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1 Introduction & summary

1.1 Introduction

The non-equilibrium dynamics in a given strongly coupled system attracts a lot of attention

in the physics community. One useful tool to capture this dynamical process is entangle-

ment entropy, which measures entanglement between subsystem A and its complement Ā.

This quantity is defined by

S(A) = −trρA log ρA, (1.1)

where ρA is a reduced density matrix for a subsystem A, obtained by tracing out its

complement. The Renyi entropy is a generalization of the entanglement entropy, which is

defined as

S(n)(A) =
1

1− n
log trρnA, (1.2)

and the limit n → 1 of the Renyi entropy defines the entanglement entropy S(A). For

this measure, a large number of works have been done to characterize the dynamics, for

example, after joining quench [1], global quench [2, 3], splitting quench [4] and double

quench [5–7]. In particular, our interest in this paper is to study a local operator quench

state [8, 9], which is created by acting a local operator O(x) on the vacuum in a given CFT

at t = 0,

|Ψ(t)〉 =
√
N e−εH−iHtO(x) |0〉 , (1.3)

where x represents the position of insertion of the operator, ε is an UV regularization of

the local operator and N is a normalization factor so that 〈Ψ(t)|Ψ(t)〉 = 1.

One main goal of this paper is to understand dynamics of correlations between two

disjoint intervals. A natural challenge for this purpose is to investigate the dynamics of some

quench state by utilizing correlation measures. One progress in this direction had already

done in [3, 10], which studied universal features of dynamics after a global quench by using

the entanglement entropy for two disjoint intervals, or equivalently, the mutual information

and showed that entanglement spreads as if correlations were carried by free quasiparticles

after a global quench. And also it was shown that this quasiparticle picture breaks down in

the holographic CFT [11]. It suggests that the mutual information is very useful to probe

the universal feature of correlation dynamics in a given CFT class. (see also [12], which

studied the dynamics of the mutual information after a joining quench.) However, what we

have to mention is that our interest is the correlation between two disjoint intervals, which

are not necessarily complementary to each other, therefore, the state cannot be described

by pure state. For mixed states, we do not have the unique measure for the bi-partite

correlation. For this reason, we are also interested in other correlation measures. For

example, one of other interesting correlation measures is negativity [13, 14] and in [15, 16],

the time-dependence of the correlation between two disjoint intervals is studied by using

the negativity.

In this paper, we will make use of reflected entropy [17] as a tool to probe dynamics of

correlations between two intervals. The definition is as follows. We consider the following

– 1 –
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mixed state,

ρAB =
∑
n

pnρ
(n)
AB, (1.4)

where each ρ
(n)
AB represents a pure state as

ρ
(n)
AB =

∑
i,j

√
λinλ

j
n |in〉A |in〉B 〈jn|A 〈jn|B , (1.5)

where |in〉A ∈ HA, |in〉B ∈ HB and λin is a positive number such that
∑

i λ
i
n = 1. The real

number pn is the corresponding probability associated with its appearance in the ensemble.

For this mixed state, we can provide the simplest purification for this mixed state as

|√ρAB〉 =
∑
i,j,n

√
pnλinλ

j
n |in〉A |in〉B |jn〉A∗ |jn〉B∗ , (1.6)

where |in〉A∗ ∈ H∗A and |in〉B∗ ∈ H∗B are just copies of HA and HB. Then, the reflected

entropy is defined by

SR(A : B) ≡ −trρAA∗ log ρAA∗ , (1.7)

where ρAA∗ is the reduced density matrix of ρAA∗BB∗ = |√ρAB〉 〈
√
ρAB| after tracing over

HB⊗H∗B. We have to emphasize that this quantity measures not only quantum correlations

but also classical correlations, like mutual information. Actually, these two quantities

for the vacuum are very similar, however, we will give quite differences by considering

dynamical setups.1 Interestingly, if we restrict ourselves to two-dimensional CFTs, we

can analytically evaluate this quantity in the path integral formalism, like entanglement

entropy. For this reason, we consider a 2D CFT in this paper.

An important point is that this quantity has a simple holographic dual interpretation,

so-called entanglement wedge cross section,

SR(A : B) = 2EW (A : B), (1.8)

where EW (A : B) is entanglement wedge cross section defined as the area of the minimal

surface bipartitioning the entanglement wedge region, first introduced in [18, 19]. (See

also [20–47] for further developments in this direction.) That is, the reflected entropy is

computable both in bulk side and CFT side and also meaningful in quantum information

theory, in a similar manner to the RT and HRT formula [48–50]. Thus this is a very good

useful to investigate the quantum gravity in the context of the AdS/CFT, however, there

is little understanding of its property for now. In particular, there is no understanding on

the non-equilibrium properties of the reflected entropy even in the holographic CFT. This

naturally motivates us to study the dynamics of the reflected entropy. This study might

give new insights into the relation of dynamics of correlations between in the holographic

CFT and in the quantum gravity.

1Here, we mean the vacuum by the mixed state ρAB which comes form the vacuum for the whole system

by tracing over HAB .
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On this background, in this paper, we will study the time-dependence of the reflected

entropy after a local quench as a first step to understand the dynamics of the reflected

entropy. We would like to point out the advantage of considering the local operator quench.

Technically, the reflected entropy after a local quench is calculated by the Regge limit of n-

point conformal blocks. Fortunately, the method to calculate the Regge limit was recently

invented in [51], therefore, it is now possible to easily calculate what we need. This is

one of reasons to focus on the local operator quench. Another advantage comes from a

physical reason. Local quenches have a richer structure than global quenches, because

they are inhomogeneous. Thus, we can extract more information about dynamics from

local quenches than global quenches.

It is worth paying attention to another proposal for the entanglement wedge cross

section in [37], which is so-called odd entanglement entropy. The odd entanglement entropy

is defined by

SO(A : B) ≡ lim
nO→1

1

1− nO

[
tr
(
ρTBAB

)nO
− 1

]
, (1.9)

where ρAB is a reduced density matrix for subsystems A and B, obtained by tracing out

its complement. The limit nO → 1 is the analytic continuation of an odd integer and TB
is the partial transposition with respect to the subsystem B. (Note that it is equivalent to

act TA instead of TB.) Interestingly, it is conjectured that this quantity has a simple bulk

interpretation as

SO(A : B)− S(A : B) = EW (A : B), (1.10)

where S(A : B) is the entanglement entropy for the subsystems A and B. This is verified

for the vacuum and thermal state in the 2D holographic CFT [37], however, it is nontrivial

that this relation also holds in other setups. For this reason, we will also study this quantity

in the same setup and investigate whether the relation can also be applied to nontrivial

states or not. We would like to mention that this quantity can be calculated in the same

way as negativity [13, 14]. More precisely, this is given by the analytic continuation of an

odd integer of the same replica partition function as negativity.

1.2 Summary

Here we briefly summarize our results.

• CFT vs. Gravity (in section 2 and 9)

It has been argued that the entanglement entropy after a local quench state is realized

by geometries with a falling particle [52]. From this observation, it is naturally

expected that the reflected entropy for a locally excited state would be also the dual

to the entanglement wedge cross section in that geometry. In this paper, we calculate

the reflected entropy for such a dynamical state and compare it to the dynamics of the

entanglement wedge cross section. As a result, we find the perfect agreement. This is

a new support of the dynamical generalization of the reflected entropy/entanglement

wedge cross section conjecture.

– 3 –
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③

Figure 1. Three setups considered in this paper. We fist study the setup (0 < u2 < −v1 < −u1 <
v2), second, (0 < u2 < v2 < u1 < v1), and finally, (0 < v1 < u2 < v2 < −u1). In any setups, we

excite the vacuum by acting an local operator on x = 0 at t = 0.

• Technical aspects of replica trick for reflected entropy (in section 2)

When we use the replica trick, we should use the conformal blocks not for original

theory (Virasoro conformal blocks) but for orbifold theory. In the case of the entan-

glement entropy (and odd one) we can justify the use of former blocks. However,

this turns out to be not the case for the reflected entropy. We clarify many techni-

cal aspects of the replica trick for reflected entropy which were not described in the

literature. We hope that our description will be useful and technically important to

study further the reflected entropy for QFTs in more general setup.

• Dynamics of reflected entropy (and entanglement of purification) vs. mutual infor-

mation (in section 4)

One motivation is to understand the dynamics of the reflected entropy. In this paper,

we will consider three patterns of a local operator quench as shown in figure 1. First

observation for the reflected entropy is that the time-dependence is captured by the

quasi-particle picture [2, 3] as seen in the mutual information and the negativity. For

example, if we consider a setup 3© in figure 1, we find that the reflected entropy be-

comes non-zero only in the time region t ∈ [u2, v2]. However, the time-dependence in

the non-zero region is very complicated, therefore, it cannot be completely explained

by the quasi-particle picture.

We compare our results for the reflected entropy to the dynamics of the mutual in-

formation in the same setup and find both similarities and differences. For example,

the time dependence of the reflected entropy is discontinuous, unlike the mutual in-
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formation. Moreover, we give a natural explanation that the reflected entropy probes

more classical correlations than the mutual information from our dynamical setup.2

As a comment, our physical interpretation in this section can be also applied to

entanglement of purification because in the holographic CFT, the reflected entropy

reduces to the entanglement of purification.

• What is dual to a heavy state? (in section 5)

Another interest is to understand what is the holographic dual to a heavy state in

CFT. The first study has been done in [53] by making use of the entanglement en-

tropy. The result suggests that the entanglement entropy for a heavy state can be

approximated the holographic entanglement entropy in the BTZ background. In this

paper, we consider reflect entropy for a heavy state to make it clear. This approach

is quite natural because reflected entropy is more refined tool than entanglement en-

tropy. Consequently, we find a contradiction between their bulk interpretation and

the entanglement entropy which comes from the pure state limit of the reflected en-

tropy. To resolve this problem, we give an improved bulk interpretation of the heavy

state and then we obtain the perfect agreement between our bulk interpretation and

the reflected entropy in the heavy state.

• Quantum correction (in section 6)

We can evaluate some quantum corrections to the reflected entropy, which is consis-

tent with a naive expectation from the physical viewpoint. And also the reflected

entropy with some quantum corrections also satisfies some important inequalities of

the holographic reflected entropy.

• Dynamics in other CFTs (in section 7)

If one wants to characterize the holographic CFT by the reflected entropy, it is nec-

essary to find out a unique feature of the holographic reflected entropy. For this

purpose, we first tried to compare the holographic result to that in rational CFTs

(RCFTs). As a result, we show that the time-dependence for these two CFTs are

quite different. From this observation, we could argue that the dynamics of the re-

flected entropy is very sensitive to whether a given CFT is chaotic or not. In other

words, we can make use of the reflected entropy as a probe of the chaotic nature of

a given CFT (see also [54]).

• Agreement with odd entanglement entropy (in section 8)

We can show that the odd entanglement entropy also reproduces the entanglement

wedge cross section in our dynamical setup. Actually, the similarity between the

holographic odd entanglement entropy and the holographic reflected entropy can be

explained by a special property of the linearized conformal block. Therefore, instead

of providing the detailed calculations, we show how the odd entanglement entropy

reduces to the reflected entropy in the holographic CFT.
2This implies the quantities dual to the entanglement wedge cross section can not be any axiomatic

measures of the quantum entanglement. This conjecture has been proven recently by [44].
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2 Reflected entropy of local operator from CFT

The reflected entropy can be evaluated in the path integral formalism [17]. For example,

the Renyi reflected entropy in the vacuum can be computed by a path integral on m × n
copies as shown in figure 2. Here, we would view this manifold as a correlator with twist

operators as in the lower of figure 2, where we define the twist operators σgA and σgB .

Here, we focus on the following mixed state,

ρAB = trAB |Ψ(t)〉 〈Ψ(t)| , (2.1)

where Ψ(t) is a time-dependent pure state as |Ψ(t)〉 =
√
N e−εH−iHtO(0) |0〉. Then, in a

similar manner to the method in [8], the replica partition function in this state can be

obtained by a correlator as
1

1− n
log

Zn,m
(Z1,m)n

, (2.2)

and

Zn,m ≡
〈
σgA(u1)σg−1

A
(v1)O⊗mn(w1, w̄1)O⊗mn

†
(w2, w̄2)σgB (u2)σg−1

B
(v2)

〉
CFT⊗mn

, (2.3)

where we abbreviate V (z, z̄) ≡ V (z) if z ∈ R and the operators O are inserted at

w1 = t+ iε, w̄1 = −t+ iε, w2 = t− iε, w̄2 = −t− iε. (2.4)

Here O⊗N ≡ O ⊗ O ⊗ · · · ⊗ O is an abbreviation of the operator on N copies of CFT

(CFT⊗N ).3 To avoid unnecessary technicalities, here we do not show the precise definition

of the twist operators σgA and σgB (which can be found in [17]) because in many parts of

this paper, we only use the following properties of the twist operators,

hσgA = hσ
g−1
A

= hσgB = hσ
g−1
B

=
cn

24

(
m− 1

m

)
(= nhm),

σg−1
A gB

= σgn ⊗ σg−1
n
,

(2.5)

where the twist operator σgn is just the usual twist operator σn based on the n-cyclic

permutation group, which has the conformal dimension hσgn = c
24

(
n− 1

n

)
(≡ hn). Note

that the second property is a naive expression, which will be explained more explicitly in

section 2.1.1.

The reflected entropy is defined by the von-Neumann limit of this partition function,

lim
n,m→1

1

1− n
log

Zn,m
(Z1,m)n

, (2.6)

where the analytic continuation m→ 1 is taken for “even” integer m.

It is hard to calculate the numerator in (2.2) in general. Fortunately, in the case of

interest, i.e., holographic CFTs, this 6-point function can be approximated by a single

3For simplicity, we always omit the transposition of operators on the reflected sheets.
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Figure 2. The path integral representation of the Renyi reflected entropy. Edges labeled with the

same number get glued together. We can instead view it as a correlator with four twist operators〈
σgA(u1)σg−1

A
(v1)σgB (u2)σg−1

B
(v2)

〉
CFT⊗mn

.

conformal block as in [53], for example, if we set 0 < ε � t < u2 < −v1 < −u1 < v2 then

the correlation function is approximated by

(Cn,m)2 ௚ಲ

⊗௠௡ ௡

௚ಳ

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற ௡ × (anti-holomorphic part), (2.7)

where Cn,m is the OPE coefficient 〈σg−1
A
|σgB (1)|σgBg−1

A
〉. This coefficient can be calculated

by the method developed in [55], and the result is

Cn,m = (2m)−4hn . (2.8)

The details of this derivation can be found in appendix C of [17]. As explained in [53],

we have many choices of the single block approximation aside from (2.7) because we can

also decompose the 6-point correlator in terms of the conformal block transformed by the

monodromy transformation. The correct result is obtained by the maximal single conformal

– 7 –
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block approximation. More detailed explanations and its explicit calculations are shown in

the following subsections.

