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The system-size dependence of hadrochemistry at vanishing baryon density is considered within the canonical
statistical model (CSM) with local exact conservation of three conserved charges, allowing for a possibility of
strangeness undersaturation, i.e., γS � 1. Exact baryon number conservation is found to be even more important
than that of strangeness in the canonical suppression picture at the CERN Large Hadron Collider, in contrast
to intermediate and low collision energies. The model is applied to p-p, p-Pb, and Pb-Pb data of the ALICE
Collaboration. A chemical equilibrium CSM with a fixed Tch = 155 MeV describes the trends seen in most yield
ratios. However, this “vanilla” version of CSM predicts an enhancement of the φ/π ratio at smaller multiplicities,
in stark contrast to the suppression seen in the data. The data are described with a 15% relative accuracy level
whence a multiplicity dependence of both the temperature and the strangeness saturation parameter γS � 1 is
accepted. Both the canonical suppression and the strangeness undersaturation effects are small at dNch/dη �
100, but they do improve substantially the description of hadron yields in p-p collisions, in particular the �

yields. A possibility to constrain the rapidity correlation volume using net-proton fluctuation measurements is
pointed out.
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I. INTRODUCTION

A rich body of experimental data on the production of
light flavor hadrons produced at CERN Large Hadron Collider
(LHC) energies have recently become available, through the
analysis of p-p [1], p-Pb [2–4], and Pb-Pb [5–8] collisions.
This comprehensive set of multiplicity-dependent data does
allow for a detailed test of production models. Such data
are often analyzed in the framework of Monte Carlo event
generators for p-p collisions, such as PYTHIA8 [9,10], DIPSY

[11], or EPOS LHC [12]. Hadron yield data from central Pb-Pb
collisions are often described on a 10–15% overall level in
statistical models which employ the grand-canonical statisti-
cal ensemble [13–15].

The centrality dependence of the chemical freeze-out tem-
perature is usually neglected in the grand-canonical statisti-
cal approach, therefore the same constant hadron yield ra-
tios are predicted for all multiplicities. This evidently can-
not describe the observed data, in particular the enhanced
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production of strange hadrons at higher multiplicities [16].
Multiplicity dependence does, however, emerge from a statis-
tical model when exact conservation of conserved charges is
treated within the canonical ensemble: canonical corrections
to hadron yields become important for sufficiently small re-
action volumes, as was pointed out long time ago [17,18].
Strangeness enhancement observed in central Pb-Pb collisions
has been interpreted as the absence of the canonical suppres-
sion effects in large systems [19].

The strangeness-canonical ensemble picture has already
been applied at the LHC in an ALICE publication [1], where
a qualitative description of the multiplicity dependence of
ratios of strange hadron yields to pions was obtained. In our
previous work [20], the canonical statistical model (CSM),
which treats the exact conservation of all three conserved
charges—baryon number, electric charge, and strangeness—
was applied to the multiplicity dependence of the yields of
light (anti)(hyper)nuclei. A good qualitative description of
the available data was obtained. The present work extends
these two analyses to cover all (stable) light flavoured hadrons
measured by the ALICE Collaboration in p-p collisions at
7 TeV, p-Pb collisions at 5.02 TeV, and Pb-Pb collisions at
2.76 TeV. The importance of baryon number conservation
for LHC energies is emphasized, in addition to the conser-
vation of strangeness. Separately, the effects of a multiplicity-
dependent chemical freeze-out temperature as well as incom-
plete chemical equilibration are considered here.
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II. CANONICAL STATISTICAL MODEL

The standard statistical approach considers an ideal hadron
resonance gas (HRG) in thermal and chemical equilibrium
at the chemical freeze-out stage. In the canonical ensemble,
the three Abelian charges considered—the baryon number
B, the electric charge Q, and the strangeness S—are fixed
to particular values which are conserved exactly across the
so-called correlation volume Vc. The CSM partition function
at a given temperature T and correlation volume Vc reads
[21,22]

Z (B, Q, S) =
∫ π

−π

dφB

2π

∫ π

−π

dφQ

2π

∫ π

−π

dφS

2π
e−i (BφB+QφQ+SφS )

× exp

⎡
⎣∑

j

∞∑
n=1

zn
j ei n (BjφB+QjφQ+S jφS )

⎤
⎦. (1)

Here the first sum, denoted by index j, is over all species
included in the list while the second sum over n takes into ac-
count the quantum statistics. Bj , Qj , and S j are, respectively,
the baryon number, electric charge, and strangeness carried by
the particle species j, and zn

j corresponds to the single-particle
partition function

zn
j = (∓1)n−1 Vc

∫
dm ρ j (m) d j

m2T

2π2n2
K2(n m/T ). (2)

Here d j is the degeneracy factor for particle species j, the
minus sign is for fermions and the plus sign is for bosons. The
integration over the mass distribution ρ j (m) in Eq. (2) takes
into account the finite widths of the resonances. In the present
work we adopt the energy-dependent Breit-Wigner scheme,
which was recently advocated for the statistical model de-
scription at LHC energies [23]. The mean multiplicities of
various particle species are calculated by introducing fictitious
fugacities into the partition function (1) and calculating the
corresponding derivatives with respect to these fugacities (for
details see Refs. [21,22]). The result is

〈
Nprim

j

〉ce =
∞∑

n=1

Z (B − nBj, Q − nQj, S − nS j )

Z (B, Q, S)
n zn

j . (3)

Here the first factors are the canonical chemical factors, which
appear due to the requirement of exact conservation of the
conserved charges. The final particle yields, 〈N tot

j 〉ce, are then
calculated by including the various feed-down yields stem-
ming from the strong and electromagnetic decays of unstable
resonances (for details see Ref. [23]). Here we incorporate all
hadrons and resonances which have an established status in
the 2014 edition of the Particle Data Tables [24].

