar charge is not

an independent quantity and, since φ∞ = 0, it is fixed completely by the mass and electric

charge and there is no extra independent parameter that can be varied in the first law.

More importantly, as pointed out in [15], a unique property (within asymptotically flat

spacetime BHs) of AAM BHs is that they possess a subset which is locally thermodymically

stable. We shall now examine precisely when this occurs in the domain of existence.

Thermodynamic stability can be local or global. Moreover, different thermodynamic

ensembles represent physically different situations and may not lead, in general, to the

same conclusions regarding the thermodynamic stability. Mathematically, (local) ther-

modynamic stability is equated with the sub-additivity of the entropy function. In the

canonical ensemble, this is equivalent to the positivity of the specific heat at constant

electric charge

CQ = TH

(
∂S

∂TH

) ∣∣∣∣
Qe

> 0 . (5.2)

In the grand canonical ensemble, one requires instead the positivity of the specific heat at

constant electric potential, and the positivity of the isothermal permittivity

CΦ = TH

(
∂S

∂TH

) ∣∣∣∣
Φ

> 0 , and εT =

(
∂Qe
∂Φ

) ∣∣∣∣
TH

> 0 . (5.3)

In fact, if CQ and εT are positive, the identity

CΦ = CQ + THεTα
2
Q , where αQ ≡

(
∂Φ

∂TH

) ∣∣∣∣
Qe

, (5.4)

implies CΦ > 0. Thus, local thermodynamic stability follows from CQ > 0 and εT > 0.

For the Schwarzschild BH there are no electric variables and the specific heat is negative

C = −8πM2 < 0 , (5.5)

which means it is locally thermodynamically unstable. For the RN BH, parameterised in

terms of rH , Q, BH solutions exist for Qe 6 rH . The specific heats are

CQ =
2πr2

H(r2
H −Q2

e)

3Q2
e − r2

H

, CΦ = −2πr2
H < 0 , (5.6)

whereas the electric permittivity is

εT = −
rH(3Q2

e − r2
H)

r2
H −Q2

e

. (5.7)

Thus, RN BHs exhibit two phases, depending on the sign of r2
H − Q2

e, which vanishes for

q =
√

3/2. For q <
√

3/2, CQ < 0 and εT > 0. This is the Schwarzschild-like phase.

For q >
√

3/2, CQ > 0 and εT < 0. This is the near extremal RN-like phase. RN BHs

are stable in the canonical ensemble in the near extremal RN-like phase. But they are

always unstable in the grand canonical ensemble. Notice, however, that CQ is vanishing at
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Figure 8. The three thermodynamic phases of AAM BHs plotted in the same representations of

the domain of existence shown in figure 2.

extremality, wherein εT is diverging. Thus, the RN family seems to be approaching a new

phase at extremality, wherein BHs cease to be possible.

For the GMGHS family with γ = 1, parameterised by M, rH , the response functions

take the simple form

CQ = −8πM2 < 0 , CΦ = −2πr2
H < 0 , εT = 2M > 0 . (5.8)

The negativity of the specific heats implies local thermodynamical instability.

In the AAM case, the expression of CQ, CΦ, and εT are long and not enlightening [15],

thus we do not include them here. All the response functions can, nonetheless, be presented

as functions of rH and Qe. A study of these quantities show the existence of a region in the

domain of existence where the thermodynamic stability is satisfied in both canonical and

grand-canonical ensembles. This region is bounded by the set of extremal solutions TH = 0

and a set of critical configurations where CΦ and εT diverge (and change sign afterwards)

while CQ remains positive and finite. The critical configurations are found numerically,

the relations

aH =

(
q −
√

2

1−
√

2

)(
1

4
+ (0.220± 0.001)(q − 1) + (0.12± 0.05)(q − 1)2

−(5.5± 0.5)(q − 1)3 + (23± 2)(q − 1)4 − (41± 2)(q − 1)5

)
,

aH = (1− tH)3

(
1

4
+ (0.3807± 0.0007)tH − (0.621± 0.009)t2H − (1.34± 0.04)t3H

+(2.12± 0.05)t4H

)
.

providing a good fit for the corresponding curves in figure 8. Let us also remark that all

thermodynamically stable AAM BHs have 1 < q <
√

2, while
√

2/2 < Φ < 1.