2.1 Technical remarks on the replica trick

Before moving on to the calculation, we discuss two technical complications due to the

unusual replica trick for the reflected entropy: (1) We have an analytic continuation of

an even integer m related to preparing a canonically purified state, but eventually take

m → 1 limit. We should properly treat this tricky manipulation. (2) We also have a

replica number n related to the Renyi index. Since we finally take the m,n→ 1 limit, we

should pay attention to the order of these limits. In contrast to the vacuum case, these

two issues become relevant to final results in the present analysis.

2.1.1 Orbifold block and an even integer analytic continuation

In general, we cannot approximate the conformal block of the orbifold theory (“orbifold

block”) appeared in (2.7) by the Virasoro conformal block. This is because there is the

current associated with the replica symmetry. However, in the limits n,m→ 1 and c→∞,

these two blocks can be related. Indeed, the orbifold block in this limit can be related to

a “square” of the Virasoro conformal block. This “squaring” (or “doubling”) essentially

comes from the doubling of the purified Hilbert space. Interestingly, this doubling also

explains the origin of the double of entanglement wedge cross section for reflected entropy

in holographic CFTs. Therefore, let us first explain why this works in our case.

Since we analytically continue an even integer m to the real number, replica sheets

labelled by m = 0, . . . , m2 − 1 and ones for m
2 , . . . ,m − 1 should decouple. A similar

decoupling of the replica sheets is well-known in the context of the logarithmic negativity

because we also have to consider the analytic continuation of an even integer to evaluate the

negativity [13, 14] (see also [43]). To make it clear, we introduce the following notations:

O(k,l) Operator on (k, l)-sheet. (k = 0, . . . ,m− 1 and l = 0, . . . , n− 1.)

O⊗n(k)

⊗n−1
l=0 O(k,l)

σ
(0)
n O(k,l)(e

2πiz)σ
(0)
n (0) = O(k,l+1)(z)σ

(0)
n (0), (if k = 0),

O(k,l)(e
2πiz)σ

(0)
n (0) = O(k,l)(z)σ

(0)
n (0), (otherwise).

σ
(m/2)
n O(k,l)(e

2πiz)σ
(m/2)
n (0) = O(k,l+1)(z)σ

(m/2)
n (0), (if k = m

2 ),

O(k,l)(e
2πiz)σ

(m/2)
n (0) = O(k,l)(z)σ

(m/2)
n (0), (otherwise).

σ⊗nm O(k,l)(e
2πiz)σ⊗nm (0) = O(k+1,l)(z)σ⊗nm (0).

σ̄⊗nm O(k,l)(e
2πiz)σ̄⊗nm (0) = O(k−1,l)(z)σ̄⊗nm (0).

σ′⊗nm O(k,l)(e
2πiz)σ′⊗nm (0) = O(k+1,l+1)(z)σ′⊗nm (0), (if k = 0, m2 ),

O(k,l)(e
2πiz)σ′⊗nm (0) = O(k+1,l)(z)σ′⊗nm (0), (otherwise) .

σ̄′
⊗n
m O(k,l)(e

2πiz)σ̄′
⊗n
m (0) = O(k−1,l−1)(z)σ̄′

⊗n
m (0), (if k = 0, m2 ),

O(k,l)(e
2πiz)σ̄′

⊗n
m (0) = O(k−1,l)(z)σ̄′

⊗n
m (0), (otherwise) .

– 8 –
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Then, the operator O⊗mn can be written as

O⊗mn = O⊗n(0) ⊗ · · · ⊗O
⊗n
(m/2) ⊗ · · · . (2.9)

Throughout this paper, we suppress the transposition acting on the operators on second

half sheets concerning to m. We have to emphasize that in the analytic continuation of

even m, the operator O⊗mn does NOT reduce to O but the “square” of O as

lim
m∈even→1

O⊗mn → O⊗n(0) ⊗O
⊗n
(1/2). (2.10)

One can also find the same decoupling in the original paper [17], where the analytic con-

tinuation leads to

lim
m∈even→1

σg−1
A gB

→ σ(0)
n ⊗ σ̄(1/2)

n . (2.11)

It means that this tricky analytic continuation provides two decoupled sheets labeled by

0 and 1/2.

The relation between the above notations and the twist operators in (2.3) is given by

σgB =σ⊗nm , σg−1
B

= σ̄⊗nm , σgA =σ′
⊗n
m , σg−1

A
= σ̄′

⊗n
m , σg−1

A gB
=σ(0)

n ⊗σ̄(m/2)
n , (2.12)

and the conformal block can be re-expressed by

𝑂(଴)
⊗௡ ⊗𝑂(௠/ଶ)

⊗௡ ⊗⋯

௠
⊗௡

𝜎௡
଴
⊗ 𝜎ത௡

௠/ଶ
𝜎௡

଴
⊗ 𝜎ത௡

௠/ଶ

௠
⊗௡

௠
⊗௡

௠
⊗௡

𝑂 ଴
⊗௡ ⊗𝑂 ௠/ଶ

⊗௡ ⊗⋯
ற

, (2.13)

where · · · means the rest of O⊗mn, that is,
⊗

l=0̂,1,2,..., m̂
2
,...,n−1

O⊗n(l) , which is not important

because it disappears in the limit m→ 1.

The point is that {O⊗n(0) , σ
(0)
n } do not interact with {O⊗n(m/2), σ

(m/2)
n }, therefore, the

component of the conformal block (i.e., three point block) is decoupled into two parts, for

example,

〈σ(0)
n ⊗ σ̄(m/2)

n |O⊗n(0) ⊗O
⊗n
(m/2)|σ

(0)
n ⊗ σ̄(m/2)

n 〉 = 〈σ(0)
n |O⊗n(0) |σ

(0)
n 〉 〈σ(m/2)

n |O⊗n(m/2)|σ
(m/2)
n 〉 .

(2.14)

Let us highlight this decoupling by

𝑂(௠/ଶ)
⊗௡௠

⊗௡

௠
⊗௡

௠
⊗௡

௠
⊗௡

𝑂 ଴
⊗௡ ற

𝑂 ௠/ଶ
⊗௡

ற

𝑂(௠/ଶ)
⊗௡

𝜎௡
଴

𝜎௡
଴

𝜎ത௡
௠/ଶ

𝜎ത௡
௠/ଶ

. (2.15)
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Roughly, each decoupled contribution can be regarded as the independent Virasoro con-

formal blocks up to the universal contributions from external operators.4 We will see each

decoupled block provides the entanglement wedge cross section, thus we obtain the double

of the entanglement wedge cross section in total. Note that these blocks are quite similar

to the one for the odd entanglement entropy. This is the main reason why it also repro-

duces the cross section. Having this doubling in mind, we will often suppress the above

lengthy doubling expression (2.15) and instead double the conformal dimension for internal

operators.

The analytic continuation of the even integer m gives rise to another subtle issue.

In order to obtain the correct normalization for the density matrix, Z1,m should not be

regarded as the naive trρmAB, namely the Renyi entropy after a local quench,

Z1,m 6=
〈
σgm(u1)σg−1

m
(v1)O⊗m(w1, w̄1)O⊗m

†
(w2, w̄2)σgm(u2)σg−1

m
(v2)

〉
CFT⊗m

, (2.16)

where the twist operator σgm is just the usual twist operator σm. This is just because the

naive trρmAB is (strictly speaking) different from the normalization of the purified state.

In other words, the naive one cannot take into account the above squaring effect. As a

result of this squaring, the analytic continuation of the denominator in (2.2) is given by

the square of the two-point function,

lim
m∈even→1

(Z1,m)n =
〈
O(w1, w̄1)O†(w2, w̄2)

〉2n
= (2iε)−8nhO , (2.17)

where hO is the conformal dimension of the operator O. It would be worth noting that

we can confirm the necessity of this squaring from the pure state limit of ρAB, where our

reduced density matrix ρAA∗ becomes “square” of ρA.

2.1.2 Order of the two limit for replica numbers

Second one is physically more important — the two limits m → 1 and n → 1 do not

commute with each other in the large c limit. We should first take the limit n→ 1. There

is a physical reason: in order to obtain the correct cross section of the entanglement wedge,

we should prepare the precise entanglement wedge at first. In terms of the single conformal

block approximation, it means that we have to choose the maximal channel in the limit

n→ 1 with a fixed m,5 (see figure 3).

4To be precise, the decoupled conformal block in (2.15) is still not the Virasoro block because there is

the current associated with the Zn symmetry (see [11], which discusses this problem). However, in the

large c limit, this type of blocks with twist operators can be related to the Virasoro block. In fact, this

assumption is often used in the calculation of the entanglement entropy and it is verified in the holographic

CFT by comparing with the gravity calculation [53]. Moreover, this is also verified by comparing with a

completely independent calculation without relying on twist operators [51].
5Actually, if we take first the limit m→ 1, then the limit n→ 1 and choose the maximal single block in

these limits to calculate the reflected entropy, we sometimes obtain an incorrect result with a contradiction

to the known relation to the mutual information, SR(A : B)[O] ≥ I(A : B)[O].

– 10 –



J
H
E
P
0
2
(
2
0
2
0
)
0
1
7

𝜎௚ಲ

𝑂⊗௠௡
2ℎ௡0

𝜎௚ಳ

𝜎
௚ಳ
షభ

𝜎
௚ಲ
షభ𝑂⊗௠௡

ற 2ℎ௡
𝜎௚ಲ

𝑂⊗௠௡
2ℎ௡0

𝜎௚ಳ

𝜎
௚ಳ
షభ

𝜎
௚ಲ
షభ𝑂⊗௠௡

ற 2ℎ௡

minimize

maximize maximize

CFT description

minimize

Figure 3. To reproduce the entanglement wedge cross section, we first take the large c limit and

approximate the correlator by the maximal single conformal block. However, we have to take care

of the fact that this maximization is done by two maximization processes. First, we maximize

the propagations between external operators (lines colored by blue) and second, we maximize the

internal line (colored by red). This order of processes corresponds to the minimizations in bulk side

as shown in the upper of this figure. As mentioned in the main text, this order of maximizations

can be accomplished by the large c limit under the assumption 2hn � nhm.

However, in the following, we calculate the reflected entropy by taking first the limit

m → 1 and then n → 1 under 2hn � nhm, instead of first taking n → 1 followed by

m→ 1. Let us stress that this is just for the simplification of calculation and presentation.

Indeed, as we show in the following, our result from this procedure perfectly reproduces

the bulk calculation. We can also show this validity in another way. The reason why

two limits m → 1, n → 1 do not commute with each other is just because the dominant

channel in the large c limit could change if the order is reversed. And in fact, we use the

assumption 2hn � nhm only to specify the dominant channel. That is, after identifying

the dominant channel, the order of the two limits is not important. Therefore, we can

calculate the correct reflected entropy by taking first the limit m → 1 and then n → 1

under 2hn � nhm.

It would be interesting to comment that the non-commutativity of n→ 1 and m→ 1

implies that there is a replica transition as the replica number is varied. A similar replica

transition can also be found in [56–61]. It would be interesting to find this transition from

the bulk side in the future.

– 11 –



J
H
E
P
0
2
(
2
0
2
0
)
0
1
7

2.2 Quench outside region A and B

We first consider the setup, 0 < ε � u2 < −v1 < −u1 < v2 and we assume the connected

condition

0 <
(v1 − u2)(u1 − v2)

(v1 − v2)(u1 − u2)
<

1

2
, (2.18)

which means that in the bulk side, the entanglement wedge for two intervals A = [u1, v1] and

B = [u2, v2] is connected.6 In this article, we only focus on this connected case because the

reflected entropy for the disconnected case trivially vanishes, which is not interesting. Note

that even if this connected condition is satisfied, the entanglement wedge could become

disconnected under the time evolution (which is discussed later above (2.58)).

In the early time (0 < t < u2), the ε→ 0 limit of this block simply reduces as7

௚ಲ

⊗௠௡ ௡

௚ಳ

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற ௡ −−→
ε→0

(2iε)−2mnhO×

௚ಲ

௡

௚ಳ

௚ಳ
షభ௚ಲ

షభ

,

(2.19)

which means

Zn,m
(Z1,m)n

−−→
ε→0

〈
σgA(u1)σg−1

A
(v1)σgB (u2)σg−1

B
(v2)

〉
CFT⊗mn

, (2.20)

Therefore, the reflected entropy for the excited state in the early time is just given by that

for the vacuum, like the entanglement entropy after a local quench [53]. Note that the

explicit form of the vacuum reflected entropy is

c

3
log

1 +
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, (2.21)

which exactly matches the entanglement wedge cross section in pure AdS3 [18]. This can

be immediately shown by using the asymptotic form of the Virasoro block (see (A.2)),

௚ಲ

௡

௚ಳ

௚ಳ
షభ௚ಲ

షభ

→ 24hn

1 +
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

−2hn

, (2.22)

where we take first the limit c→∞, second m→ 1, and finally n→ 1.

On the other hand, for u2 < t < −v1, only the holomorphic part of the OPE between

O⊗mn and O⊗mn
†

crosses a branch cut on the real axis from u2 to v2, which means that

6In the CFT side, the transition between connected and disconnected entanglement wedge can be in-

terpreted as a change of the dominant conformal block as shown in [62]. One can show this connected

condition from the CFT side by calculating the entanglement entropy for two intervals A = [u1, v1] and

B = [u2, v2] after a local quench. In fact, this calculation cannot be found in previous works but we can

calculate it by the method developed in this section (which is explained later in section 4).
7In the following, we will abbreviate σn ⊗ σ̄n by 2hn.
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the limit ε→ 0 is not the usual OPE limit but the Regge limit [63, 64]. Before evaluating

the 6-point correlator for u2 < t < −v1, we should take care of the fact that there are other

choices of the conformal block expansion and a single block approximation besides (2.7).

The point is that the correlator is invariant under a monodromy transformation, which

moves the operators O⊗mn, O⊗mn
†

around the twist operators. On the other hand, each

individual conformal block is not invariant. Thus, we have other choices of the single

conformal block approximation and the correct choice is maximal one under the assumption

2hn � nhm.

Fortunately, we find that the correct choice for u2 < t <
√
−v1u2 is just the following

channel without monodromy tranformations,

(Cn,m)2
௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௠ ௡

× (anti-holomorphic part). (2.23)

For u2 < t < −v1 (in particular, u2 < t <
√
−v1u2), the effect of crossing the branch cut

can be illustrated for the holomorphic part by

௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௡௠

, (2.24)

which is a conformal block mapped by a monodromy transformation, which moves the

operator O⊗mn
†

clockwise around the twist operator σgB (i.e., (w2−u2)→ e−2πi(w2−u2)).