The quantum statistical effects at the LHC are quite small
for most particles except for the primary pions. Therefore,
here we neglect the quantum statistical effects for baryons,
i.e., the sum over n is truncated at the first term for all
baryon species. For the mesons we include ten terms in the
sums for pions, five terms for mesons lighter than 1 GeV,
and three terms for all heavier mesons. Charmed mesons are
not included here. An implementation of excluded-volume
corrections is nontrivial in the canonical ensemble and is not
considered in the present work.

One may consider a selective canonical treatment of cer-
tain conserved charges, while preserving the grand-canonical
treatment of other charges. For example, to preserve the
grand-canonical treatment of the electric charge conservation,
let φQ = 0 in the integrand in Eq. (1) and introduce the electric
charge fugacity factor λn

Q into Eq. (2). A selective canonical
treatment of conserved charges can clarify the importance of
various conservation laws for a given system. At the LHC the
selective canonical treatment has previously been considered
only for strangeness, whereas the baryon and electric charge
were treated grand canonically [1,25].

The CSM as described above is implemented in the open
source THERMAL-FIST package [26]. All results presented here
are obtained using this package. The annotated macros used to
obtain results presented in this paper, as well as the resulting
data files, are publicly available [27].

III. THE ROLES OF DIFFERENT CONSERVED CHARGES
IN THE CANONICAL PICTURE

The effects of exact charge conservation turn out to be im-
portant when the number of particles with the corresponding
conserved charge is sufficiently small, typically when it is of
the order of unity or less [21,22,28]. The exact conservation
of strangeness has commonly been applied only within the
so-called strangeness canonical ensemble at both intermedi-
ate and at low collision energies as reached, e.g., at GSI’s
Schwer-Ionen-Synchrotron (SIS) and BNL’s Alternating Gra-
dient Synchrotron (AGS) accelerator facilities [29–32]. This
had been motivated by the small abundances of strange par-
ticles produced in those reactions. The strangeness-canonical
picture has recently also been applied for conditions realized
at the BNL Relativistic Heavy Ion Collider (RHIC) Beam
Energy Scan [33] and at the LHC [1]. There, however, the
abundance of particles carrying strangeness is not necessar-
ily small compared to those carrying baryon number and/or
electric charge.

To clarify this question, the relative abundances of particles
carrying various conserved charges are evaluated as functions
of the collision energy, along the phenomenological chemical
freeze-out curve1 [35]. The results are depicted in Fig. 1,
which confirms the expected small relative abundances of
strange hadrons at moderate and at low collision energies,√

sNN � 10 GeV. The strangeness-canonical ensemble is a
good starting point for studying the canonical effects at the
freeze-out conditions realized at GSI and the Facility for
Antiproton and Ion Research (FAIR), and at the moderate
energies of the beam energy scan programs at the Super
Proton Synchrotron (SPS) and RHIC. However, the abun-
dance of (anti)baryons is smaller than that of strange hadrons
at higher collision energies,

√
sNN � 10 GeV. The role of

exact conservation of baryon number at the LHC therefore is
expected to be even more important than that of strangeness.

The matter created in various colliding systems at the
LHC is observed to be baryon symmetric [1,2,5], thus it is

1Very similar results are obtained when using the updated freeze-
out curve from Ref. [34].
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FIG. 1. Dependence of the hadron number fractions carrying
baryon charge (solid black lines), electric charge (dashed blue lines),
and strangeness (dash-dotted red lines) on the collision energy, as
evaluated in the grand-canonical statistical model along the phe-
nomenological chemical freeze-out curve [35]. nB, nQ, and nS here
represent a sum of densities of particles and antiparticles.

characterized by zero values of the conserved net charges.
The role of the various conservation laws at the LHC can best
be evaluated from the final yields of various hadron species
as obtained in the statistical model with different mixed-
canonical ensembles, as a function of the correlation volume
Vc. The computed yields are normalized by the limiting grand-
canonical values. This is depicted in Fig. 2. The canonical
effects are evidently important for Vc � 100–1000 fm3 at
T = 155 MeV. The effects of various conservation laws are
different for different hadron species. The exact conservation
of strangeness drives the large canonical suppression effect
for the yields of triple-strange � baryons. It also has a strong
influence on the yields of 	’s and, to a lesser extent, kaons.
The strangeness conservation is subdominant for other yields.
Exact baryon number conservation is most important for the
yields of protons and 
’s. It also yields a sizable influence
on the yields of 	’s. The exact conservation of the electric
charge is important for pions. Even the final yields of π0

are affected by the canonical effects. Even though π0 is a
neutral particle, the yields of π0 receive sizable feed-down
contribution from unstable resonances, which are affected by
the canonical suppression. The final yields of charged pions
are affected by the baryon and strangeness conservation for
the same reason. The yields of φ mesons are found to be
unaffected by any canonical effects, as the φ meson is a
neutral particle with no known feed-down contributions from
non-neutral particles.

