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Understanding the properties and physical phase of the dense strongly
interacting matter present in the cores of neutron stars or created in their
binary mergers remains one of the most prominent open problems in nu-
clear astrophysics. While most microscopic analyses have historically relied
on solvable phenomenological models of nuclear and quark matter, in re-
cent years a model-independent approach utilizing only controlled ab-initio
calculations and astrophysical observations has emerged as a viable alter-
native.

In these lecture notes, I review recent progress in őrst-principles weak-
coupling calculations within high-density quark matter, shedding light on
its thermodynamic and transport properties. I cover the most important
technical tools used in such calculations, introduce selected highlight re-
sults, and explain how this information can be used in phenomenological
studies of neutron-star physics. The notes do not offer a self-consistent
treatment of the topics covered, but rather aim at őlling gaps in existing
textbooks on thermal őeld theory and at connecting the dots in a story
developed in several recent research articles, to which the interested reader
is directed for further technical details.
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1. Introduction

The qualitative idea that a competition between gravity and the degen-
eracy pressure of matter composed of nucleons could give rise to compact
astrophysical objects dates back to more than 90 years [1], and the őrst di-
rect observation of rapidly rotating pulsars will soon reach the ripe age of
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60 [2]. Yet, it is only during the past 10 years that neutron stars (NSs) have
truly become a functioning laboratory of dense nuclear and quark matter
(NM and QM), owing largely to recent dramatic advances in observational
astrophysics. Milestone results from the 2010s and 2020s include accurate
mass measurements of several individual high-mass NSs [3ś5], often taking
advantage of general relativistic effects such as the Shapiro Delay [6]; in-
creasingly precise radius measurements utilizing X-ray emission from NSs
[7ś12]; and most famously the őrst-ever detection of a gravitational-wave
(GW) signal from a binary NS merger by the LIGO and Virgo collabora-
tions in 2017 [13ś15]. In addition to the őrst GW signal, GW170817, the
same merger event gave rise to an associated electromagnetic signal across
a wide spectrum, recorded by altogether 70 different observatories [16, 17].
This marked the dawn of an era of multimessenger astronomy, the future of
which looks bright, with several new GW observatories capable of recording
a postmerger signal, including the Einstein Telescope [18] and the Cosmic
Explorer [19], being planned at the moment.

In order to draw robust microphysics lessons from the increasing amount
of high-quality observational data on NS properties, it is imperative to simul-
taneously develop our theoretical understanding of matter at supernuclear
densities. Here, the dominant physical effects are described by the theory of
the strong nuclear interaction, Quantum Chromodynamics (QCD), with sub-
leading but important roles played by the electromagnetic and weak sectors
of the Standard Model. Due to the sign problem of lattice QCD at nonzero
baryon chemical potentials µB [20], a nonperturbative őrst-principles ap-
proach available at all relevant densities is unfortunately unavailable, leav-
ing us with effective-theory frameworks and weak-coupling expansions to
work with. Indeed, the ab-initio tools available in the cold and dense part
of the QCD phase diagram include Chiral Effective Theory (CET), valid for
moderate-density NM up to somewhat above the nuclear saturation density
ns = 0.16/fm3 (see, e.g., [21]); perturbative QCD (pQCD), available be-
yond some tens of saturation densities [22, 23]; and with some reservations,
methods such as Functional Renormalization Group [24] the AdS/CFT con-
jecture that allows access to the strongly coupled regime of many QCD-like
theories albeit not QCD itself [25, 26].

In the lecture notes at hand, our focus will be on the physics of ultra-
dense QM. More speciőcally, we aim at providing an introduction to the
methods used in recent perturbative determinations of the thermodynamic
and transport properties of dense unpaired QM and brieŕy review the appli-
cation of these results to phenomenological studies of NS matter. While we
will at times perform brief example calculations, these notes are not meant
to serve as a stand-alone textbook. On the contrary, we will rely on exist-
ing treatments of the basics of thermal őeld theory and supplement them
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with brief introductions to computational methods speciőc to őnite density,
pointing out the most useful references where they have been developed or
applied at the state-of-the-order level.