In general, the effect of the monodromy transformation is encapsulated in the monodromy

matrix, which does not depend on a given CFT data and, therefore, can be evaluated

exactly. For the Virasoro block, the monodromy matrix is usually expressed by [65] (the

notation is as in [51, 61])

௜

௝௞

௟

=

∫
S

dαpM
(−)
0,αp

[
αj αi
αk αl

]
×

௜

௝௞

௣௟

,

(2.25)

where we introduce the following Liouville notation,

c = 1 + 6Q2, Q = b+
1

b
, (2.26)

and the Liouville momentum,

αi (Q− αi) = hi. (2.27)

The contours run from Q
2 to Q

2 + i∞ and also runs clockwise around αp = αi +αj + lb < Q
2

and αp = αk + αl + lb < Q
2 (l ∈ Z≥0).8 The superscript (−) of the matrix M means the

clockwise monodromy. It is worth to note that this monodromy matrix only depends on

the four external operators {i, j, k, l} and the internal operator p, that is, it is independent

of other operators described by {· · · } in (2.25). If one is interested in the details of these

transformations, one can refer to [51].

8Here we choose the convention 0 < b < 1, which is possible if c > 25, in particular, large c.
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Like the Virasoro block, the orbifold block (2.24) can also be expressed in terms of a

certain monodromy matrix as

∫
S

dαpM̃
(−)
0,αp

[
αm αm
αO αO

]
×

௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௠ ௡

, (2.28)

where we denote the monodromy matrix associated with the orbifold block (i.e., not Vira-

soro block) by M̃ and define the Liouville momentum,

αm (Q− αm) = hm

(
=

c

24

(
m− 1

m

))
, αO (Q− αO) = hO, ᾱO (Q− ᾱO) = h̄O.

(2.29)

Although the explicit form of M̃ is unknown, that appearing in our calculation can be

related to the Virasoto monodromy matrix from the fact (2.15). We will explain it in more

details when M̃ appears in the calculation of the reflected entropy.

The anti-holomorphic part does not change in this time region. As a result, the ap-

proximated 6-point function with the monodromy effect (2.24) for u2 < t <
√
−v1u2 can

be shown as

(Cn,m)2
௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௡௠

×
௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௠ ௡

,

(2.30)

where the overline means the anti-holomorphic part. To proceed further, we consider the

Regge limit, which comes from the limit ε → 0. In fact, the Regge limit of the block is

universal [51]9 because the integral in (2.28) is dominated by a Liouville momentum αmin

such that the corresponding conformal dimension hmin = αmin(Q−αmin) is minimal in the

set {h|h = α(Q− α) s.t. α ∈ S}. In our case, this saddle point contribution comes from

the clockwise integral around αmin. For this reason, we introduce the following notation,

M(−)
0,αmin

≡ Res
(
−2πiM

(−)
0,αp

;αp = αmin

)
. (2.31)

We comment on a trivial property of any monodromy matrix,

M̃(−)
0,αmin

[
α α

β β

]
−−−→
α→0

1. (2.32)

By using this fact, we obtain (see appendix B in more details)

௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௡௠

−−→
ε→0

24hn(2iε)−4nhO

1+
√

(−u1+v1)(v2−t)
(−u1+t)(−v1+v2)

1−
√

(−u1+v1)(v2−t)
(−u1+t)(−v1+v2)

−2hn

,

(2.33)

9The Regge limit of the Virasoro block had first studied in [66]. And from the observations [67, 68], it

wan shown that the singularity of the Virasoro block is closely related to the fusion matrix [61, 69] and

consequently, the explicit form of the Regge limit is obtained by using the monodromy matrix, which can

be rexepressed by the fusion matrix [51].
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where we take first the limit c→∞, second m→ 1, third n→ 1, and finally ε→ 0. Note

that the OPE limit between O⊗mn and O⊗mn
†

in the limit m ∈ even→ 1 is squared by the

fact (2.10). Under the limit m→ 1, the contribution from the monodromy matrix becomes

trivial. In what follows, we will not display the trivial ones under this limit. On the other

hand, the anti-holomorphic part is just given by the OPE limit,

௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௠ ௡

−−→
ε→0

24hn(2iε)−4nh̄O

1+
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

−2hn

.

(2.34)

Substituting these holomorphic part (2.33) and anti-holomorphic part (2.34), and (2.17),

(2.8) into (2.2), we obtain the reflected entropy at u2 < t <
√
−v1u2 as

c

6
log

1 +
√

(−u1+v1)(v2−t)
(−u1+t)(−v1+v2)

1−
√

(−u1+v1)(v2−t)
(−u1+t)(−v1+v2)

+
c

6
log

1 +
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

. (2.35)

For
√
−v1u2 < t < −v1, the 6-point conformal block is NOT dominated by the usual

block, but the block illustrated by10

(Cn,m)2
௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௡௠

×
௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௡௠

.

(2.36)

The effect of crossing the brunch cut is the same as that for u2 < t <
√
−v1u2. This effect

cancels the monodromy illustrated in (2.36), therefore, the approximated 6-point function

at
√
−v1u2 < t < −v1 results in

(Cn,m)2
௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௠ ௡

×
௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௡௠

.

(2.37)

Each holomorphic and anti-holomorphic conformal block is the same as (2.34) and (2.33),

consequently, we obtain

c

6
log

1 +
√

(−u1+v1)(v2+t)
(−u1−t)(−v1+v2)

1−
√

(−u1+v1)(v2+t)
(−u1−t)(−v1+v2)

+
c

6
log

1 +
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

. (2.38)

10In the anti-holomorphic z̄ plane, the imaginary direction is flipped, therefore, the arrow of the mon-

odromy transformation is also flipped.
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For −v1 < t < −u1, the dominant channel is given by

(Cn,m)2
௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௡௠

×
௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௡௠

.

(2.39)

In a similar way as (2.24), the holomorphic part of the block is affected by crossing the

brunch cut as

௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௡௠

. (2.40)

In the time region −v1 < t < −u1, the anti-holomorphic part of the OPE between O⊗mn

and O⊗mn
†

also crosses a branch cut on the real axis from −u1 to −v1. This affects the

anti-holomorphic block as

௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௠ ௡

. (2.41)

Taking account of the effects (2.40) and (2.41), the approximated 6-point function for

−v1 < t < −u1 can be illustrated by

(Cn,m)2
௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௠ ௡

×
௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௠ ௡

.

(2.42)

Let us evaluate the Regge limit of this approximated 6-point function. By our result [51]

again, we obtain

௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௠ ௡

−−→
ε→0

(−2iε)4hn−4nhO

(
(u2 − v1)(u1 − v2)

(t+ u1)(t+ u2)(t+ v1)(t+ v2)

)2hn

Mn[O],

(2.43)

where we take first the limit c→∞, second m→ 1, third n→ 1, and finally ε→ 0. Here

Mn[O] is a constant, given by the monodromy matrix, and the asymptotic expression in

these limits is

Mn[O]→

(
M̃(−)

0,2αn

[
αn αn
αO αO

])2

=

(
2

iγ̄
sinhπγ̄

)−4hn

, (2.44)

where αn is given by αn(Q−αn)=hn and we define γ̄=
√

24
c h̄O − 1. The square comes from

the decoupling of the orbifold block into two Virasoro blocks as explained in (2.15). More
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detailed calculation can be found in appendix B. Thus, we obtain the reflected entropy as

c

6
log

[
4(t+u1)(t+u2)(t+v1)(t+v2)

ε2(u2−v1)(u1−v2)

(
sinhπγ̄

γ̄

)2
]

+
c

6
log

1+
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if −v1<t<−u1.

(2.45)

However, as explained later (in section 5), there is another possibility to dominate the

6-point correlater by the following channel,

(Cn,m)2(Cn,O)2
௚ಲ

⊗௠௡

௚ಳ
షభ௚ಲ

షభ

⊗௠௡ற

௚ಳ

௡ ௡

×
௚ಲ

⊗௠௡

௚ಳ
షభ௚ಲ

షభ

⊗௠௡ற

௚ಳ

௡ ௡

.

(2.46)

The constant Cn,O is the OPE coefficient with O⊗mn. The intermediate state p corresponds

to the dominant contribution to the correlator. In the m,n → 1 limit, p is given by O⊗2

in the CFT of interest [70]. In the bulk side, this channel corresponds to the disconnected

entanglement wedge cross section which ends at the block hole horizon (which is discussed

more in section 5).

The effect of crossing the branch cut is illustrated by

௚ಲ

⊗௠௡

௚ಳ
షభ௚ಲ

షభ

⊗௠௡ற

௚ಳ

௡ ௡
×

௚ಲ

⊗௠௡

௚ಳ
షభ௚ಲ

షభ

⊗௠௡ற

௚ಳ

௡ ௡

. (2.47)

Each conformal block is approximated in the von-Neumann limit as

௚ಲ

⊗௠௡

௚ಳ
షభ௚ಲ

షభ

⊗௠௡ற

௚ಳ

௡ ௡
−−→
ε→0

(2iε)4hn−4nhO

(
(u2−v1)(u1−v2)

(t−u1)(t−u2)(t−v1)(t−v2)

)2hn

,

(2.48)

and

௚ಲ

⊗௠௡

௚ಳ
షభ௚ಲ

షభ

⊗௠௡ற

௚ಳ

௡ ௡

−−→
ε→0

(−2iε)4hn−4nhO

(
(u2−v1)(u1−v2)

(t+u1)(t+u2)(t+v1)(t+v2)

)2hn

.

(2.49)

Thus, we obtain the reflected entropy as

c

6
log

[
(t− u1)(t− u2)(t− v1)(t− v2)

ε2γ(u2 − v1)(u1 − v2)

]
+
c

6
log

[
(t+ u1)(t+ u2)(t+ v1)(t+ v2)

ε2γ̄(u2 − v1)(u1 − v2)

]
+ (const.)

(2.50)

We can immediately find that the ε-singularity of this result is much larger than (2.45),

therefore, we can neglect this possibility.
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The calculation of the reflected entropy for −u1 < t is almost the same as the derivation

of (2.35), therefore, we can summarize our results as

SR(A :B)[O] =



c
3 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if t<u2,

c
6 log

1+

√
(−u1+v1)(v2−t)

(−u1+t)(−v1+v2)

1−
√

(−u1+v1)(v2−t)
(−u1+t)(−v1+v2)

+ c
6 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if u2<t<
√
−v1u2,

c
6 log

1+

√
(−u1+v1)(v2+t)

(−u1−t)(−v1+v2)

1−
√

(−u1+v1)(v2+t)
(−u1−t)(−v1+v2)

+ c
6 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if
√
−v1u2<t<−v1,

c
6 log

[
4(t+u1)(t+u2)(t+v1)(t+v2)

ε2(u2−v1)(u1−v2)

(
sinhπγ̄
γ̄

)2
]

+ c
6 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if −v1<t<−u1,

c
6 log

1+

√
(−u1+v1)(−t−u2)
(−u1+u2)(−v1−t)

1−
√

(−u1+v1)(−t−u2)
(−u1+u2)(−v1−t)

+ c
6 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if −u1<t<
√
−u1v2,

c
6 log

1+

√
(−u1+v1)(t−u2)

(−u1+u2)(−v1+t)

1−
√

(−u1+v1)(t−u2)
(−u1+u2)(−v1+t)

+ c
6 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if
√
−u1v2<t<v2,

c
3 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if v2<t.

(2.51)

We can also consider the case 0 < ε � u2 < v2 < u1 < v1. The different monodromy

effect from the above case can happen when t > v2. For v2 < t < u1, we find the dominant

channel

(Cn,m)2
௚ಲ

⊗௠௡ ௡

௚ಳ

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற ௡ × ௚ಲ

⊗௠௡ ௡

௚ಳ

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற ௡ .

(2.52)

The monodromy effect can be illustrated as

௚ಲ

⊗௠௡ ௡

௚ಳ

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற ௡ × ௚ಲ

⊗௠௡ ௡

௚ಳ

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற ௡ .

(2.53)

Combining (2.52) with (2.53), we find that the reflected entropy can be evaluated by the
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following approximated correlator,

(Cn,m)2 ௚ಲ

⊗௠௡ ௡

௚ಳ

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற ௡ × ௚ಲ

⊗௠௡ ௡

௚ಳ

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற ௡ .

(2.54)

Note that one of the effects of crossing branch cut cancels the monodromy around z = u2

displayed in (2.52). We can apply the same technique as (2.33) to calculate each these left

and light blocks and then we obtain

SR(A : B)[O] =
c

6
log

1 +
√

(−u1+v1)(t−u2)
(−u1+u2)(−v1+t)

1−
√

(−u1+v1)(t−u2)
(−u1+u2)(−v1+t)

+
c

6
log

1 +
√

(−u1+v1)(v2+t)
(−u1−t)(−v1+v2)

1−
√

(−u1+v1)(v2+t)
(−u1−t)(−v1+v2)

, if v2 < t < u1.

(2.55)

In a similar manner, we can also evaluate the reflected entropy for the other time region

and thus we obtain

SR(A : B)[O] =



c
3 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if t < u2,

c
6 log

1+

√
(−u1+v1)(v2−t)

(−u1+t)(−v1+v2)

1−
√

(−u1+v1)(v2−t)
(−u1+t)(−v1+v2)

+ c
6 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if u2 < t < v2,

c
6 log

1+

√
(−u1+v1)(t−u2)

(−u1+u2)(−v1+t)

1−
√

(−u1+v1)(t−u2)
(−u1+u2)(−v1+t)

+ c
6 log

1+

√
(−u1+v1)(v2+t)

(−u1−t)(−v1+v2)

1−
√

(−u1+v1)(v2+t)
(−u1−t)(−v1+v2)

, if v2 < t < u1,

c
6 log

1+

√
(−u1+t)(v2−u2)

(−u1+u2)(−t+v2)

1−
√

(−u1+t)(v2−u2)
(−u1+u2)(−t+v2)

+ c
6 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if u1 < t < v1,

c
3 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if v1 < t.

(2.56)

However, this is not complete. In this setup, we have to take disconnected channel into

account.11 The entanglement wedge for two sybsystems after a local quench was studied

in [12]. From this result, we can find that in the case 0 < ε� u2 < v2 < u1 < v1, there is a

possibility that the disconnected entanglement wedge is chosen as the minimal RT surface

11Here, we mean disconnected by the disconnected entanglement wedge, which generally leads to vanishing

of mutual information. This is NOT the disconnected entanglement wedge cross section, like the right upper

sketch of figure 6.
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for two sybsystems. If we set |u1 − v1| = |u2 − v2| = l and |u1 − v2| = d for simplicity, then

the transition time between connected and disconnected entanglement wedge is given by

v̄2 ≡ u2 + l +
d2(2l + d)

d2 + dl − l2
, ū1 ≡ u2 −

l3

d2 + dl − l2
. (2.57)

Therefore, the correct reflected entropy is modified by

SR(A : B)[O] =



c
3 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if t < u2,

c
6 log

1+

√
(−u1+v1)(v2−t)

(−u1+t)(−v1+v2)

1−
√

(−u1+v1)(v2−t)
(−u1+t)(−v1+v2)

+ c
6 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if u2 < t < v̄2,

0, if v̄2 < t < ū1,

c
6 log

1+

√
(−u1+t)(v2−u2)

(−u1+u2)(−t+v2)

1−
√

(−u1+t)(v2−u2)
(−u1+u2)(−t+v2)

+ c
6 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if ū1 < t < v1,

c
3 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if v1 < t.