These results prove that only the simultaneous canonical
treatment of all three conserved charges is sufficient for
a quantitative CSM application to the LHC data for Vc �
100 fm3. A grand-canonical treatment of the electric charge
might be permitted for values of Vc � 100 fm3. We do not find
such conditions at the LHC where a strangeness-only canoni-
cal treatment of the relevant hadron yields is appropriate.

In the following, we apply the CSM with the simultaneous
exact conservation of all three conserved charges: the baryon
number B, the electric charge Q, and strangeness S.

IV. VANILLA CSM AT THE LHC

A. Correlation volume

The matter produced and observed at the LHC in the
central rapidity region is nearly baryon symmetric, even on
an event-by-event basis. Hence, we do employ the canonical
ensemble method using zero net values of all conserved
charges, i.e., B = Q = S = 0.

To apply the CSM to experimental data one needs to relate
the mean multiplicities 〈Nce

j 〉tot calculated in the CSM to
the rapidity densities, dNj/dy, measured experimentally. The
connection between the correlation volume Vc and the volume
dV/dy which corresponds to one unit of rapidity needs to be
established. This entails a conceptual issue for the approach:
all midrapidity slices of the system are open systems, where
net values of conserved charges fluctuate from one event to
another. Hence, there is no reason to enforce Vc = dV/dy. On
the other hand, as particle production processes are typically
localized in space microscopically, a consideration of local
conservation of charges, which translates to localized regions
in the longitudinal rapidity [36], seems feasible. Our earlier
work [20] has varied Vc between one and few units of rapidity,
i.e., Vc = k dV/dy with k � 1. This choice is suggested by
consideration of a causal connection of fireballs which popu-
late the longitudinal rapidity space [36].

It is argued here that estimates for the value of k can
be obtained from measurements of net-proton fluctuations in
high-energy reactions at the LHC. Fluctuation measurements
are affected by conservation laws [28,37–40]. These lead to
deviations from the independent particle production baseline
(Poisson statistics). For instance, assuming that net-proton
fluctuations measured in a particular acceptance are affected
by the exact conservation of baryon number in a certain cor-
relation volume, whereas the role of other conservation laws
and of dynamical effects is negligible, one obtains the ratio
κ2(p − p̄)/(〈p〉 + 〈p̄〉) of variance of net-proton fluctuations
to the mean number of protons and antiprotons at the LHC
[37,39]:

κ2(p − p̄)

〈p〉 + 〈p̄〉 = 1 − α. (4)

Here α is the ratio of the mean number of protons 〈p〉 in
the acceptance window where the net-proton fluctuations are
measured relative to the mean number of B = +1 baryons in
the correlation volume across which the exact baryon number
conservation is enforced.

The quantity κ2(p − p̄)/(〈p〉 + 〈p̄〉) has been measured
by the ALICE Collaboration in Pb-Pb collisions at

√
sNN =

2.76 TeV for various centralities. Preliminary data have been
presented in Ref. [41] for the acceptance window 0.6 <

p < 1.5 GeV/c in momentum and |η| < 0.8 in pseudorapid-
ity. The measured ratio values are below unity, which has
been attributed to the baryon number conservation [41]. To
connect these measurements with the assumed local baryon
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FIG. 2. Correlation volume dependence of the ratios of various final hadron yields calculated in full canonical (black lines), baryon-
strangeness canonical (dashed green lines), baryon-canonical (dash-dotted blue lines), strangeness-canonical (dotted red lines), and charge-
canonical (dash-double-dotted gray lines) ensembles relative to the limiting grand-canonical values. Calculations are performed at T = 155
MeV for zero values of conserved charges, which corresponds to the various systems created in p-p, p-A, and A-A collisions at the LHC.

conservation2 in a correlation volume Vc = k dV/dy around
midrapidity, we assume that longitudinal boost invariance
holds in the rapidity region −k/2 < y < k/2. This is a rea-
sonable approximation as long as one stays within a few units
around midrapidity. These considerations can be further im-
proved by using measurements of balance functions [42,43],
as discussed recently in Ref. [40]. The parameter α is given
by

α = 〈p〉
k dNB/dy

, (5)

Here dNB/dy is the rapidity density of the B = +1 baryons,
thus k dNB/dy is the mean number of baryons in the correla-
tion volume Vc. Our statistical model estimate suggests that
the final state protons correspond to approximately a third

2The consideration of local baryon number conservation is one
difference from prior studies [39,41] where a global conservation
was studied instead.

of all final state baryons at the LHC, the rest being equally
distributed between neutrons and hyperons. Thus, dNB/dy ≈
3 dNp/dy. The value of k can therefore be estimated from
Eq. (5) for a given centrality from the measured values of
α ≡ 1 − κ2(p − p̄)/(〈p〉 + 〈p̄〉), 〈p〉, and dNp/dy:

k ≈ 〈p〉
3 α dNp/dy

. (6)