Moreover, the set of locally thermodynamically stable solutions are also globally stable.

That is, in a grand canonical ensemble, (i.e. for the same TH ,Φ) they minimise the Gibbs
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Figure 9. (Left panel) The Gibbs free energy vs. temperature for fixed chemical potential ensemble.

(Right panel) The Helmholtz free energy vs. temperature for the fixed charge ensemble. In both

plots, the BHs exist in the light blue region only, the shaded blue region corresponding to stable

phase solutions.

free energy

G = M − THS − ΦQe . (5.9)

The generic picture is summarised in figure 9 (left panel). For any value of 1/
√

2 < Φ < 1,

the G(TH) curve consists in two parts. The branch minimizing the free energy G starts at

TH = 0 and ends at some maximal TH(Φ), consisting in configurations which are locally

stable. The situation changes for Φ < 1/
√

2, in which case, similar to the RN or GMGHS

cases, one single branch of locally unstable solutions is found,7 with G > 0.

When considering instead a canonical ensemble, one finds the existence of two branches,

for any (fixed) value of the electric charge Qe. The solutions minimising the Helmholtz

free energy

F = M − THS , (5.11)

are located on the lower branch, which starts with the TH = 0 extremal BHs. These

configurations have also a positive specific heat, CQ > 0, while a part of them are also

stable in a grand canonical ensemble, CΦ > 0.

To summarise, we conclude that a set of AAM solutions which are overcharged, q > 1,

and with a large enough chemical potential, Φ > 1/
√

2, are thermodynamically stable,

both locally and globally.

6 Conclusions

In this paper we have discussed the set of BH solutions found in [14] within Einstein-

Maxwell-dilaton theory with a certain dilaton potential. Such AAM BHs can be thought of

as a family of solutions that interpolates between the standard RN electrovacuum BHs and

7One finds

G =
(1 − Φ2)2

16πTH
for RN BHs, and G =

1 − 2Φ2

16πTH
for GMGHS BHs, (5.10)

while the corresponding expression for AAM BHs cannot be explicitly written in terms of Φ, TH .
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the GMGHS solutions of low energy heterotic string theory in four dimensions, retaining

some of the features of both these limits. In particular, these BHs have a regular extremal

limit and no electric charge outside the horizon, analogously to the RN BH; on the other

hand, they can be overcharged, i.e. to have a charge to mass ratio exceeding unity, as

GMGHS. The combination of these properties allows in particular the exceptional feature

in BH physics of exhibiting thermodynamical stability in both the canonical and grand

canonical ensemble. In this sense, the overcharged AAM BHs can be faced as an extension

of the RN family beyond extremality.

Although there is a subset of AAM BHs that have both dynamical and thermody-

namical stability, they are still afflicted by the decay induced by quantum effects, that is,

Hawking radiation, except for the extremal solutions. The extremal AAM BHs are then

stable also against Hawking evaporation. One cannot exclude, however, if these solutions

are not supersymmetric, that non-perturbative effects may destabilise them.

We would like also to point that similar results in the thermodynamical analysis have

been found for a second model discussed in [15], still described by (2.1), but with γ =
√

3

and a different V (φ). Clearly, some of the analysis herein could be repeated for that model.

Finally, despite the ingredients we have identified, we cannot pinpoint exactly the

mechanism behind the existence of these dynamically and thermodynamically stable BHs.

In particular the properties of the potential that permit them to exist. It is well known that

AdS BHs can become thermodynamically stable. It is then tempting to think the dilaton

potential is inducing AdS-like features. There is, however, an important difference between

these two cases. In the AdS case, large BHs are thermodynamically stable; in the case

analysed herein, the stable BHs are the smallest ones. In this respect it is worth remarking

that the potential (2.2) is decaying towards the spatial infinity in the AAM BH solutions.

Thus, even if induces a box-like effect, such effect may be more effective for small BHs.
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