(2.58)

2.3 Quench inside region A and B

In this subsection, we consider a local excitation inside the interval A. We can accomplish

the evaluation for this state by using the same 6-point correlator (2.2) with 0 < ε� v1 <

u2 < v2 < −u1. The early time reflected entropy is again that for the vacuum due to the

same reason as in the calculation of (2.20). For v1 < t < u2, the dominant channel is

(Cn,m)2
௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௡௠

× (anti-holomorphic part), (2.59)

and the monodromy effect by crossing the branch cut is12

௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௠ ௡

×
௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௡௠

.

(2.60)

Therefore, the Regge limit of the 6-point function for v1 < t < u2 is approximated by

(Cn,m)2
௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௠ ௡

×
௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௡௠

.

(2.61)

12Here, we choose the principle sheet on where the operators O⊗mn and O⊗mn
†

are inserted at t = 0.
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From this approximated 6-point function, we obtain

SR(A : B)[O] =
c

6
log

1 +
√

(u1−t)(v2−u2)
(−u1+u2)(t−v2)

1−
√

(u1−t)(v2−u2)
(−u1+u2)(t−v2)

+
c

6
log

1 +
√

(u1−v1)(v2−u2)
(−u1+u2)(v1−v2)

1−
√

(u1−v1)(v2−u2)
(−u1+u2)(v1−v2)

, if v1 < t < u2.

(2.62)

This is a similar result to (2.35), because both of them is based on almost the same mon-

odromy trajectory. On the other hand, the monodromy effect at u2 < t < v2 is quite

different from the case discussed in the subsection 2.2.

For u2 < t < v2, the dominant channel is again

(Cn,m)2
௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௡௠

× (anti-holomorphic part), (2.63)

and the effect of crossing the branch cut is

௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௠ ௡

×
௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௠ ௡

.

(2.64)

Combining these monodromy, we obtain a similar result to (2.45),

c

6
log

[
4(t−u1)(t−u2)(t−v1)(t−v2)

ε2(u2−v1)(u1−v2)

(
sinhπγ̄

γ̄

)2
]

+
c

6
log

1+
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if u2<t<v2.

(2.65)

The other choice (2.46) can be neglected for the same reason.

We do not show the calculation of the reflected entropy for t > v2 because what we

need to do is just to repeat the above. The result is as follows,

SR(A :B)[O] =



c
3 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if t< v1,

c
6 log

1+

√
(−u1+t)(v2−u2)

(−u1+u2)(−t+v2)

1−
√

(−u1+t)(v2−u2)
(−u1+u2)(−t+v2)

+ c
6 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if v1<t<u2,

c
6 log

[
4(t−u1)(t−u2)(t−v1)(t−v2)

ε2(u2−v1)(u1−v2)

(
sinhπγ̄
γ̄

)2
]

+ c
6 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if u2<t<v2,

c
6 log

1+

√
(−t+v1)(v2−u2)

(−t+u2)(−v1+v2)

1−
√

(−t+v1)(v2−u2)
(−t+u2)(−v1+v2)

+ c
6 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if v2<t<
√
−u1v2,

c
6 log

1+

√
(t+v1)(v2−u2)

(t+u2)(−v1+v2)

1−
√

(t+v1)(v2−u2)
(t+u2)(−v1+v2)

+ c
6 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if
√
−u1v2<t<−u1,

c
3 log

1+

√
(−u1+v1)(v2−u2)

(−u1+u2)(−v1+v2)

1−
√

(−u1+v1)(v2−u2)
(−u1+u2)(−v1+v2)

, if −u1<t.

(2.66)
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3 Entanglement entropy as pure state limit

The reflected entropy measures correlations between A and B. In particular, if we restrict

ourselves to a pure state (e.g., ρ = |Ψ(t)〉 〈Ψ(t)|, studied in section 2) and set B = Ā, then

one can find that this measure reduces to entanglement entropy. In general, the reflected

entropy has the following property,

SR(A : B) = 2S(A), if ρAB is a pure state. (3.1)

We should check that our result is consistent with this property.

We consider a local excitation in an interval A = [l1, l2] with 0 < l1 < l2. The entan-

glement entropy for this locally excited state had studied in [53, 71] (non-perturbatively

in [51, 61, 66]) and the result is

S(A)[O] =



c
3 log

(
l2−l1
µ

)
, if t < l1,

c
6 log

(
(l2−t)(t−l1)
ε(l2−l1)

sinh(πγ̄)
γ̄

)
+ c

3 log
(
l2−l1
µ

)
, if l1 < t < l2,

c
3 log

(
l2−l1
µ

)
, if t > l2,

(3.2)

where a positive constant µ is a UV cutoff to regulate the twist operators. To compare

the entanglement entropy with the reflected entropy (2.65), we take the pure state limit by

setting,

v1 = l1 − µ, u2 = l1 + µ, v2 = l2 − µ, u1 = l2 + µ, (3.3)

and then take the limit µ→ 0. As a result, we obtain

SR(A : B)[O] −−−−−−−−−→
pure state limit

c

3
log

(
(l2 − t)(t− l1)(l2 − l1)

εµ2

sinh(πγ̄)

γ̄

)
, if l1 < t < l2,

(3.4)

which perfectly reproduces the entanglement entropy (3.2). Note that reflected entropy

can be used as a natural regulator for entanglement entropy in QFT [17] and here one can

find that the reflected entropy plays a role as a regulator of the entanglement entropy after

a local quench.

4 Dynamics of correlations

In this section, we would like to understand how dynamics of the correlation measures is

characterized. To this end, we will show various plots of the reflected entropy and read

off important nature of its dynamics. It is important to emphasize that there is another

useful correlation measure, mutual information. Therefore, it is very interesting to discuss

similarities and differences between dynamics of reflected entropy and mutual information.

To simplify the comparison with mutual information, we show the explicit form of the

mutual information after a local quench in the following,
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• Quench outside intervals (0 < ε� u2 < −v1 < −u1 < v2 and O is acted on x = 0 at

t = 0.)

I(A :B)[O] =



S(u2,v2)+S(u1,v1)−S(v1,u2)−S(u1,v2), if t<u2,

S(u2,v2, t)+S(u1,v1)−S(v1,u2, t)−S(u1,v2), if u2<t<
√
−u2v1,

S(u2,v2, t)+S(u1,v1)−S(v1,u2,−t)−S(u1,v2), if
√
−u2v1<t<−v1,

S(u2,v2, t)+S(u1,v1,−t)−S(v1,u2)−S(u1,v2), if −v1<t<−u1,

S(u2,v2, t)+S(u1,v1)−S(v1,u2)−S(u1,v2,−t), if −u1<t<
√
−u1v2,

S(u2,v2, t)+S(u1,v1)−S(v1,u2)−S(u1,v2, t), if
√
−u1v2<t<v2,

S(u2,v2)+S(u1,v1)−S(v1,u2)−S(u1,v2), if v2<t,

(4.1)

• Quench inside intervals (0 < ε � v1 < u2 < v2 < −u1 and
√
−v1u1 < v2 and O is

acted on x = 0 at t = 0.)

I(A :B)[O] =



S(u2,v2)+S(u1,v1)−S(v1,u2)−S(u1,v2), if t< v1,

S(u2,v2)+S(u1,v1, t)−S(v1,u2, t)−S(u1,v2), if v1<t<u2,

S(u2,v2, t)+S(u1,v1, t)−S(v1,u2)−S(u1,v2), if u2<t<
√
−u1v1,

S(u2,v2, t)+S(u1,v1,−t)−S(v1,u2)−S(u1,v2), if
√
−u1v1<t<v2,

S(u2,v2)+S(u1,v1,−t)−S(v1,u2)−S(u1,v2, t), if v2<t<
√
−u1v2,

S(u2,v2)+S(u1,v1,−t)−S(v1,u2)−S(u1,v2,−t), if
√
−u1v2<t<−u1,

S(u2,v2)+S(u1,v1)−S(v1,u2)−S(u1,v2), if −u1<t,

(4.2)

where we define

S(x, y) =
c

3
log

y − x
µ

,

S(x, y, t) =
c

6
log
|(y − x)(y − t)(t− x)|

εµ2

sinhπγ

γ
,

(4.3)

and we assume γ = γ̄ =
√

24
c hO − 1 for simplicity. This was already calculated in [12] from

the bulk side and we can perfectly reproduce this holographic result in the way introduced
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Figure 4. Reflected entropy (blue) and mutual information (yellow) for a state locally quenched

outside two intervals. Here we have set (u1, v1, u2, v2) = (−10,−3, 1, 20), ε = 10−3, γ = 2 and

we remove the prefactor c
6 . We check that this parameter set satisfies the connected condition

0 < (v1−u2)(u1−v2)
(v1−v2)(u1−u2)

< 1
2 . Each blue dot shows a transition of itself or its first derivative.

in section 2.13 It means that the falling particle bulk interpretation [52] of a local quench

state can be applied not only to the single interval entanglement entropy but also to more

refined correlation measures, mutual information and reflected entropy.

Note that in [12], the holographic mutual information is compared to not the local

operator quench state but the joining quench state. Therefore, they find the difference

between the bulk result and the CFT result. Particularly, the remarkable difference is

that the long range entanglement is found only in the CFT side (which can be also found

for negativity [16]). However, our approach shows that the local operator quench state

perfectly reproduces the holographic mutual information and then we cannot find such a

long range entanglement. It means that the long range entanglement is a particular feature

of the joining quench state. We expect that this long range effect can be completely

understood by the recent development of the bulk interpretation of the joining quench

state [4, 6].

In figure 4, we show the time-dependence of reflected entropy and mutual information

in the setup (0 < ε� u2 < −v1 < −u1 < v2). A first observation of this graph is that the

reflected entropy is always larger than the mutual information. In fact, as shown in [17],

13A similar CFT calculation can be found in [72], but it might not be rigorous because their calculation

of the 6-point Virasoro block is based on a wrong assumption, even in the Regge limit,

σn × σ̄n = I + · · · . (4.4)

As shown in [51], the Regge limit of this OPE is dominated by a NON-vacuum state. Actually, in a special

case, this assumption somehow gives a correct result and their final expression becomes consistent with the

bulk computation. However, in general, this assumption leads to a wrong estimate. On the other hand, our

method introduced in section 2 can be applied to any situations.
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the reflected entropy is bounded by the mutual information as

SR(A : B) ≥ I(A : B). (4.5)

That is, our result is perfectly consistent with this lower bound. An important difference

between mutual information and reflected entropy can be found at t =
√
−u2v1,

√
−u1v2,

the mutual information is continuous, on the other hand, the reflected entropy is discontin-

uous. To make it clear, we zoom into early time region in the right of the figure. In the lower

two plots, we show the difference between the local quench state and the vacuum state,

∆SR(A : B) = SR(A : B)[O]− SR(A : B)[I], ∆I(A : B) = I(A : B)[O]− I(A : B)[I],
(4.6)

which measure a growth of correlations after a local quench. In fact, they behave very

similarly, but interestingly, we find the following inequalities for the mutual information

and reflected entropy,14{
∆SR(A : B) ≥ ∆I(A : B), if t /∈ [−v1,−u1],

∆SR(A : B) ≤ ∆I(A : B), if t ∈ [−v1,−u1].
(4.7)

It implies that the reflected entropy measure the dynamics of the correlations in a quite

different way from the mutual information. And this inequalities might be a key to under-

standing what correlations are measured by reflected entropy from the physical view point.

Possibly, it might be interpreted in the following. The growth in t ∈ [−v1,−u1] is strongly

caused by the quantum correlations, on the other hand, it would be expected that in

t /∈ [−v1,−u1], the excitation changes both quantum correlations and classical correlations

in a similar manner. The point is that in the holographic CFT, the mutual information

probes quantum correlations more purely than the reflected entropy.15 Therefore, the

quantum correlations in t ∈ [−v1,−u1] compared with the classical correlations result in

the large growth of the mutual information, thus we obtain ∆SR(A : B) ≤ ∆I(A : B),

while in t /∈ [−v1,−u1], the change of the quantum correlations are not larger than the

classical correlations enough to satisfy ∆SR(A : B) ≤ ∆I(A : B).

Note that if we take two intervals A = [−∞, v1] and B = [u2,∞] and focus on the late

time limit t� ε, then these two quantities approach

∆SR(A : B) ∼ ∆I(A : B) ∼ ∆S(A) + ∆S(B), (4.9)

14This does not contradict with SR(A : B) ≥ I(A : B) because this is just a difference between the

excited state and the vacuum state. SR(A : B) ≥ I(A : B) has already shown in figure 4.
15This intuition comes from the inequality SR(A : B) ≥ I(A : B). Moreover, the holographic mutual

information satisfies the monogamy relation, while the holographic reflected entropy only satisfies the strong

superadditivity, which is a weaker version of the monogamy relation. We do not have a further explanation

for the reflected entropy, however, we can give a clearer explanation for the entanglement of purification by

the fallowing inequality for any separable state,

EP (A : B) ≥ 2
I(A : B)

2
>
I(A : B)

2
. (4.8)
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where ∆S(A) is the growth of the entanglement entropy for the interval A after a local

quench,

∆S(A) ∼ c

6
log

t

ε
. (4.10)

This would be natural because in the late time limit, quasi particles do not interact with

each other.

We have to comment that the reflected entropy is expected to be non-zero only in the

time region t ∈ [u2, v2] from the quasi particle picture [2, 3] and our result is perfectly

consistent with this expectation. However, the behavior in the time-dependent region

cannot be captured by the quasiparticle picture, which is one of the characteristics of

the holographic CFT. It would be worth mentioning that in the nontrivial time region

t ∈ [u2, v2], there are two phases as shown in the figure. The remarkable features in each

phase is as follows:

• t ∈ [u2,−v1] ∪ [−u1, v2]

The reflected entropy is independent of the conformal dimension hO and does not

include high energy scale (the UV cutoff parameter ε).

• t ∈ [−v1,−u1]

The reflected entropy depends on the conformal dimension hO and includes high

energy scale.

It means that when the left or right moving excitation enters one interval, the excitation

affects the reflected entropy but its effect is not so strong, on the other hand, if both

left and right moving excitations enter two intervals, then the reflected entropy becomes

much larger than that for the vacuum. This strong effect comes from the entanglement

between two intervals, which is created by the excitation. However, we do not have any

clear explanation of the small effect found in t /∈ [−v1,−u1]. Note that this small effect

does not appear in RCFTs (see section 7).