For the most peripheral available Pb-Pb bin (60-70%) one has
α 	 0.07 and 〈p〉 	 1.14 [41] and dNp/dy 	 1.9 [5], which
gives k 	 3. Analysis of other centrality bins gives values
in the range k ≈ 3–4, with the exception of the two most
central bins, where higher values of k ≈ 5–6 are indicated
by the data, suggesting that local conservation assumption
likely approaches the global conservation assumption for
larger systems. The analysis suggests that k ≈ 3–6 might be
a reasonable estimate for the canonical correlation volume. A
detailed analysis of the upcoming fluctuation data from the
ALICE Collaboration will be reported elsewhere, once the
net-proton fluctuation data are finalized.
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FIG. 3. The ratios of various final hadron-to-pion yields are plotted versus charged the pion multiplicity as evaluated in the vanilla CSM
with exact conservation of baryon number, electric charge, and strangeness. The green circles, blue squares, and red diamonds depict the
corresponding ratios as measured by the ALICE Collaboration at the LHC in p-p (7 TeV), p-Pb (5.02 TeV), and Pb-Pb (2.76 TeV) collisions,
respectively. Both the calculated results and the data are scaled by the grand-canonical limiting values as evaluated in the CSM at T = 155 MeV
for μB = 0.

B. Assumptions

The simplest version of the CSM applied to the LHC
data, dubbed the “vanilla” CSM, is based on the following
scenario:

(1) The full chemical equilibrium is established at the
chemical freeze-out stage.

(2) A constant chemical freeze-out temperature of T =
155 MeV exists across all multiplicity bins, as sug-
gested by the statistical model fits to the hadron yield
data in most central Pb-Pb collisions.

(3) The multiplicity dependence of various hadron yield
ratios is driven by the canonical suppression only, i.e.,
by the changing value of Vc.

(4) The correlation volume in rapidity is varied between
Vc = dV/dy and Vc = 6 dV/dy.

C. Results

Figure 3 depicts the ratios p/π , K/π , φ/π , 
/π , 	/π , and
�/π , evaluated as a function of dNπ/dy, using the vanilla
CSM for Vc = dV/dy, Vc = 3 dV/dy, and Vc = 6 dV/dy.
Both the calculated values and the data are normalized by the
limiting grand-canonical values of the ratios as calculated in
the CSM. Figure 3 does reflect the limited level of agreement
of the statistical model with the data. This is true also in the
limit of high multiplicities, i.e., for central Pb-Pb collisions.
This is different from the strangeness-canonical ensemble
analysis presented in Ref. [1], where the data and the model

results were normalized separately by the high-multiplicity
limiting values in the data and in the model, respectively.

The vanilla CSM provides a fair description of the 
/π ,
	/π , and �/π ratios. The trend of a decreasing K/π ratios
at small multiplicities is also captured, although the model
overshoots the data rather severely. The description of the
K/π ratio worsens as multiplicity is decreased. The p/π ratio
is strongly affected by the canonical suppression in the model.
The data, on the other hand, show a suppression of p/π at
high multiplicity, but no conclusive evidence for a suppression
of p/π in small systems, except for the lowest multiplicity
bins in p-p collisions. The vanilla CSM agrees with the data
only if a rather large correlation volume Vc 	 6 dV/dy value is
used, which is not supported by the observed yields of strange
hadrons.

The vanilla CSM had been used to study the multiplicity
dependence of the yields of light nuclei at the LHC [20]. The
CSM predicts the suppression of the ratios d/p, 3He/p, 3


H/p,
and 4He/p at the lower multiplicities. A fair description of
the available data on d/p and 3He/p was achieved for Vc =
3 dV/dy. This result puts the vanilla CSM in a certain tension
with the p/π ratio data: p/π is notably suppressed in the
model for Vc = 3 dV/dy already for multiplicities which do
not show a suppression in the data.

A severe problem is seen in Fig. 3 when describing the
data of the φ/π ratio: the φ meson yield is unaffected by
canonical suppression, as φ is a neutral meson. The yields of
pions, however, are suppressed by the canonical suppression
(see Fig. 2), which leads to a predicted strong increase of
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the φ/π ratio towards smaller multiplicities. However, the
data show just the opposite: the φ/π ratios are smaller at
smaller multiplicities. Unless the production mechanism for φ

is completely different from all other hadrons, this invalidates
the vanilla CSM picture in p-p and p-Pb collisions.

V. CSM WITH INCOMPLETE EQUILIBRATION OF
STRANGENESS AND MULTIPLICITY

DEPENDENT TEMPERATURE

A. Considerations

The relatively simple vanilla CSM successfully describes
certain features of the measured yield data at the LHC. More
involved considerations are necessary in light of the tensions
of the model with the data on p/π , K/π and, in particular, the
φ/π ratio (see Fig. 3).

Consider a possibility that the chemical freeze-out tem-
perature is not constant across all multiplicities, but that
smaller systems might be characterized by larger chemical
freeze-out temperatures. This would correspond to an earlier
decoupling of the inelastic hadronic reactions, e.g., stemming
from larger radial flow gradients in smaller collision systems
[44]. This type of a scenario is observed for the decoupling
of the (pseudo)elastic hadronic reactions, characterized by
the kinetic freeze-out temperature values extracted from the
blast-wave fits to the pT spectra of pions, kaons, and pro-
tons [1,5]. The larger Tkin values observed in p-p collisions
(Tkin ≈ 170 MeV) as compared to central Pb-Pb collisions
(Tkin ≈ 100 MeV) seem to indicate an earlier decoupling of
these reactions in small systems, which usually also implies a
shorter lifetime of the hadronic phase.