The remaining seven sections of the notes cover the following topics:

2. Basics of perturbative thermal őeld theory at őnite density;

3. Soft effective theories at őnite temperature and density;

4. The Hard Thermal Loop effective theory;

5. High-order perturbative calculations at őnite density;

6. Transport properties of dense QM;

7. Model-independent studies of the NS-matter equation of state;

8. Outlook towards future developments.

In Sections 2ś6, we will pay particular attention to thermal-őeld-theory tech-
niques speciőc to őnite density that have received limited attention in ex-
isting literature, while in Section 7, we will focus on the role of QM ther-
modynamics in recent model-independent determinations of the NS-matter
equation of state (EoS).

In the perturbative calculations performed in these lecture notes, we
shall mostly employ the imaginary-time formalism of thermal őeld theory,
implying that our four-dimensional metric is Euclidean ηµν = δµν . For all
other conventions, we use the deőnitions speciőed in the preface of [22].

2. Basics of perturbative thermal őeld theory in dense QCD

Perturbation theory is without doubt the most popular and versatile
computational tool in quantum őeld theory (QFT), with applications rang-
ing from collider problems in vacuum (see, e.g., [27]) to thermal-őeld-theory
challenges in hot and/or dense environments such as the early Universe or the
őreball created in a heavy-ion collision [23]. Within the latter context, the
weak-coupling approach can be used to determine not only Euclidean łbulk
thermodynamicž quantities but also transport coefficients [28, 29] and even
time-dependent quantities related to, e.g., thermalization dynamics [30].

In the context of NS physics, of primary interest in these lecture notes,
the phenomenologically most important quantity is the EoS of dense beta-
equilibrated QCD matter, i.e. the relationship between its pressure and
energy density. This quantity can be shown to be in a rough one-to-one
correspondence with the so-called NS massśradius relation (see Section 7),
implying that both NS observations and microphysical calculations can be
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used in a model-independent inference of the properties of NS matter. Such
calculations form the topic of Section 7 and serve as the primary motivation
for the high-order perturbative determinations of QM thermodynamics that
we will be studying in this and the following three sections.

In the realm of high temperatures, perturbative thermal őeld theory
is a well-developed and mature őeld, with multiple textbooks devoted to
the subject. For the imaginary-time formalism, we employ here two widely
used sources include [22, 31], while for the real-time alternative, we can
recommend [23, 32]. Given that these references touch upon cold and dense
fermionic matter only very brieŕy (two exceptions being Section 7 of [22]
and Section 6.4 of [23]), we will here start from a brief review of the basic
equilibrium thermodynamic properties of such systems at low perturbative
orders.

Any weak-coupling calculation in cold and dense QM proceeds as an
expansion around a system of noninteracting quarks at sizable chemical po-
tentials and small or vanishing temperature. The physical properties of such
a system resemble those of the conduction electrons in a metal Ð a canon-
ical example system in undergraduate statistical mechanics Ð and can be
qualitatively understood based on the small-T behavior of the FermiśDirac
distribution function

nF(ϵ) =
1

e(ϵ−µ)/T + 1
−→
T→0

Θ(µ− ϵ) , (1)

with ϵ = ϵ(p) denoting the free one-particle dispersion relation. The step-
function form of this quantity implies that in the strict T = 0 limit, all
quantum-mechanical states are őlled inside a momentum-space Fermi sphere
with a radius determined by the relation ϵ(p) = µ and unoccupied outside it.
This reŕects the effect of the Pauli exclusion principle and is in stark contrast
with the low-temperature behavior of bosonic systems, characterized by a
condensation of particles to the lowest quantum state available [33].

Interaction corrections to the thermodynamic properties of the free sys-
tem can be obtained by expanding the path-integral representation of the
grand canonical partition function in powers of the coupling constant. For a
relativistic gauge őeld theory coupled to Dirac fermions with separately con-
served number densities (thus allowing the introduction of the corresponding
chemical potentials)1, this quantity takes the form [22]

1 In the case of QCD, this implies neglecting the effects of ŕavor-changing weak inter-
actions, which is a good approximation in heavy-ion collisions, but not inside neutron
stars. We will return to this issue when discussing beta equilibrium below.
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ZQCD =

∫

periodic

DAa
0 DAa

k

∫

periodic

Dc̄ aDca
∫

anti−periodic

Dψ̄f Dψf

× exp

{
−

β∫

0

dτ

∫

x

[
1

4
F a
µνF

a
µν +

1

2ξ
GaGa + c̄ a

(
δGa

δθb

)
cb

+ψ̄f

(
γµDµ +mf − µfγ0

)
ψf

]}
. (2)