In figure 5, we show the reflected entropy and the mutual information in the different

setup (0 < ε� v1 < u2 < v2 < −u1 and
√
−v1u1 < v2). The main difference is that there

is an additional transition for the mutual information, in that, the first derivative of the

mutual information is discontinuous at t =
√
−u1v1, which can not be observed for the

reflected entropy. Moreover, we can find the inequalities (4.7) and the transition of the

reflected entropy at t =
√
−u1v2 as seen in figure 5. And also we find the agreement with

the quasi particle picture in t /∈ [v1,−u1].

Finally, we would like to comment that our interpretation by comparing between the

reflected entropy and the mutual information can be also applied to the entanglement of

purification. This is because these two quantities reduces to the same entanglement wedge

cross section in the holographic CFT.

5 Reflected entropy in heavy state from CFT

We consider a CFT on a circle with length L. Then, the reflected entropy for a heavy state

can be calculated from
1

1− n
log

Zn,m
(Z1,m)n

, (5.1)
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Figure 5. Reflected entropy (blue) and mutual information (yellow) for a state locally quenched

inside two intervals. Here we have set (u1, v1, u2, v2) = (−20, 1, 3, 10), ε = 10−3, γ = 2 and

we remove the prefactor c
6 . We check that this parameter set satisfies the connected condition

0 < (v1−u2)(u1−v2)
(v1−v2)(u1−u2)

< 1
2 . Each blue dot shows a transition of itself or its first derivative.

where

Zn,m =
〈
O⊗mn

∣∣∣σgA(−u1)σg−1
A

(−v1)σgB (u2)σg−1
B

(v2)
∣∣∣O⊗mn〉

CFT⊗mn
. (5.2)

Here, this correlator is defined on a cylinder. This can be mapped to the plane (z, z̄) by

z = e
2πiw
L , z̄ = e−

2πiw
L . (5.3)

In this coordinates, we can also evaluate it by a single block approximation as in section 2.

In this setup, we are very interested in a question, whether we can reproduce the

transition of the entanglement wedge cross section or not. It is known that the entanglement

wedge cross section has a transition as shown in the upper of figure 6. That is, it is possible

that the minimal cross section is given by the disconnected codimension-2 surfaces which

have endpoints on the black hole horizon, instead of the connected surface. Actually, there

is no reason to reproduce this transition from the reflected entropy (5.1) because our heavy

state (i.e., ρ = |O〉 〈O|) is “pure” but the BTZ microstate is “mixed”. Nevertheless, it

might be possible to find this transition from the CFT side, because the reduced density

matrix could be approximated by that for a microstate of BTZ in the large c limit. Naively,

we can expect that the transition in the bulk side can be translated into a change of the

dominant channel as shown in the lower of figure 6. If this naive expectation is true,

then the disconnected cross section should be reproduced from the following single block

approximation,

(Cn,m)2(Cn,O)2
௚ಲ

⊗௠௡

௚ಳ
షభ௚ಲ

షభ

⊗௠௡ற

௚ಳ

௡ ௡

×
௚ಲ

⊗௠௡

௚ಳ
షభ௚ಲ

షభ

⊗௠௡ற

௚ಳ

௡ ௡

.

(5.4)
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The intermediate state p is dominated by O⊗2 as explained below (2.46). The constant

Cn,O is the OPE coefficient between O⊗mn and σg−1
B gA

and its asymptotics in the limits

c→∞, n→ 1 is given by

Cn,O → γhn γ̄hn , (5.5)

with γ =
√

24
c hO − 1 and γ̄ =

√
24
c h̄O − 1. This is justified in the holographic CFT [73],

which is explained in Appedix C. Notice that we have no exponential suppression from the

OPE coefficients. Moreover, the degeneracy of the primary fields should be also 1 becasue

we are taking the OPE including twist operators.

The limit m→ 1 of the denominator in (5.1) is

〈O⊗2|O⊗2〉n = 1 (5.6)

In the semiclassical limit, the LLHHLL block (5.4) is simplified because only the contribu-

tion to the intermediate state is the primary exchange,16 which means that the LLHHLL

block is decomposed into two HHLL blocks as

௚ಲ

⊗௠௡

௚ಳ
షభ௚ಲ

షభ

⊗௠௡ற

௚ಳ

௡ ௡

−−−−→
HHLL

௚ಲ
షభ

⊗௠௡ற
௚ಳ

௡

×
௚ಲ

⊗௠௡

௚ಳ
షభ

ற ௡

.

(5.7)

Note that this expression is precise only under the m,n → 1 limit. Thus, the reflected

entropy is

SR(A : B) =
c

6
log

(
coth

πγ(v1 + u2)

2L

)
+
c

6
log

(
coth

πγ̄(v2 + u1)

2L

)
. (5.8)

The detailed calculation is shown in appendix B.3.

This result perfectly matches the entanglement wedge cross section in the BTZ met-

ric [18]. It means that the thermalization in the large c limit [75–79] can also be found in

the reflected entropy. Our result also answers the interesting physics question, what is the

bulk dual of our quench state. We show that the surface ends at the horizon of the black

hole. This can be explained by considering the horizon as an end of the world brane [80–83].

In this case, the surface can end at the horizon even if we consider a pure state black hole.

We have to mention that this idea should be also applied to the entanglement entropy in a

heavy state because the reflecte entropy (5.8) should reproduce the entanglement entropy

by the relation (3.1) in the pure state limit. Note that the entanglement entropy from

the pure state limit of the reflected entropy does not match the result in [53]. This is be-

cause their derivation assumes that the change of the dominant channel (i.e., the transition

shown in figure 6) does not happen. This was because we expected the OPE coefficients

in another channel is suppressed exponentially under the large c limit. However, as we

have seen here, this is actually not the case at least under the n → 1 limit (namely, the

entanglement entropy or the reflected entropy).

16We can show this fact by using the Virasoro algebra as in appendix E of [74] and this is also justified

by the monodromy method [70].
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Figure 6. The non-trivial entanglement wedge cross section in the BTZ background has two candi-

dates. One is the connected codimension-2 surface and the other is the disconnected codimension-2

surfaces which have endpoints on the black hole horizon. The correct choice is the minimal one. If

we could observe this transition in the CFT side, it should come from a change of the dominant

channel in the large c limit as shown in the lower of this figure.

This brane gives rise to another phase of the holographic entanglement entropy when

size of the subsystem becomes larger than the energy scale of the heavy states. In par-

ticular, as increasing the energy (enlarging the horizon radius), the phase transition like

figure 6 should happen very quickly. Notice that the transition point is obviously less than

half of the total subsystem size. Therefore, the breaking of the eigenstate thermalization

hypothesis (ETH) for the entanglement entropy must happen faster than we expected so

far [84, 85]. We would like to make further comments on this point in near future.

6 Quantum correction to reflected entropy

In the calculation of entanglement entropy in the holographic CFT, the large c limit com-

mutes with the von-Neumann limit in usual setups (vacuum state, local quench state, etc.).

However, we have to calculate the reflected entropy by taking first the limit c→∞ even if

we consider the vacuum state. We discuss this problem in this section.

To calculate reflected entropy or entanglement entropy for two intervals A and B in

the vacuum state, we start with the semiclassical block (A.2) (and its anti-holomorphic

block),

FLLHH(hp|z) = (1− z)hL(δ−1)

(
1− (1− z)δ

δ

)hp−2hL
(

1 + (1− z)
δ
2

2

)−2hp

, (6.1)
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with δ =
√

1− 24
c hH and then we obtain the entanglement entropy [62] by setting hp to

be zero and hH = hL = c
24

(
n− 1

n

)
,

S(A : B) =
c

3
log

z

µ
, (6.2)

and the reflected entropy (2.21) by setting hH , hL = 0 and hp = c
12

(
n− 1

n

)
,

SR(A : B) =
c

3
log

1 +
√

1− z
1−
√

1− z
. (6.3)

Here, we focus on the nontrivial case where the entanglement wedge is disconnected. The

cross ratio is related to the coordinated as

z =
(v1 − u2)(u1 − v2)

(v1 − v2)(u1 − u2)
, (6.4)

and the connected condition can be expressed in terms of the cross ratio as 0 < z < 1
2 .

If one wants to take first the von-Neumann limit, one cannot use the semiclassical

block because this block is defined in the limit c → ∞ with
hp
c ,

hL
c ,

hH
c fixed. Actually,

the von-Neumann limit also simplifies evaluating the block, for example, the entanglement

entropy calculated by the following simplification at any c > 1,

FLLLL (0|z) −−−−→
hL→0

1− 2hL log z +O(h2
L), (6.5)

which perfectly reproduces (6.2). On the other hand, the reflected entropy is calculated by

FLLLL (hp|z) −−−→
hp→0

1 + hp log
z√

1− z
+O(h2

p), (6.6)

where we first take the limit hL → 0. The result is

S̃R(A : B) =
c

3
log

4
√

1− z
z

, (6.7)

which is quite different from (6.3).17 We have to mention that we take the large c limit after

the von-Neumann limit to approximate the correlator by a single block. The motivation

to reverse there two limits, c → ∞ and the von-Neumann limit, is to understand non-

perturbative effects to the reflected entropy.

The discrepancy between (6.7) and (6.3) means that the two limits c→∞ and m,n→1

do not commute with each other. In other words, there are non-perturbative effects in the

reflected entropy, which cannot be found in the entanglement entropy because c → ∞
and n → 1 commute with each other in its calculation. We can interpret S̃R(A : B) as

the reflected entropy including quantum corrections. We can immediately find that the

17More precisely, in the calculations of entanglement entropy and reflected entropy, we assume that our

CFT has c > 1 and no extra currents besides the Virasoro current. These global block reductions in the

limits hL, hp → 0 can be shown by the Virasoro algebra. We also checked this global reduction formula of

the Virasoro block by using the recursion relation up to order 6.

– 30 –



J
H
E
P
0
2
(
2
0
2
0
)
0
1
7

0.2 0.4 0.6 0.8 1.0
z

1

2

3

4

5

6

Reflected Entropy vs. Mutual Information

S
˜
R(A:B)

I(A:B)

0.1 0.2 0.3 0.4 0.5
z

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

S
˜
R (A:B)-SR (A:B)

Figure 7. (Left) This shows the z-dependence of the non-perturbative reflected entropy and the

mutual information. We can check the inequality S̃R(A : B) ≥ I(A : B). (Right) The difference

between S̃R(A : B) and SR(A : B). We can find that the quantum correction is always negative.

It might be natural because the quantum corrections should smooth the transition at z = 1
2 in the

left figure, in other words, the corrections should decrease the classical reflected entropy SR(A : B).

inequality S̃R(A : B) ≥ I(A : B) is satisfied from the left of figure 7 and also show the two

monotonicity inequalities of the holographic reflected entropy,

SR(A : BC) ≥ I(A : B) + I(A : C),

SR(A : BC) ≥ SR(A : B).
(6.8)

We plot the difference between S̃R(A : B) and SR(A : B) in the right of figure 7. From

this, we can find that the quantum correction is always negative. This is natural because

the quantum correction should smooth the transition of the reflected entropy at z = 1
2 ,

therefore, the quantum correction should decrease the classical reflected entropy SR(A : B)

in order to connect two disconnected lines at z = 1
2 as sketched in figure 8. Note that other

quantum corrections come from sub-leading conformal blocks. This effect can also be

calculated in the same way and it expected to be negative. This is one of interesting

directions for future research.

The non-perturbative effect for a local quench state can be also evaluated in the same

way. In figure 9, we show the time-dependence of the non-perturbative effect in the same

setup as in figure 4. One can find that the non-perturbative effect after the transition at

t =
√
−u2v1 becomes very small. It is natural because this transition at t =

√
−u2v1 is

attributed not by the large c limit but by the ε→ 0 limit, hence, this discontinuity should

not be resolved by the quantum correlations. It would be very interesting to examine some

inequalities for holographic reflected entropy in [17] for nontrivial states (e.g., local quench

studied above) in the same non-perturbative way. This trial could answer a question, which

inequalities of the holographic reflected entropy break down by the quantum corrections.

We hope to return this issue in future work.

7 Reflected entropy in integrable system

It is very interesting to compare our result to the dynamics of the reflected entropy in

other CFTs, in particular, integrable CFTs. There are many works to study entanglement
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Figure 8. Sketch of the effect of quantum corrections. It is naturally expected for the quantum

corrections to decrease the classical reflected entropy to smooth the transition.

0.5 1.0 1.5 2.0 2.5 3.0
t

-0.055

-0.050

-0.045

-0.040

-0.035

-0.030

-0.025

S
˜
R (A:B)-SR (A:B)

Figure 9. The difference between S̃R(A : B) and SR(A : B) for a local quench state. Here the

parameters are set to be (u1, v1, u2, v2) = (−10,−3, 1, 20), ε = 10−3, γ = γ̄ = 2 and the prefactor c
6

is removed.

entropy after a local quench in various setups [4, 5, 52, 53, 71, 86–91]. Their motivation

is to characterize CFT classes by the dynamics of entanglement. And from those results,

this quantity is expected to capture the chaotic natures of CFTs. On this background, it

is naturally expected that by using a refined tool, reflected entropy, we can obtain more

information to classify CFTs. In this section, we will briefly discuss how the reflected

entropy grows after a local quench in RCFTs and investigate whether the RCFT reflected

entropy has a different growth from the holographic reflected entropy or not.

An important difference between the holographic CFT and RCFTs is that in the

former, the OPE in the Regge limit does not contain the vacuum state, whereas in the

later, the vacuum state can propagate even in the Regge limit. As a result, the time-

dependence cannot be found in RCFTs. We will briefly explain this mechanism of the

vanishing time-dependence by considering an analogy of (2.33) (see also (B.1)) in RCFTs.
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In our CFT, the Regge limit of this block is obtained by the monodormy matrix as18

௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௡௠

−−→
ε→0

M̃(−)
0,2αm

[
αm αm
αO αO

]
× (2iε)h2αm−2nmhO

௚ಲ

௚ಳ
షభ

௚ಲ
షభ

௚ಳ

௡௠

ଶఈ೘

,

(7.1)

where ha = α(Q−α). We would like to mention that the time-dependence is encapsulated

in the position of the external operator h2αm . On the other hand, if we consider the Regge

limit in RCFTs,

௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௡௠

−−→
ε→0

M(−)
0,0

[
αm αm
αO αO

]
× (2iε)−2nmhO

௚ಲ

௚ಳ
షభ

௚ಲ
షభ

௚ಳ

௡௠
.