The suppression of the φ/π ratio observed in smaller
collision systems, as well as the severe overestimation of the
data on the K/π ratio, may indicate incomplete chemical
equilibrium in the thermal-statistical picture. One possible
remedy is a multiple chemical freeze-out scenario with an
earlier freeze-out of strangeness [45,46]. The present work
incorporates the incomplete equilibration of strangeness into
the CSM by introducing the strangeness saturation factor
γS [47,48], which results in the following modification of
the one-particle partition function in Eq. (2): zn

j → γ
|s j |
S zn

j ,
|s j | being the number of strange quarks and antiquarks in
the quark content of particle species j. The φ meson is a
particularly interesting species in this regard: φ is a neutral
particle with zero net strangeness which is unaffected by the
exact conservation of strangeness in the canonical suppression
picture. In the strangeness nonequilibrium picture, however,
φ is a double-strange particle consisting of a strange quark-
antiquark pair. This is similar to fragmentation models [9–12],
where coalescence of two strangeness carrying strings is
needed to form φ, making this meson behave as effectively
a double-strange particle. The experimentally observed sup-
pression of the φ/π ratio suppression at small multiplicities
suggests an introduction of a multiplicity-dependent γS � 1.

B. The data set and fitting procedure

The model which includes the two last considerations
above, termed γSCSM, is used to perform thermal fits to

the yields of π , K , KS
0 , φ, p, 
, 	, and �, as measured

by the ALICE Collaboration in different centrality bins at
7 TeV p-p [1], 5.02 TeV p-Pb [2–4], and 2.76 TeV Pb-Pb
[5–8] collisions. The yields of particles and antiparticles are
symmetrized, i.e., mean values of particle and antiparticle
yields are taken. The following centrality bins are considered:
V0M I–II, III–IV, V–VI, VII–VIII, IX–X in p-p; V0A 0–5%,
5–10%, 10–20%, 20–40%, 40–60%, 60–80%, and 80–100%,
in p-Pb, and 0–10%, 10–20%, 20–40%, 40–60%, and 60–80%
in Pb-Pb. The centrality binning for the φ’s in p-p is different
from the binning of other yields (see Table 12 in Ref. [1]).
The φ yields are reconstructed in the needed centrality bins
from the neighboring centrality bins through a linear interpo-
lation in charged multiplicity. The parameters fitted are the
temperature, T , the volume per rapidity unit, dV/dy, and the
strangeness saturation parameter, γS . All conserved charges in
the CSM fit are fixed to zero: B = Q = S = 0. Two cases are
considered: Vc = 3 dV/dy and Vc → ∞. The latter case cor-
responds to the grand-canonical statistical model calculation
while in the former case a local exact charge conservation in a
volume suggested by measurements of net-proton fluctuations
(see Sec. IV A) is enforced.

A similar analysis, including γS , was recently presented in
Ref. [25]. There are two important differences there compared
to the present work: (i) in Ref. [25] the φ meson yields were
excluded from the fits, but here they are included; (ii) in
Ref. [25] the canonical correlation volume was forced to be
equal to the volume per one unit of rapidity, Vc = dV/dy, but
here this is not the case. In fact, it is the Vc = dV/dy constraint
which appears to be the primary reason why the analysis of
Ref. [25] has difficulties accommodating the φ meson yields
in the γSCSM picture.

C. The extracted parameters

The values of the extracted parameters are depicted
in Fig. 4 as a function of the charged multiplicity
〈dNch/dη〉|η|<0.5. For 〈dNch/dη〉|η|<0.5 � 50 the results be-
tween the γSCSM and the grand-canonical γSSM are almost
identical, indicating that the canonical effects are irrelevant
for very large systems. There are important differences at
〈dNch/dη〉|η|<0.5 � 50:

(1) The fit quality in p-p is systematically better for p-p
within the canonical ensemble than within the GCE.
On the other hand, fits to the p-Pb data do not indicate
a preference of the canonical ensemble relative to the
GCE. In fact, the data description in the lowest two
multiplicity bins in p-Pb is superior for GCE than for
the CE. The apparent differences between p-p and
p-Pb appear to be related to the data quality of the
measured � yields: in p-p collisions the experimental
uncertainties are notably smaller than in p-Pb. If �

yields are removed from the p-p fits, then no prefer-
ence of the canonical picture over the grand-canonical
one is seen. We conclude that � yields are a sensitive
probe to distinguish the effects of canonical suppres-
sion from an incomplete equilibration of strangeness.
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(a)

(c)

(b)

(d)

FIG. 4. Results of the thermal fits to p-p (circles), p-Pb (squares), and Pb-Pb (diamonds) data of the ALICE Collaboration within the
CSM with Vc = 3 dV/dy (full black symbols) and in the grand-canonical limit Vc → ∞ (open red symbols). The dependence of the chemical
freeze-out temperature T (a), the strangeness saturation parameter γS (b), the volume per unit rapidity dV/dy (c), and χ2/dof (d) on the charged
particle multiplicity 〈dNch/dη〉|η|<0.5 is depicted. The lines in (d) connect the extracted χ2/dof values in different multiplicity bins in different
systems to guide the eye.