Here, we denote gluon őelds in the adjoint representation of the SU(3) gauge
group by Aa

µ, a = 1, 2, . . . , 8 being the corresponding color index; adjoint-
representation ghosts by ca: fundamental-representation quarks of ŕavor f
by ψf ; the covariant gauge parameter by ξ; and the function deőning the
covariant gauge by Ga ≡ −∂µAa

µ. Finally, the őeld strength tensor and the
fundamental-representation covariant derivative appearing above read

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , Dµ = ∂µ − igAa

µT
a , (3)

where fabc and T a stand for the structure constants and Hermitian genera-
tors of the gauge group. Boundary conditions of the őelds in the imaginary
time direction τ , running from 0 to β ≡ 1/T , are indicated in the functional
integral above, and the Euclidean γ matrices and other necessary quantities
are properly deőned and listed in [22].

Just as at high temperatures, the weak-coupling expansion of the pres-
sure, or the logarithm of the partition function, of a cold and dense system
is organized in terms of a loop expansion in connected vacuum or bubble
Feynman diagrams. The őrst two orders of the expansion proceed without
complications, with the subtraction of µ-independent vacuum terms and
the renormalization of quark masses and the gauge coupling g successfully
removing all 1/ϵ ultraviolet (UV) divergences encountered in dimensional
regularization. Analogously to the high-T case, uncanceled infrared (IR)
divergences, however, appear at the three-loop order, which necessitates the
use of either explicit diagrammatic resummations or low-energy effective
őeld theories (EFTs). Given that this will be the main topic of the next
two sections of these notes, we will here leave this issue aside and simply
point out some of the most important technical differences between loop cal-
culations performed in the high- and low-T realms, relying on the reader’s
familiarity with the former context (based on textbooks such as [22]):

Ð While the use of the Matsubara formalism is required at all nonzero
values of temperature in the imaginary-time formalism, both bosonic
and fermionic sum-integrals become continuous integrals in D = 4−2ϵ
dimensions in the strict T → 0 limit. This implies that we may write
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∑∫

P

→
∞∫

−∞

dp0
2π

∫
ddp

(2π)d
≡

∞∫

−∞

dp0
2π

∫

p

≡
∫

P

(bosons) ,

∑∫

{P}

→
∞+iµ∫

−∞+iµ

dp0
2π

∫
ddp

(2π)d
≡

∫

P̃

(fermions) , (4)

where the tilde in the latter integration measure reminds us of the
fermionic nature of the corresponding momentum. In practical calcu-
lations, it is often advantageous to start the evaluation of the momen-
tum integrals from the temporal ones, for which so-called cutting rules
(see Section 5) offer a convenient book-keeping tool. Note also that
many references use slightly differing conventions for the integration
measures, with angular brackets often used to signify the fermionic
nature of four-momenta.

Ð A convenient simpliőcation occurring in the strict T = 0 limit is the
exact vanishing of vacuum graphs containing no quark loops Ð a direct
consequence of the massless nature of gluons and the vanishing of
scalefree integrals in dimensional regularization. At higher loop orders,
the same mechanism leads to the vanishing of vacuum diagrams that
contain quark loops but also a factorized purely bosonic sub-diagram,
such as the őrst 11 diagrams of Fig. 3.

Ð A subtlety not present in studies of the short-lived quarkśgluon plasma
(QGP) created in heavy-ion collisions that needs to be taken into ac-
count when considering the high-density matter inside NSs is related
to maintaining chemical (beta) equilibrium and local charge neutral-
ity2. To achieve both limits, one typically needs to add electrons to the
system and implement a number of constraints between the chemical
potentials of the relevant particle species.

For the three lightest quark ŕavors present at NS densities, the require-
ment of beta equilibrium implies the relations µs = µd and µu = µd−µe
between the four chemical potentials present. This allows parametriz-
ing the system in terms of only two chemical potentials, typically taken
to be µd and µe, while local charge neutrality adds one more constraint

2

3
nu − 1

3
nd −

1

3
ns = ne . (5)

The last relation allows us to further solve µe as a function of µd.
2 The reason one can neglect these effects in heavy-ion physics is related to the fact

that the electromagnetic and weak interactions operate on much longer timescales
than the strong-interaction processes.
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In the simpliőed limit of three massless quark ŕavors, typically a good
approximation for bulk thermodynamic quantities at perturbative den-
sities, the above equations admit the simple solution of µu = µd = µs
and µe = 0. This means that both local charge neutrality and beta
equilibrium can be maintained without the presence of electrons and
with equal number densities for the three lightest quark ŕavors. Cor-
rections to this limit due to a nonzero strange-quark mass can be con-
veniently obtained using the quark-mass expansion scheme recently
introduced in [34].