(7.2)

The key point is that the operator h2αm is replaced by the identity, therefore, this 5-point

block reduces a 4-point block,

௚ಲ

௚ಳ
షభ

௚ಲ
షభ

௚ಳ

௡௠
=

௚ಲ

௚ಳ
షభ

௚ಲ
షభ

௚ಳ

௡
. (7.3)

This means that the time-dependence disappears in this single block approximation. The

way to calculate the reflected entropy in RCFTs is just repeating the calculation in section 2

replacing (7.1) by (7.2). As a result, if we consider the setup (0 < ε� u2 < −v1 < −u1 < v2

and O is acted on x = 0 at t = 0.) for example, we obtain

∆SR(A : B)[O] =



0, if t < −v1,

2 log dO, if − v1 < t < −u1,

0, if − u1 < t,

(7.4)

where dO is a constant, so-called quantum dimension, which is re-expressed in terms of the

modular S matrix as [86, 87]

dO =
S0O

S00
. (7.5)

18In the analytic continuation m → 1, the exponent is replaced by 2mnhO → 4nhO by the squaring

rule (2.10).

– 33 –



J
H
E
P
0
2
(
2
0
2
0
)
0
1
7

We would like to comment that this result is consistent with the relation (3.1). Namely, in

the pure state limit (Ā = B), the reflected entropy reduces to the entanglement entropy,

which implies

∆SR(A : B)[O] = 2∆S(A)[O] = 2 log dO. (7.6)

This is consistent with the previous result ∆S(A)[O] = log dO in [86]. We will show the de-

tailed calculation in a future paper about reflected entropy in finite c CFTs. Consequently,

we can conclude that the reflected entropy in RCFTs cannot grow as in the holographic

CFT and in fact, the dynamics can be fully captured by the quasi-particle picture. More

concretely, if the quasi-particle enters a interval, then entanglement is created between the

interval and its complement. In terms of the reflected entropy, this phenomena can be

observed as a non-zero constant characterized by the quantum dimension, like entangle-

ment entropy [86, 87]. In other words, the RCFT reflected entropy after a local quench is

characterized by a step function, which is quite different from the holographic case. We

show the comparison of the reflected entropy between holographic CFT and Ising model

in figure 10. One can find two significant differences from this figure,

• The small effect in t ∈ [u2,−v1] ∪ [−u1, v2] does not appear in RCFTs, unlike the

holographic CFT (see also section 4).

• The holographic CFT shows the logarithmic growth in t ∈ [−v1,−u1], on the other

hand, the growth of RCFT approaches a finite constant.

This difference between RCFT and holographic CFT means that the reflected entropy

might be also related to a nature of chaos in a given CFT, therefore, we expect that by

making use of the reflected entropy, we can also study the information scrambling [11, 61],

which might be a interesting direction for future work. It would be interesting to note that

this growth pattern (7.4) is exactly the same as that of the mutual information.19 This is a

stronger version of the decoupling relation (4.9), which is quite natural because in RCFTs,

the quasi particle picture can be applied in any time region.

These properties are quite different from the holographic case as show in (4.7), there-

fore, we could classify CFTs by studying whether the growth of reflected entropy and

mutual information are different or not. Further studies in this direction shed light on

what correlations are measured by reflected entropy. We would also like to mention that

the quantum dimension can be interpreted as an effective degrees of freedom included in

the operator O and our result suggests that the reflected entropy captures this degrees of

freedom, like entanglement entropy.

8 Odd entanglement entropy

As mentioned in the introduction, the odd entanglement entropy in holographic CFTs also

matches the reflected entropy (the entanglement wedge cross section) in our dynamical

setup. These agreement can be understood from a similarity of the methods to calculate

19Here, we mean not SR(A : B) = I(A : B) but ∆SR(A : B) = ∆I(A : B).
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ΔSR (A:B)
Growth of Reflected Entropy in holographic vs. RCFT

holographic

RCFT

Figure 10. The growth of reflected entropy in holographic CFT (blue) and Ising model (yellow).

∆SR means the difference between the excited state and the vacuum state. Here (u1, v1, u2, v2) =

(−20, 1, 3, 10), ε = 10−3 and we divide them by c
6 . We choose γ = 2 in holographic CFT and O = σ

in Ising model. Each blue dot shows a transition of itself or its first derivative.

the odd entanglement entropy and the reflected entropy especially in the holographic CFTs.

(Interestingly, this agreement is also the case for RCFTs.) In this section, we will sketch

the proof of this coincidence. An interesting point is that this quantity is not based on the

purification, therefore, it is nontrivial in this sense that this quantity also reproduces the

entanglement wedge cross section, like the reflected entropy.

Following the definition (1.9), the odd entanglement entropy in our setup can be ob-

tained from the following correlation function,

tr
(
ρTBAB

)n
=

〈
σn(u1)σ̄n(v1)O⊗n(w1, w̄1)O⊗n

†
(w2, w̄2)σ̄n(u2)σn(v2)

〉
CFT⊗n

〈O(w1, w̄1)O†(w2, w̄2)〉n
, (8.1)

where σn and σ̄n correspond to the usual twist operators with twist number ±1 and n

is the analytic continuation of an odd integer. If one assumes an even integer analytic

continuation, the (8.1) is nothing but the one for the negativity. Note that for the odd

entanglement entropy the complications from the decoupling effect (as like reflected entropy

and negativity) do not appear. This is just because we take here the analytic continuation

of an odd integer, thus no decoupling of the replica sheet happens [13, 14]. Therefore, we

can safely use the Virasoro conformal blocks for the calculation of the odd entanglement

entropy as like the entanglement entropy in holographic CFTs.

If one evaluates the (8.1) in the holographic CFTs, one can again approximate it as

a single semiclassical conformal block. The semiclassical conformal block (more precisely,

the linearized semicalssical block [92]) has the following form,

logF(zi) ∼ hf0(zi) + hpfp(zi) +O(h, hp), (8.2)

where external dimensions h and internal dimensions hp are given by the form,

h ∼ hp ∼ σc with σ � 1, (8.3)

and the functions f0 and fp are of order one. The Landau symbol O(x, y) stands for

various quantities vanishing as xnym → 0 with n+m ≥ 2. Here the entanglement entropy
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Figure 11. The reflected entropy is given by minimizing the red line in the left, on the other hand,

the odd entanglement entropy is given by minimizing the red lines in the right, which is the sum of

two RT surfaces and the entanglement wedge cross section.

is obtained by f0(zi) because the corresponding correlator is dominated by the vacuum

block (i.e., hp = 0) [62].

Let us recall the case of the reflected entropy. After all the reflected entropy came

from this fp(zi) because we take the limit h → 0 of the external operators (i.e., m → 1

limit). In other words, the numerator of the 6-point function (2.2) can be re-expressed by

a series expansion in its internal dimension hn as

logF(zi) =< denominator in (2.2) > +2hnfp(zi) +O
(
(1− n)2

)
. (8.4)

Here the first term is compensated by the denominator and the second term 2fp corresponds

to the value of reflected entropy. Remind that the factor 2 of 2fp comes from “doubling of

Virasoro block” due to the doubling of the Hilbert space (namely, the even integer analytic

continuation).

Thus, we can immediately show that

SO(A : B)[O]− S(A : B)[O] =
c

12
fp(zi) =

1

2
SR(A : B)[O], (8.5)

where we used the fact that the conformal block related to the odd entanglement entropy

has the intermediate dimension hp = hn as shown in [37]. It means that the calculation of

the odd entanglement entropy is just a repetition of that in section 2.

Strictly speaking, it might happen to find the disagreement between reflected entropy

and odd entanglement entropy, because reflected entropy is based on the minimal of the

entanglement wedge cross section, on the other hand, the odd entanglement entropy com-

putes the minimal of the sum of two RT surfaces and the “entanglement wedge cross

section” (see figure 11).20 This could cause a change of the dominant channel of the single

20We abused the word “entanglement wedge cross section” (precisely, the minimal surface which ends

at two RT surfaces). It is not necessary that this corresponds to the (minimal) entanglement wedge cross

section.
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block approximations. However, we can easily check the agreement between the reflected

entropy and the odd entanglement entropy (up to prefactor 2) by assuming µ � ε � 1.

We expect that these two minimizing problems provide the same result.21

Since the reflected entropy for RCFT in section 7 relies on the single conformal block

approximation due to the Regge limit, we can also show

∆SO(A : B)[O]−∆S(A : B)[O] =
1

2
∆SR(A : B)[O] (for RCFT). (8.6)

Therefore, we can use SO(A : B) as a signature of the chaos as like the reflected entropy.

However, we suspect that the “bare values”, SO(A : B)[O]−S(A : B)[O] and SR(A : B)[O]

for RCFT, should behave quite differently.

9 Entanglement wedge cross section for falling particle geometry

In this section, we consider the entanglement wedge cross section in the Poincare AdS3

geometry,

ds2 =
dz2 − dt2 + dx2

z2
, (9.1)

with a falling particle whose trajectory is given by

z2 − t2 = ε2, x = 0. (9.2)

Here ε corresponds not to the cutoff for radial direction (UV cutoff in CFT side) but to

the size of the particle. We will define the cutoff for radial direction by µ. We also set AdS

radius `AdS ≡ 1 for simplicity. This geometry is expected to be dual to the local operator

quench at (x, t) = (0, 0) in the holographic CFT [52].

Since the falling particle gets boosted under the time evolution, we must take into

account the back-reaction due to the boosted particle. By using the global coordinates, one

can put the falling particle always on the center and represent the back-reacted geometry

outside of the particle [52, 93] as

ds2 = −(r2 + 1−M)dt2 +
dr2

r2 + 1−M
+ r2dθ2, (9.3)

where M characterizes the mass of the particle. For M < 1, this metric describes the

geometry with a conical deficit located at r = 0. For M ≥ 1, it gives rise to the static

BTZ geometry with mass M − 1. In particular, we are interested in the latter BTZ

setup. To this end, one can analytically continue the former results to the latter ones√
1−M → i

√
M − 1 ≡ iγ. Note that one can identify the present γ =

√
M − 1 with the

same one introduced in CFT analysis γ =
√

24
c hO − 1. The static BTZ corresponds to

γ = γ̄. In section 9.3, we will briefly discuss the γ 6= γ̄ case, dual to the rotating BTZ

blackhole.

21In the regime µ ∼ ε, the area of the “entanglement wedge cross section” could be comparable to area

of the two RT surfaces. In such regimes, we potentially have this deviation. Clarifying such possibilities in

more general dynamical setup might be an interesting future direction.
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Since the above geometries are locally AdS3, it is very useful to write them by using

the embedding coordinates in R2,2:

ds2 = ηABdXAdXB = −dX2
0 − dX2

1 + dX2
2 + dX3

3 , (9.4)

with

X2 = −1, (9.5)

where we defined

X · Y ≡ ηABXAY B. (9.6)

Then the geometry (9.2) is given by

X0 =
t

z
, (9.7a)

X1 =
ε+ ε−1(z2 + x2 − t2)

2z
, (9.7b)

X2 =
x

z
, (9.7c)

X3 =
−ε+ ε−1(z2 + x2 − t2)

2z
. (9.7d)

On the other hand, one can describe the back-reacted geometry in global coordinates

as the following coordinates:

X0 =

√
r2 + 1−M

1−M
sin
(√

1−Mτ
)
, (9.8a)

X1 =

√
r2 + 1−M

1−M
cos
(√

1−Mτ
)
, (9.8b)

X2 =
r√

1−M
sin
(√

1−Mθ
)
, (9.8c)

X3 =
r√

1−M
cos
(√

1−Mθ
)
, (9.8d)

where we chose τ ∈ [0, π] (τ ∈ [−π, 0]) for t ≥ 0 (t ≤ 0) and θ ∈ [0, π] (θ ∈ [−π, 0]) for x ≥ 0

(x ≤ 0). Note that we also imposed identification along the angular direction θ ∼ θ + 2π

which will become important for later analysis. Having this identification in mind, we can

easily relate these two geometries by using the above embedding coordinates.

9.1 Geodesics between two minimal surfaces

First, we derive the geodesic distance between two geodesics anchored on the boundary

points. This will be very useful to obtain the entanglement wedge cross section of our

interests. In the embedding coordinates, the length of the geodesics ending on the bulk

points Xi and Xj is given by

σ(Xi, Xj) = log

(
ξ−1
ij +

√
ξ−1
ij − 1

√
ξ−1
ij + 1

)
(9.9a)

ξ−1
ij = −Xi ·Xj . (9.9b)
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On the other hand, the spacelike geodesics γij anchored on two bulk points Xi and Xj is

given by

XA
ij (λ) = mAe−λ + nAeλ, (9.10)

where

m2 = n2 = 0, 2m · n = −1. (9.11)

If we have

X(λi) = Xi, X(λj) = Xj , (9.12)

as a boundary condition and if both Xi and Xj are sufficiently close to the boundary, we

can write

XA
ij (λ) =

XA
i e−λ +XA

j eλ√
−2Xi ·Xj

, (9.13)

where

e−λi = eλj =
√
−2Xi ·Xj

(
≡
√

2ξ−1
ij

)
. (9.14)

We would like to find the pair of parameters (λ, λ′) = (λ∗, λ
′
∗) which minimizes (extremizes)

the length of geodesics σ(λ, λ′) ≡ σ(X14(λ), X23(λ′)). As a result, we find

λ∗ =
1

4
log

[
(ξ−1

12 )(ξ−1
14 )

(ξ−1
24 )(ξ−1

34 )

]
, λ′∗ =

1

4
log

[
(ξ−1

12 )(ξ−1
24 )

(ξ−1
14 )(ξ−1

34 )

]
, (9.15)

and

ξ−1
ij (λ∗, λ

′
∗) =

1√
v

(1 +
√
u). (9.16)

Here u and v are given by,

u =
ξ−1

12 ξ
−1
34

ξ−1
13 ξ

−1
24

, v =
ξ−1

14 ξ
−1
23

ξ−1
13 ξ

−1
24

, (9.17)

and reduce to the standard cross ratio in the CFT side. Therefore, we have obtained

EW =
1

4G
σ(λ∗, λ

′
∗) =

1

4G
log

(
1 +
√
u+

√
(1 +

√
u)2 − v√

v

)
, (9.18)

which has effectively the same form as the AdS3 one in the embedding coordinates [22].

Here we introduced the Newton constant by G, which is related to the central charge as

c = 3
2G by the AdS/CFT dictionary [94]. We will apply the above formula (9.18) in order

to obtain the entanglement wedge cross section in the falling particle geometry. Notice

that, however, we had the identification θ ∼ θ+ 2π along the angular direction. Therefore,

we have multiple solutions, most of which correspond to the solutions with non-trivial

winding around the deficit angle (or the blackhole). What we need to pick up is the one

which reproduces the correct minimal surfaces (namely, the correct entanglement wedge)

and gives the minimal cross section of the entanglement wedge.

– 39 –



J
H
E
P
0
2
(
2
0
2
0
)
0
1
7

Figure 12. Left: our setup in the Poincare coordinates. Black curves ending on the boundary

are minimal surfaces and the shaded region corresponds to the (time slice of) entanglement wedge.