New and accurate measurements of � yields in p-p
and p-Pb will thus be important in that regard.

(2) For Vc = 3 dV/dy the extracted temperature decreases
monotonically with dNch/dη, from the maximum
value of T 	 175 MeV for the lowest multiplicity
bins in p-p collisions to the minimum value of T 	
155 MeV in the most central Pb-Pb collisions. This
is in line with a possible earlier chemical freeze-out
in smaller systems as discussed above. In the GCE
picture, the extracted temperature behaves in the oppo-
site way: T is the smallest for the smallest multiplicity
bins.

(3) The strangeness saturation parameter γS is a monotoni-
cally increasing function of dNch/dη, reaching γS 	 1
at dNch/dη � 100–200. For p-p and p-Pb the values
of γS in the GCE analysis are somewhat smaller than
those in the CE analysis, in particular for dNch/dη �
10. These smaller values of γS may mimic the canoni-
cal suppression of strangeness in the GCE picture.

(4) dV/dy is a monotonically increasing function of
dNch/dη. The CE fits are described fairly well with
a linear dependence, dV/dy [fm3] 	 2.4 dNch/dη, as

shown by the dashed black line in Fig. 4. The dV/dy
dependence on dNch/dη extracted from the GCE fits,
on the other hand, does not show a linear dependence
if the whole range of dNch/dη values is considered.

Overall, the behavior of the extracted parameters gives
a fairly consistent picture in the γSCSM case with Vc =
3 dV/dy. We provide the charged multiplicity dependence
of the extracted parameters in a parametrized form. The
parametrization corresponds to a multiplicity range 3 �
dNch/dη � 1500.

The chemical freeze-out temperature is given by

T = T0 − �T ln(dNch/dη), (7)

with T0 = (176 ± 1) MeV and �T = (2.6 ± 0.2) MeV.
The strangeness saturation parameter γS is

γS = 1 − A exp

[
−dNch/dη

B

]
. (8)

Here A = 0.25 ± 0.01 and B = 59 ± 6.
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(a) (b) (c)

(d) (e) (f )

FIG. 5. The dependence of yield ratios (a) p/π , (b) K/π , (c) φ/π , (d) 
/π , (e) 	/π , and (f) �/π on the charged particle multiplicity
〈dNch/dη〉|η|<0.5, evaluated in the γSCSM with Vc = 3 dV/dy for the thermal parameters extracted for each multiplicity bin through the χ2

minimization. The green circles, blue squares, and red diamonds depict the corresponding ratios measured by the ALICE Collaboration in p-p
(7 TeV), p-Pb (5.02 TeV), and Pb-Pb (2.76 TeV) collisions, respectively; the bands depict the corresponding experimental uncertainties.

Finally, as already pointed out above, the volume parame-
ter dV/dy is linearly proportional to dNch/dη:

dV/dy = v dNch/dη, v = (2.4 ± 0.2) fm3. (9)

We have additionally considered γSCSM fits with Vc =
dV/dy. The extracted temperature exhibits even larger values
at small multiplicities, reaching Tch ≈ 200 MeV for the lowest
p-p bin, in agreement with the results reported in Ref. [25].
We find that the canonical effects in the Vc = dV/dy case are
too strong in p-p and p-Pb collisions, leading to a significant
worsening (χ2/dof ≈ 5–20) of the data description quality at
small multiplicities dNch/dη � 10.

D. Hadron yield ratios

Figure 5 shows the dependence of the yield ratios p/π ,
K/π , φ/π , 
/π , 	/π , and �/π on the charged particle
multiplicity 〈dNch/dη〉|η|<0.5, as evaluated in the γSCSM with
Vc = 3 dV/dy for the thermal parameters extracted from the
fits. The γSCSM reproduces quite well the trends observed in
the data. This also includes the rather abrupt jump in the 	/π

ratio when going from peripheral Pb-Pb collisions to most
central p-Pb collisions. Obviously, this is a result of fitting the

model to data independently in each multiplicity bin. It should
be noted that the 	 yield data in Pb-Pb collisions are currently
under reanalysis [53,54] within the ALICE Collaboration, and
a refitting of the γSCSM might be required if corrected data
become available.

The model overpredicts systematically the p/π ratio,
roughly on a 2σ level. Separately, the proton yields are
overpredicted on a 1σ level, while the yields of pions are
underpredicted on a 1σ level. Note that here energy-dependent
Breit-Wigner widths are used, which reduce the p/π ratios by
about 15% relative to the common zero-width approximation
[23]. If the zero-width approximation would be used instead,
then the tension with the p/π data would be even larger. The
application of energy-dependent Breit-Wigner widths leads
to a systematic improvement of the data description at all
multiplicities, although the description of the p/π ratio is still
not fully satisfactory.