To get some hands-on experience in concrete perturbative calculations at
high density, let us next consider the őrst two orders in the weak-coupling
expansion of the pressure of cold and dense QM. Up to a µ-independent
vacuum part, the leading-order (LO) pressure of a system of noninteracting
quarks at nonzero ŕavor-dependent quark chemical potentials µf but van-
ishing temperature can be written in the simple form (cf. Eq. (7.43) of [22])

pLOQCD ({µf}) = 2Nc

∑

f

∫

p

∞∫

−∞

dp0
2π

ln
[
(p0 + iµf )

2 + p2 +m2
f

]
, (6)

where the number of colors Nc is kept unspeciőed for the sake of generality.
It is convenient to begin the calculation with the integral over p0. We

could in principle perform it directly in the above logarithmic form, but a
more straightforward strategy is to őrst carry out a differentiation with re-
spect to E2

p ≡ p2+m2
f and later integrate the result over the same parameter.

To this end, we consider the integral

∞∫

−∞

dp0
2π

1

(p0 + iµf )
2 + E2

p

=

∞∫

−∞

dp0
2π

1

(p0 + iµf − iEp) (p0 + iµf + iEp)

=
Θ(Ep − µf )

2Ep
, (7)

where we closed the integration contour over the upper halfplane. Integrat-
ing this expression with respect to E2

p from E2
p = µ2, where the contributions

to the pressure vanish on physical grounds (this represents the quark mass
threshold), we easily obtain

∞∫

−∞

dp0
2π

ln
[
(p0 + iµf )

2 + p2 +m2
f

]
=

(
Ep − µf

)
Θ
(
Ep − µf

)
(8)

and further
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pLOQCD ({µf}) = 2Nc

∑

f

∫

p

(
Ep − µf

)
Θ
(
Ep − µf

)

= 2Nc

∑

f

∫

p

(
µf − Ep

)
Θ
(
µf − Ep

)

→
mf→0

Nc

12π2

∑

f

µ4f . (9)

Here, we have at the second equal sign discarded two terms Ð proportional
to the 1 in Θ(Ep − µf ) = 1 − Θ(µf − Ep) Ð that either correspond to a
µ = T = 0 vacuum contribution or vanish in dimensional regularization,
and at the last stage, őnally proceeded to the massless limit where the
spatial momentum integral trivializes. It is worth comparing the simplicity
of this computation to the complications one encounters with its őnite-T
counterpart, considered, e.g., in Section 7, Appendix A of [22].

Proceeding next to the Next-to-Leading Order (NLO) in the massless
limit, we encounter one two-loop diagram with a quark loop, őrst consid-
ered in [35]. Carrying out the Lorentz and color contractions, we straight-
forwardly obtain

−1

2
= −dAg2

d− 1

2

∫

P̃

∫

Q

1

P 2(P −Q)2

= −dAg2
d− 1

2




∫

P̃

1

P 2




2

, (10)

where dA = N2
c − 1 is the dimension of the adjoint representation of the

gauge group SU(Nc) and we have explicitly included the negative sign and
symmetry coefficient of the diagram on the left-hand side of the equation.
A clean factorization of the result into a product of two one-loop (fermionic)
integrals can clearly be observed from the őnal form of the result.

The sole one-loop master integral appearing in the above expression is
clearly identical to the one in Eq. (7), from where we can immediately take
the result for the p0 integration. A straightforward calculation utilizing this
intermediate result produces now

∫

P̃

1

P 2
= − 1

4π2

∞∫

0

dp pΘ(µ− p) = − µ2

8π2
, (11)
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where we have set d = 3 and dropped a scalefree integral that vanishes in
dimensional regularization. With this result, we obtain the pressure of cold
and dense QM up to NLO,

pNLO
QCD({µf}) =

(
Nc

12π2
− dAg

2

64π4

)∑

f

µ4f , (12)

a result őrst derived close to 50 years ago [35].