Another solid curve anchored on the minimal surfaces represents the minimal cross section of the

entanglement wedge. Right: the back-reacted geometry in the global coordinates. To be precise,

each “boundary” points map to the different time and radial slices, thus the right panel is quite

schematic. For each figure, the black-colored circle represents the black hole.

9.2 An example: quench outside region A and B

Here we illustrate an example of the holographic local quench. In section 9.2.1, we will see

the perfect agreement with the CFT analysis. Quite similar analysis show the agreement

even in other setups. To avoid redundancy, we will not present other examples here. In

section 9.2.2, we also comment on the non-zero size case.

9.2.1 Dominant phase for small particle limit

Let us consider the bulk dual of a local (heavy) operator quench outside region between A

and B. Namely, we assume A = [u1, v1] and B = [u2, v2] where 0 < u2 < −v1 < −u1 < v2

(see figure 12). To make life simpler and for comparison with the CFT results, we focus on

the small particle limit ε→ 0. Without this assumption, we will observe many transitions

between the three phases (see figure 13). We comment on these transitions briefly in the

upcoming subsection. At the first time, 0 < ε � t < u2, the falling particle is outside of

the entanglement wedge and does not affect any back-reaction to its inside. Indeed we can

compute geodesics in global coordinates and then back to the original metric by using the

following relation:

(τu1 , θu1 , ru1) =

(
2tε

u2
1 − t2

, π − 2u1ε

u2
1 − t2

,
|u2

1 − t2|
2µε

)
, (9.19)

(τv1 , θv1 , rv1) =

(
2tε

v2
1 − t2

, π − 2v1ε

v2
1 − t2

,
|v2

1 − t2|
2µε

)
, (9.20)

(τu2 , θu2 , ru2) =

(
2tε

u2
2 − t2

, π − 2u2ε

u2
2 − t2

,
|u2

2 − t2|
2µε

)
, (9.21)

(τv2 , θv2 , rv2) =

(
2tε

v2
2 − t2

, π − 2v2ε

v2
2 − t2

,
|v2

2 − t2|
2µε

)
. (9.22)
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Figure 13. Three possibilities for entanglement wedge (shaded regions) and its cross section

(dotted lines): disconnected (left), connected (center) and splitting cross sections (right). In the

small particle limit ε→ 0, we can fix our phase either disconnected (left) or connected (center) for

every time regions.

Thus, we obtain

EW =
c

6
log

1 +
√

(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

1−
√

(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

, (if 0 < t < u2), (9.23)

at the leading order of ε expansion. Notice that this is just the same cross section as one

for Poincare AdS3.

In the regime u2 < t <
√
−u2v1, the falling particle is getting closer to the entangle-

ment wedge, but still outside of the entanglement wedge. Since the coordinates across the

singularity on u2, the relation between two coordinates changes slightly,

(τu2 , θu2 , ru2) =

(
2tε

u2
2 − t2

, π − 2u2ε

u2
2 − t2

,
|u2

2 − t2|
2µε

)
→
(
π +

2tε

u2
2 − t2

,− 2u2ε

u2
2 − t2

,
|u2

2 − t2|
2µε

)
,

(9.24)

whereas that for other coordinates (u1, v1, v2) does not change. From the CFT viewpoint,

this effect can be seen as the monodromy transformation in (2.24) although here we have

no distinction between the left and right moving. We will take the same replacement for

each coordinate (u1, v1, v2) when the time t exceeds each (absolute) value. In this regime,

the back-reaction to the minimal surfaces becomes visible, so the entanglement wedge cross

section does,

EW =
c

12
log

1 +
√

(v2−t)(v1−u1)
(t−u1)(v2−v1)

1−
√

(v2−t)(v1−u1)
(t−u1)(v2−v1)

+
c

12
log

1 +
√

(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

1−
√

(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

, (if u2 < t <
√
−u2v1).

(9.25)

When the particle enters the entanglement wedge (
√
−u2v1 < t < −v1), we cannot use the

formula naively. This is because the original one captures the non-minimal surfaces (see

left panel of figure 14). Thus, we should utilize the identification so that we have correct

entanglement wedge. This can be achieved by shifting the θu2 → θu2 + 2π, which is the

same manipulation when one computes the holographic entanglement entropy (see right

panel of figure 14).
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Figure 14. The manipulation in order to obtain the correct entanglement wedge. In the right panel,

dotted lines describe the non-minimal surfaces and “cross section” obtained naively from (9.18).

After shifting θu2 → θu2 + 2π, we achieve the left panel which describes the correct entanglement

wedge and its cross section.

Figure 15. The manipulation in order to obtain the minimal cross section of the entanglement

wedge.

Then we get

EW =
c

12
log

1 +
√

(t+v2)(v1−u1)
(−t−u1)(v2−u2)

1−
√

(t+v2)(v1−u1)
(−t−u1)(v2−u2)

+
c

12
log

1 +
√

(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

1−
√

(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

, (if
√
−u2v1 < t < −v1).

(9.26)

Note that the aforementioned manipulation corresponds to choosing the unusual conformal

block in (2.36) which is compensated by the monodromy in the holomorphic part.

When the particle is falling near the center of the entanglement wedge (−v1 < t <

−u1), the corresponding minimal cross section acquires the significant effects on the back-

reaction. The minimal one can be obtained from the (9.18) by shifting θv1 → θv1 + 2π and

θu2 → θu2 + 2π (see figure 15),

EW =
c

6
log

2 sinh γπ

γε

√
(t+ u1)(t+ u2)(t+ v1)(t+ v2)

(u2 − v1)(u1 − v2)

+
c

12
log

1 +
√

(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

1−
√

(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

, (if − v1 < t < −u1). (9.27)
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For −u1 < t, we can repeat the similar analysis. In summary, we have obtained,

EW =



c
6 log

1+

√
(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

1−
√

(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

(if 0<t<u2)

c
12 log

1+

√
(v2−t)(v1−u1)
(t−u1)(v2−v1)

1−
√

(v2−t)(v1−u1)
(t−u1)(v2−v1)

+ c
12 log

1+

√
(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

1−
√

(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

(if u2<t<
√
−u2v1)

c
12 log

1+

√
(t+v2)(v1−u1)

(−t−u1)(v2−u2)

1−
√

(t+v2)(v1−u1)
(−t−u1)(v2−u2)

+ c
12 log

1+

√
(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

1−
√

(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

(if
√
−u2v1<t<−v1)

c
6 log 2sinhγπ

γε

√
(t+u1)(t+u2)(t+v1)(t+v2)

(u2−v1)(u1−v2) + c
12 log

1+

√
(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

1−
√

(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

(if −v1<t<−u1)

c
12 log

1+

√
(t+u2)(u1−v1)
(t+v1)(u1−u2)

1−
√

(t+u2)(u1−v1)
(t+v1)(u1−u2)

+ c
12 log

1+

√
(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

1−
√

(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

(if −u1<t<
√
−u1v2)

c
12 log

1+

√
(t−u2)(u1−v1)
(t−v1)(u1−u2)

1−
√

(t−u2)(u1−v1)
(t−v1)(u1−u2)

+ c
12 log

1+

√
(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

1−
√

(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

(if
√
−u1v2<t<v2)

c
6 log

1+

√
(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

1−
√

(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

(if v2<t)

(9.28)

These results perfectly agree with the CFT results (2.51).

9.2.2 Another phase without small particle limit

There is another interesting possibility — the entanglement wedge cross section splits into

two pieces and each of them ends on the falling particle (see figure 16). Although it

will never become dominant contribution for the ε → 0 limit, this phase can become the

dominant one when the size of the particle ε has a comparable length scale with each interval

(A, B and distance between them). Even in this case, one can use (9.9) for each segment

(Σu1v2 and Σv1u2) in the figure 16 and find the “minimal” ones.22 After all, we obtain

EW =
1

4G
(σ(Σu1v2) + σ(Σv1u2)), (9.29)

σ(Σ) = log
r∗ +

√
r2
∗ − (M − 1)√
M − 1

, (9.30)

where r∗ corresponds to the “turning point” in the geodesics anchored on the boundary

points. One can see the r∗ in the literature [52] (see also appendix B of [12]):

r∗ =

√
1−A2 −B2(1−M) +

√
(1−A2 −B2(1−M))2 + 4B2(1−M)
√

2B
. (9.31)

22As discussed in the below, we must minimize not the segments of cross sections but the minimal surfaces,

otherwise what we compute is no longer the minimal cross section of the entanglement wedge.
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Figure 16. Two dotted lines (Σu1v2 and Σv1u2
) show another possibility for the entanglement

wedge cross section which ends on the horizon. This happens only when the particle is falling inside

the entanglement wedge.

Here we defined

A =

∣∣∣∣∣ sin(
√

1−M∆τ∞)

sin(
√

1−M∆θ∞)

∣∣∣∣∣, (9.32)

B =

∣∣∣∣∣cos(
√

1−M∆τ∞)− cos(
√

1−M∆θ∞)√
1−M sin(

√
1−M∆θ∞)

∣∣∣∣∣, (9.33)

where (∆τ∞,∆θ∞) = (τv1 − τu2 , θv1 − θu2) or (τu1 − τv2 , θu1 − θv2). We also have the possi-

bilities (∆τ∞,∆θ∞)→ (∆τ∞, 2π −∆θ∞). Note that the minimum value of the σ(Σ) does

not always correspond to the correct entanglement wedge. We must carefully choose the

one which minimizes the area of the minimal surfaces. For example, in the small size limit

ε→ 0, the analytic expression in −v1 < t < −u1 is given by

EW =
c

6
log

√
(t2 − u2

2)(t2 − v2
1)(u2

1 − t2)(v2
2 − t2)

γ2ε2(u2 − v1)(u1 − v2)
, (if − v1 < t < −u1). (9.34)

Obviously, this possibility is excluded from the ε dependence. However, this is what we

have seen in (2.50) as a (non-dominant) conformal block. Rather interestingly, we can con-

firm large c conformal blocks nicely tell us the each possibility for each phase. Moreover,

this splitting cross section can be a dominant one if ε becomes non-zero (see figure 17 as

an example).

9.3 Rotating case

We can easily extend the previous calculations to the rotating BTZ black hole with angular

momentum J . In the CFT side, we let the local operator have the scaling dimension
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normal cross section vs. splitting cross section

normal cross section

splitting cross section

Figure 17. This plot shows the time dependence of the splitting cross section (figure 16) and

the normal cross section discussed in the previous section (middle panel of figure 13). Here we set

−u1 = v2 = 80,−v1 = u2 = 2, γ = 2, and ε = 0.1. In this setup, the splitting cross section becomes

a minimum one.

hO 6= h̄O. The embedding coordinates in the rotating case are given by

X0 =

√
r2 − r2

+

r2
+ − r2

−
sin (r+τ − r−θ) , (9.35a)

X1 =

√
r2 − r2

+

r2
+ − r2

−
cos (r+τ − r−θ) , (9.35b)

X2 =

√
r2 − r2

−
r2

+ − r2
−

sin (r+θ − r−τ) , (9.35c)

X3 =

√
r2 − r2

−
r2

+ − r2
−

cos (r+θ − r−τ) , (9.35d)

where r+(r−) correspond to the radius of the outer (inner) horizon,

r+ − r− =
√
M − 1− J ≡ γ, (9.36)

r+ + r− =
√
M − 1 + J ≡ γ̄. (9.37)

Note that the above coordinates cover only the region r > r+. Here γ and γ̄ are the same

one in the CFT. In the previous subsections, we assumed J = 0, hence γ = γ̄. By using the

above coordinates, one can check that the local heavy operator with hO 6= h̄O consistently

reproduces the rotating BTZ results.

10 Discussion

We will propose some remaining questions and interesting future works at the end of this

paper:

• information spreading

One of our basic questions is how question information spreads in a strongly coupled

system. A useful tool to probe how information spreads is mutual information as

studied in [11]. It is natural to expect that reflected entropy provides new information

about this problem. What we need to calculate reflected entropy in their setup is
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the light cone singularities of the 6-point conformal blocks. Nevertheless there are

currently no explicit forms of the light-cone singularity of Virasoro blocks, they are

recently investigated by numerically [66, 67] and analytically [68] in large c and [61, 69]

in general c > 1. Now that we have all tools to accomplish this task, it would be

very interesting to study information spreading by making use of reflected entropy.

(In the bulk side, a first step in this direction has already been taken in [54])

• monotonicity

The entanglement of purification has some useful properties and the holographic

reflected entropy satisfies all these inequalities. However, if we leave the holographic

CFT, some of them break down. It would be interesting to clarify how the quantum

corrections break down them. In particular, there is little knowledge about the

monotonicity for reflected entropy,

SR(A : BC) ≥ SR(A : B). (10.1)

Our approach developed in this paper can be applied non-perturbatively to non-trivial

state, therefore, we believe that our approach makes it clear before long.

• relation to negativity

There is an interesting proposal for the relation between entanglement wedge cross

section and negativity in [30, 43]. The negativity can also be calculated in CFT by the

replica trick. It would be very interesting to compare the reflected entropy and the

negativity for a local quench state. This trial should reveal differences and similarities

of them. We believe that our approach developed in this paper is useful to calculate

the negativity after a local quench and it will bring about a deep understanding of

this relation.

• Renyi reflected entropy

As shown in this paper, the reflected entropy in the holographic CFT is approximated

by the thermal reflected entropy. However, it is not trivial for the Renyi reflected

entropy to also show this thermalization.

Another motivation to study Renyi reflected entropy is to compare the gravity side.

As mentioned in the main text, the Renyi reflected entropy has an obvious replica

transition as the replica number n is varied. (Similar transitions can be found in [56–

61].) This might be related to the instability and we could find a transition accom-

panied by this instability in the bulk side. Further understanding of this transition is

one of interesting future directions. Note that a sturdy of the Renyi reflected entropy

is already started in [45], however, the result is only perturbative, which does not

enable us to observe the transition.

• joining quench, global quench, splitting quench, double quench

In this paper, we only focus on the local operator quench introduced in [8]. Aside

from this system, there are many variable ways to excite the vacuum state (e.g.,
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joining quench [1], global quench [2, 3], splitting quench [4] and double quench [5–7])

It would be interesting to study dynamics of reflected entropy in these setups and

identify similarities and differences.

• finite c

An important future work is to understand how the dynamics of reflected entropy be-

haves in other CFTs. This is motivated by the fact that the dynamics of entanglement

entropy captures the chaotic nature of a given CFT. That is, its time-dependence

in the holographic CFT [52, 53, 71], in RCFTs [86, 87], and in another irrational

CFT [89] are very different from each other. It is naturally expected for reflected

entropy to be more useful to characterize CFTs, in particular, to identify the holo-

graphic CFT. In fact, our method allows us to calculate the reflected entropy even

in finite c CFTs and we have shown a part of results in this paper. We hope to give

complete results in a future paper.