The temperature and γS values extracted for the most
central Pb-Pb bin are consistent, within errors, with the Tch =
155 MeV and γS = 1 values of the vanilla CSM in Sec. IV.
The data description accuracy between Figs. 3 and 5 is almost
identical for the highest multiplicity bin. At lower multiplic-
ities, however, differences between vanilla CSM and γSCSM
become more and more significant.
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(a) (b) (c)

(d) (e) (f )

FIG. 6. The dependence of yield ratios (a) K∗/K , (b) 2ρ0/(π+ + π−), (c) 
(1520)/
, (d) 	(1530)0/	±, (e) �±(1385)/
, and
(f) �(1232)++/p evaluated in the γSCSM with Vc = 3 dV/dy for the thermal parameters extracted for each multiplicity bin through the
χ 2 minimization of yields of stable hadrons. The green circles, blue squares, and red diamonds depict the corresponding ratios measured by
the ALICE Collaboration in p-p (7 TeV) [1,49,50], p-Pb (5.02 TeV) [4,51], and Pb-Pb (2.76 TeV) [8,50,52] collisions where available.

Model predictions can further be cross-checked with the
data on those hadron yields which are not used in the fit pro-
cedure. The yields of resonances are particularly interesting
in this regard: the yield ratios K∗0/K−, 2ρ0/(π+ + π−), and

(1520)/
 have been measured by the ALICE Collaboration
in p-p, p-Pb, and Pb-Pb collisions [8,50,52]. The effects
associated with exact conservation of baryon number and
strangeness, as well incomplete equilibration of strangeness,
do in fact cancel out in these ratios to the leading order. These
ratios, however, are potentially sensitive to changes of the
freeze-out temperature. These ratios are depicted in Fig. 6
as a function of the charged multiplicity 〈dNch/dη〉|η|<0.5,
evaluated in the γSCSM with Vc = 3 dV/dy for the thermal
parameters extracted from the fits. The increase in the chem-
ical freeze-out temperature for lower multiplicities, seen in
Fig. 4, leads to an increase of the above-mentioned ratios at
small multiplicities. This increase is moderate, and within the
experimental error bars. The effect is more moderate than
can be expected based on simple considerations regarding
the Boltzmann factor, the mass difference between resonances
and corresponding stable particles, and a change in the freeze-
out temperature depending on the multiplicity. The reason
for that is the significant feed-down contributions to both the

numerator and denominator, which weaken the influence of
the changing temperature.

The available data for p-p and p-Pb collisions is described
fairly well. Resonance yields are overestimated in central Pb-
Pb collisions. This suppression of the measured yields is often
interpreted as evidence of a hadronic phase after the chemical
freeze-out [8,50,52]. In this case the thermal picture should
be extended to incorporate the hadronic phase, for instance
using the concept of partial chemical equilibrium [55] or a
hadronic afterburner. Both cases lead to suppressed yields of
short-lived resonances relative to the chemical equilibrium
statistical model predictions [56,57].

We also present in Fig. 6 predictions for the yield ra-
tios 	(1530)0/	±, �±(1385)/
, and �−(1385)/
, along
with the available p-p [49] and p-Pb [51] data. Among
these, the 	(1530)0/	± ratio does show a mild multiplicity
dependence, with the smallest values at the highest multi-
plicities. The multiplicity dependence of �−(1385)/
 and
�++(1232)/p is more moderate. A comparison with prospec-
tive experimental measurements of these ratios in Pb-Pb colli-
sions would be important, as it will be particularly interesting
to see whether the data will show a suppression at large
multiplicities relative to the (γS)CSM predictions.
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FIG. 7. The relative accuracy of p-p (circles), p-Pb (squares), and Pb-Pb (diamonds) ALICE data descriptions within the γSCSM with
Vc = 3 dV/dy (full black symbols) and in the grand-canonical limit Vc → ∞ (open red symbols).

E. Quantifying the data description accuracy

The χ2 values extracted from the fits are 2–3 times larger
for p-p and for p-Pb collisions compared to those for Pb-Pb.
This might indicate a better performance of the γSCSM for
large multiplicities compared to the lower ones. We argue,
however, that these χ2 values reflect the differences in the
measurement uncertainties between the different colliding
systems analyzed, rather than the performance of the model.

The simple statistical model has only a certain relative
accuracy in describing the yield of hadrons produced in
heavy-ion collisions. Smaller measurement uncertainties will
inevitably lead to increased values of χ2 at some point, with-
out necessarily implying that a relative accuracy of the thermal
model has worsened. In order to quantify the relative model
accuracy, we introduce the following measure of describing
the hadron yield data:

κ =
∑

i

wi

∣∣∣∣∣
〈
Nmod

i

〉
〈
Nexp

i

〉 − 1

∣∣∣∣∣. (10)

Here the sum goes over all species in a thermal fit. The
weights wi are proportional to the contribution of the data
point i to χ2:

wi =
(〈

Nmod
i

〉 − 〈
Nexp

i

〉)2/
σ 2

i

χ2
, (11)

with σi being the measurement uncertainty for the hadron
yield i. The weights evidently satisfy the normalization con-
dition

∑
i wi = 1. The uncertainty of the κ value is estimated

as follows:

δκ =
∑

i

wi

〈
Nmod

i

〉
σi(〈

Nexp
i

〉)2 . (12)

κ quantifies the average relative accuracy with which the
model describes the given data set. For example, if a model
describes the data at a 10–15% level of accuracy, the calcu-
lated value of κ ought to lie within 0.10–0.15.

Figure 7 depicts the computed values of κ for the data
from p-p, p-Pb, and Pb-Pb collisions at different centralities
for the γSCSM with Vc = 3 dV/dy (full black symbols), and
the γSCSM in the grand-canonical limit (open red symbols).

The γSCSM with Vc = 3 dV/dy describes the data at a roughly
15% accuracy level according to this newly introduced mea-
sure, uniformly across all multiplicities, Fig. 7. The grand-
canonical version of the statistical model, on the other hand,
illustrates the trend that the model accuracy gets worse as one
goes from Pb-Pb/p-Pb collisions to p-p collisions, especially
for the smallest three p-p multiplicity bins.

VI. SUMMARY

We analyzed the multiplicity dependence of the hadron
yields measured by the ALICE Collaboration at the LHC
within the statistical model with exact conservation of baryon
number, electric charge, and strangeness. We find that the con-
servation of baryon number is at least as important as the exact
strangeness conservation in the canonical-statistical picture at
the LHC. This is in stark contrast to low and intermediate
collision energies (

√
sNN � 10 GeV), where the strangeness-

canonical ensemble is sufficient for many applications where
the canonical suppression is important.

The effects of exact conservation of conserved charges
lead to suppression of yields of most hadron species relative
to their grand-canonical values, with a notable exception of
φ mesons, their yields being unaffected by canonical sup-
pression. The grand-canonical ensemble statistical model not
only theoretically underpredicts the hadron yield data in small
systems at the LHC, but it is shown that only a combined
canonical treatment of all three conserved charges yields a
reasonable description.

The simplified version of the CSM (the vanilla CSM)
assumes a constant freeze-out temperature of T 	 155 MeV
across all multiplicity bins, and the multiplicity dependence
of hadron yield ratios is driven by their dependence on the
correlation volume Vc only. The vanilla CSM captures fairly
well multiplicity dependence of hyperon-to-pion and light-
nuclei-to-proton yield ratios. The trend in the K/π ratio is
also captured, but the model overshoots the data significantly,
except for the most central Pb-Pb collisions. The p/π ratio
is affected by canonical suppression in the vanilla CSM.
The data, on the other hand, show no clear evidence for
the canonical suppression. The model does not describe the
proton-to-pion and hyperon-to-pion ratios simultaneously: a
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large correlation volume over 5–6 units of rapidity is needed
to accommodate the former ratio whereas a smaller (around
three rapidity units) volume is needed for the latter. The
behavior of the φ/π ratio in the vanilla CSM is opposite to the
behavior in the data. Thus, unless the production mechanism
of φ’s is separate from the rest of the hadrons, this invalidates
the vanilla CSM for p-p and p-Pb collisions.

In a more complete γSCSM study we consider a
multiplicity-dependent chemical freeze-out temperature, in-
cluding a possibility of an incomplete chemical equilibration
in the strangeness sector, and assume that the canonical corre-
lation volume corresponds to three units of rapidity, i.e., Vc =
3 dV/dy. The latter assumption is in a fair agreement with the
available preliminary data on net-proton fluctuations in Pb-Pb
collisions at the LHC [41] (Sec. IV A). Fits to the ALICE data
for various multiplicity bins in p-p, p-Pb, and Pb-Pb collisions
indicate the preference of the canonical approach over the
grand-canonical one for p-p collisions. This is not the case
for p-Pb and Pb-Pb collisions. Apparent reasons for that are
�’s, which are measured with a better precision in p-p, and
the fact that the canonical suppression is partially mimicked
in the grand-canonical picture through smaller values of γS .

The chemical freeze-out temperature extracted with the
γSCSM is found to decrease with increasing charged particle
multiplicity. It reaches a maximum value of T 	 175 MeV for
the smallest multiplicity bins in p-p and the minimum value of
T 	 155 MeV for the highest multiplicities in Pb-Pb. Higher
extracted temperatures for smaller systems might indicate an
earlier chemical freeze-out in those systems, similar to an
observed earlier kinetic freeze-out in smaller systems within
the blast-wave picture. It is also notable that the extracted
temperatures for the smallest systems are larger than the lat-

tice QCD estimates for the pseudocritical temperature Tpc =
155 MeV of the chiral crossover transition in the infinite
volume limit [58]. The strangeness saturation parameter γS

increases with multiplicity, reaching the limiting value of
unity at dNch/dη 	 100–200, indicating that chemical equi-
librium is established only in sufficiently large systems. The
canonical suppression effects for hadron yields are found to
become virtually negligible for large enough multiplicities,
dNch/dη � 50.

Analysis of experimental data indicates that a statistical
model approach with exact conservation of baryon number,
electric charge, and strangeness, and an incomplete chemi-
cal equilibration of strangeness, is capable of describing the
hadron yields measured by the ALICE Collaboration with
roughly a 15% relative accuracy, across all multiplicity bins
measured so far. The canonical suppression as well as ef-
fects of multiplicity-dependent freeze-out temperature do not
significantly alter the systematics of resonance production.
Improved measurements across a large range of multiplicities
coming from the LHC Run 2 will shed further light on the
(canonical-)thermal aspects of particle production in systems
of various sizes.
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