There is another motivation to study the reflected entropy in finite c systems. The

reflected entropy is very recently invented in [17], therefore, we have very limited

knowledge about its properties (e.g., the monotonicity is satisfied or not). Against

this backdrop, this challenge gives a key to understanding the reflected entropy.

• odd entanglement entropy

Our natural expectation is that the odd entanglement entropy also contains informa-

tion about correlations between two intervals and capture the chaotic nature in some

sense. However, we have little knowledge about the odd entanglement entropy itself.

An immediate future work is to investigate its properties in various setups and find

out universality. It is particularly interesting for us to find a property which only

holds in the holographic CFT. We expect that this quantity could be a good tool to

identify the holographic CFT.

Our result strongly suggests that the odd entanglement entropy in the holographic

CFT perfectly captures the entanglement wedge cross section even in more general

systems. We hope to prove this statement in a rigorous and general way in future.

• Application to more general many-body systems

In this paper, we have focused on reflected and odd entropies for holographic and

rational CFTs. In principle, there is no barrier to study them in more general many-

body systems because the computation of these entropies does not require any opti-

mization process. Nevertheless, even for static cases, no one has studied it at all. The

simplest set up would be free field theories where we have various ways to estimate it.

Although these entropies behaved quite similarly in our present examples, one can

see this is not the case even for some free theories. It would be also interesting to ask

whether these quantities behave as correlation measures beyond holographic CFTs.
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A Semiclassical fusion and monodromy matrix

In this appendix, we show the detailed derivation of the semiclassical monodromy matrix.

We have the closed expression for the fusion and monodromy matrix, therefore, it is possible

to evaluate their semiclassical limits by using them as in [69]. However, the simplest way

to calculate them is to make use of the closed form of the HHLL Virasoro block. We have

to emphasize that what we need here is not the usual HHLL block introduced in [75],

FLLHH(hp|z) = (1− z)hL(δ−1)

(
1− (1− z)δ

δ

)hp−2hL

2F1(hp, hp, 2hp; 1− (1− z)δ), (A.1)

but the semiclassical block derived by the monodromy method [95],23

FLLHH(hp|z) = (1− z)hL(δ−1)

(
1− (1− z)δ

δ

)hp−2hL
(

1 + (1− z)
δ
2

2

)−2hp

, (A.2)

where δ =
√

1− 24
c hH . The former is derived in the large c limit with hH

c , hL, hp fixed,

on the other hand, the later is calculated in a different regime of parameter space, in the

large c limit with hH
c ,

hL
c ,

hp
c fixed and set hH � hL, hp (which is discussed in [79, 92]).

Therefore, these two HHLL blocks are different from each other. For convenience, we call

the former HHLL limit and the later semiclassical limit. We have to choose the later in

our calculation because we take first the large c limit of the block with the twist operators,

whose conformal dimensions are proportional to c. Note that the HHLL block and the

semiclassical block can be related through

2F1(hp, hp, 2hp; z) −−−−→
hp→∞

(
1 +
√

1− z
2

)−2hp

, (A.3)

which is shown by using the following identity,

2F1

(
hp, hp −

1

2
, 2hp; z

)
=

(
1 +
√

1− z
2

)1−2hp

. (A.4)

The fusion transformation leads to the relation,

FLLHH(hp|z) −−−→
z→1

Fαp,αH

[
αL αL
αH αH

]
(1− z)hL(1−δ), (A.5)

23The semiclassical conformal block with the zi-dependences, which are not fixed by the global conformal

transformation, is shown in [79, 96].
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where we introduce the Liouville momentum as

αL (Q− αL) = hL, αH (Q− αH) = hH , αp (Q− αp) = hp, (A.6)

and F is defined in terms of the Virasoro fusion matrix F [51, 61] as

Fαp,αH ≡ Res
(
−2πi Fαp,α;α = αH

)
. (A.7)

From the explicit form (A.2), we can immediately show

Fαp,αH

[
αL αL
αH αH

]
−−−−−−−→
semiclassical

limit

δ2hL

(
4

δ

)hp
. (A.8)

In a similar manner, the Regge limit of the semiclassical block can be related to the

monodromy matrix as

FLLHH(hp|z) −−−−−−−−−−−→
z→0
after

(1−z)→e2πi(1−z)

M(+)
αp,2αL

[
αL αL
αH αH

]
. (A.9)

Therefore, we obtain

M(+)
αp,2αL

[
αL αL
αH αH

]
−−−−−−−→
semiclassical

limit

(
2i

δ
sinπδ

)−2hL
(
−4i

δ
tan

πδ

2

)hp
. (A.10)

Note that this is completely different from the monodromy matrix based on (A.1). The

dimension hp is order O(1), therefore, the large c limit does not change the hypergeometric

function part of the HHLL block, unlike (A.3). As a result, we obtain

M(+)
αp,2αL

[
αL αL
αH αH

]
−−−−−−−→
HHLL limit

and
hp→0

(
2i

δ
sinπδ

)−2hL
(
−2i

δ
sinπδ

)hp
. (A.11)

According to [74], the LHHL block with heavy intermediate state can be given by just

primary exchange. Therefore, the following type of the fusion matrix is trivial,

FαH ,αL1
+αL2

[
αL1 αH
αL2 αH

]
−−−−−−−→
semiclassical

limit

1. (A.12)

B Semiclassical 5-point block

B.1 Proof of (2.33)

In this appendix, we show the detailed calculation of (2.33). From the expression (2.28),

we find that the Regge limit is given by

M̃(−)
0,2αm

[
αm αm
αO αO

]
× (2iε)h2αm−2nmhO

௚ಲ

௚ಳ
షభ

௚ಲ
షభ

௚ಳ

௡௠

ଶఈ೘

, (B.1)
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where ha = α(Q − α).24 If we take the limit m → 1, then the monodromy matrix simply

becomes one. At this stage, what we need to evaluate the reflected entropy is the following

asymptotics,

ఈ

ଶఈ

ఈ

ఈ ఈ

ఈ
௣

−−−→
α→0

?, (B.2)

where we also take the large c limit with
hp
c fixed. It is important to note that the

asymptotics of the 4-point semiclassical block is given by (see appendix A),

௣

−−−→
h→0

zhp
(

1 +
√

1− z
2

)−2hp

= 22hp

(
1 +
√

1− z
1−
√

1− z

)−hp
,

(B.3)

which is used to reproduce the entanglement wedge cross section as in [17, 37]. In fact, we

can derive this semiclassical block with the intermediate state of order c,25 by the global

block in the following way (instead of relying on (A.2);

zhp−2h
2F1(hp, hp, 2hp; z) −−−−→

hp→∞
after
h→0

zhp
(

1 +
√

1− z
2

)−2hp

, (B.4)

where the left-hand side is the well-known global block [99, 100]. From this observation,

we can deduce that the asymptotics of the 5-point block can be obtained by the 5-point

global block, which has already calculated in [101] as

ଵ ଵ
௣భ

ଶ ଶଷ ଷସ ସ

ହ ହ
௣మ

= Lh1,··· ,h5(z1, · · · z5)χ
hp1
1 χ

hp2
2

× F2

[
hp1 + h1 − h2, hp2 + hp1 − h3, h5 + hp2 − h4

2hp1 , 2hp2

;χ1, χ2

]
,

(B.5)

where hi (i = 1, · · · 5) is the conformal dimension of the operator Vi, the cross ratio is

defined by χi ≡ zi,i+1zi+2,i+3

zi,i+2zi+1,i+3
with zi,j = zi − zj , and the prefactor L is the leg factor as

Lh1,··· ,h5(z1, · · · z5) ≡
(

z23

z12z13

)h1
(

z34

z35z45

)h5 3∏
i=1

(
zi,i+2

zi,i+1zi+1,i+2

)hi+1

. (B.6)

24Here we assume αmin = α2αm , which is naturally expected from the result in [51]. But this assumption

is not necessary because we obtain the same conclusion (B.8) without fixing αmin.
25This approximated block is not the same as the regular part of the conformal block (i.e., the block with

the heavy intermediate state) [97, 98]. The difference between these two blocks is that the former has the

intermediate dimension of order c, whilst the later is calculated in the limit hp � c.
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The function F2 is the Appell function defined as

F2

[
a1, b, a2

c1, c2
;x1, x2

]
=

∞∑
n1,n2=0

(a1)n1(b)n1+n2(a2)n2

(c1)n1(c2)n2

xn1
1

n1!

xn2
2

n2!
, (B.7)

where (a)n = Γ(a+n)
Γ(a) is the Pochhammer symbol and we define (0)n = δn,0. By using this

result, we obtain

ఈ

ଶఈ

ఈ

ఈ ఈ

ఈ
௣

−−−−→
hp→∞
after
hα→0

χ1
hp

(
1 +
√

1− χ1

2

)−2hp

. (B.8)

Here we leave only the linear term hp in the log of the block, like (A.2). This approximated

block is what we want (2.33), where the explicit form of the cross ratio χ1 is given by

χ1 =
(−v1 + t)(−u1 + v2)

(−u1 + t)(−v1 + v2)
. (B.9)

B.2 Proof of (2.43)

In this section, we show the asymptotics (2.43). The monodromy transformation in (2.43)

can be re-expressed as

௚ಲ

⊗௠௡

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற

௚ಳ

௠ ௡

= ௚ಲ

⊗௠௡ ௡

௚ಳ

௚ಳ
షభ

௚ಲ
షభ

⊗௠௡ற ௡

. (B.10)

This is just the monodromy transformation of O⊗mn
†

around σg−1
B gA

. Let us recall that the

orbifold block can be regarded as the square of the Virasoro block as explained in (2.15).

Therefore, this monodromy effect comes from each Virasoro block (i.e., black and red

in (2.15)) as

M(−)
0,2αn

[
αn αn
αO αO

]
M(−)

0,2αn

[
αn αn
αO αO

]
× (2iε)2h2αn−4nhO×

௡
௚ಳ

௚ಲ

௚ಳ
షభ

௚ಲ
షభ

௡

ఈ೙

,

(B.11)

where we used the Regge limit of the block associated with Zn symmetry [51]. The explict

form of this monodromy matrix is (A.10). To calculate the remaining 5-point conformal

block, we can again make use of the global block (B.5). In fact, we can easily show

ఈ

ଶఉ

ఉ

ఈ ఈ

ఈ
ఉ

−−−−−−→
hα,hβ→0

Lhα,hα,2h2β ,hα,hα(z1, · · · z5)χ
2hβ
1 χ

2hβ
2 ,

(B.12)

and substituting this result into (B.11), we obtain (2.43).
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B.3 Proof of (5.8)

The conformal blocks in (5.7) is given by the square of the Virasoro block as

௚ಲ
షభ

⊗௠௡ற
௚ಳ

௡
⊗ଶ

=


⊗௡

⊗௡ற

௡


2

, (B.13)

where ∼ 0 means a state very close to the vacuum. The detailed explanation of this

squaring is shown in the main text (see (2.14)). By using the HHLL approximation (A.2)

for the block in the parenthesis, we obtain (5.8).

C Heavy-heavy-light OPE coefficient

The Heavy-Heavy-Light OPE coefficient can be calculated by the modular bootstrap equa-

tion for a 1-point function on a torus [73],

〈OH |OL|OH〉 ∼

∣∣∣∣∣∣γ̂ hL2 e
− c−1

6
π
(

1−
√

1− 24
c−1

hχ
)
γ̂ 1

2π

(
1− 24

c− 1
hχ

)−hL
2
− 1

4

∣∣∣∣∣∣
2

〈χ|OL|χ〉 , (C.1)

where γ̂ =
√

24
c−1hH − 1 and the operator χ is the lightest one with 〈χ|OL|χ〉 6= 0. The

over-line means the average over all primary operators of fixed dimensions hH , h̄H . We

take first the limit c → ∞ with hH
c and hL

c fixed and then the limit hL → 0 as in the

calculation of the reflected entropy, this OPE coefficient is approximated by

〈OH |OL|OH〉 ∼ γ̂
hL
2 ¯̂γ

h̄L
2 . (C.2)

If we consider 〈OH⊗2|OL⊗2|OH⊗2〉 = 〈OH |OL|OH〉2 (the square comes from the rule (2.10)

and set OL = σn and OH = O⊗n, we obtain (5.5).

Strictly speaking, this asymptotics holds only if hH is much larger than other param-

eters. However, from the viewpoint of the holography, we expect that this result can be

applied not only for hH � c, hL but also hH > c
12 . This could be justified in the same way

as the HKS method [102], which is the justification of the Cardy formula for h > c
12 in the

large c CFT (see [103, 104]).
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large c conformal field theories, J. Phys. A 50 (2017) 435401 [arXiv:1704.08250]

[INSPIRE].

[60] X. Dong, S. Maguire, A. Maloney and H. Maxfield, Phase transitions in 3D gravity and

fractal dimension, JHEP 05 (2018) 080 [arXiv:1802.07275] [INSPIRE].

[61] Y. Kusuki, Light Cone Bootstrap in General 2D CFTs and Entanglement from Light Cone

Singularity, JHEP 01 (2019) 025 [arXiv:1810.01335] [INSPIRE].

[62] T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].

[63] L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in

AdS/CFT: Conformal Partial Waves and Finite N Four-Point Functions, Nucl. Phys. B

767 (2007) 327 [hep-th/0611123] [INSPIRE].

[64] L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in

AdS/CFT: From Shock Waves to Four-Point Functions, JHEP 08 (2007) 019

[hep-th/0611122] [INSPIRE].

[65] G.W. Moore and N. Seiberg, Lectures on RCFT, in 1989 Banff NATO ASI: Physics,

Geometry and Topology, Banff, Canada, 14–25 August 1989, pp. 1–129 (1989) [INSPIRE].

[66] Y. Kusuki and T. Takayanagi, Renyi entropy for local quenches in 2D CFT from numerical

conformal blocks, JHEP 01 (2018) 115 [arXiv:1711.09913] [INSPIRE].

[67] Y. Kusuki, New Properties of Large-c Conformal Blocks from Recursion Relation, JHEP 07

(2018) 010 [arXiv:1804.06171] [INSPIRE].

[68] Y. Kusuki, Large c Virasoro Blocks from Monodromy Method beyond Known Limits, JHEP

08 (2018) 161 [arXiv:1806.04352] [INSPIRE].

[69] S. Collier, Y. Gobeil, H. Maxfield and E. Perlmutter, Quantum Regge Trajectories and the

Virasoro Analytic Bootstrap, JHEP 05 (2019) 212 [arXiv:1811.05710] [INSPIRE].

[70] P. Banerjee, S. Datta and R. Sinha, Higher-point conformal blocks and entanglement

entropy in heavy states, JHEP 05 (2016) 127 [arXiv:1601.06794] [INSPIRE].

[71] P. Caputa, M. Nozaki and T. Takayanagi, Entanglement of local operators in large-N

conformal field theories, PTEP 2014 (2014) 093B06 [arXiv:1405.5946] [INSPIRE].
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