3. Soft effective theories for deconőned QCD matter

At the three-loop order, performing the integrations for individual vac-
uum diagrams becomes technically considerably more demanding, with very
few graphs displaying factorization to lower-order integrals (see [36] for re-
cent general results concerning factorization). In addition, explicit compu-
tations performed both at nonzero and vanishing temperatures display un-
canceled IR divergences in speciőc vacuum diagrams featuring single gluon
propagators raised to powers higher than unity due to the presence of self-
energy-type insertions. Unlike the UV divergences that cancel upon renor-
malization, these divergences are of a physical origin, related to contribu-
tions from long-distance interactions mediated by low-momentum gluons. To
cancel them, something more is required, and here the discussion naturally
separates into two different realms: nonzero and vanishing temperatures.

We begin the story from the perhaps more familiar limit of high tempera-
tures, where the boundary conditions of the őelds contributing to Eq. (2) al-
low us to express their dependence on the imaginary time coordinate x0 ≡ τ
through discrete Fourier series. In practice, we write

ϕ(τ,x) = T

∞∑

n=−∞

ϕ̃n(x) e
iωbos

n τ , (13)

ψ(τ,x) = T
∞∑

n=−∞

ψ̃n(x) e
iωfer

n τ , (14)

for bosonic and fermionic őelds ϕ and ψ, respectively, with the Matsubara
frequencies ωbos

n = 2nπT and ωfer
n = (2n + 1)πT acting as thermal mass

terms for the three-dimensional őeld components carrying the index n. At
high T , all three-dimensional őelds except for the massless n = 0 modes of
bosons are protected against IR problems by these nonvanishing masses, so
that the minimal effective theory capable of describing the IR physics of hot
QCD becomes a three-dimensional theory for the n = 0 components of the
A0 and Ai őelds. What sets the Lorentz components of the original gauge
őeld apart here is the fact that the gauge őeld of a three-dimensional theory
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only has three (spatial) components. This makes the n = 0 component of A0

an adjoint scalar őeld in the effective theory, capable of acquiring a nonzero
mass term in the corresponding effective Lagrangian.

The process of building three-dimensional effective őeld theories for the
description of high-temperature QFTs by integrating out the nonzero Mat-
subara modes of four-dimensional őelds is known as dimensional reduction.
It possesses a long history dating back to the original work of Appelquist
and Pisarski in 1981 [37] and subsequent reőnements in the 1990s by Ka-
jantie et al. [38] as well as Braaten and Nieto [39]. For QCD, a particularly
important step was taken in [40], where the widely-used terms Electrostatic
and Magnetostatic QCD (EQCD and MQCD for short) were coined for the
three-dimensional theories capable of describing the equilibrium physics of
length scales x ≳ 1/(gT ) and 1/(g2T ), respectively. While the former of
these theories takes the form of a three-dimensional YangśMills theory with
an adjoint scalar (see, e.g., [22] for more details),

LEQCD =
1

4
F a
ijF

a
ij + tr[Di, A0]

2 +m2
EtrA

2
0 + λ1

(
trA2

0

)2
+ λ2trA

4
0 , (15)

in MQCD, the A0 őeld with an O(gT ) mass is integrated out as well. These
theories can be used to account for the soft contributions to equilibrium
thermodynamic quantities such as the equation of state, but at lower tem-
peratures, their use is limited not only by the lack of a scale hierarchy be-
tween the hard (πT ) and soft (gT ) scales, but also by the explicit breaking
of the Z(Nc) center symmetry of the YangśMills part of QCD. This can be
further remedied by supplementing the effective theory with a more versatile
őeld content, thus extending the applicability of dimensional reduction to
somewhat lower temperatures [41, 42].

The effects of quark chemical potentials can be introduced to the dimen-
sionally reduced EFTs in a fairly straightforward manner [43, 44], with the
main effects seen in small shifts of the EFT parameters from their µ = 0
values and in the introduction of one new EQCD operator of the form trA3

0.
Upon increasing the parameter µ/T to values greatly exceeding unity, one,
however, eventually exits the regime of validity of dimensional reduction.
As demonstrated in [45], this takes place when the temperature is reduced
below the scale T ∼ mE, where mE stands for the leading-order electric
screening mass

m2
E = g2


CA + TF

3
T 2 +

1

2π2

∑

f

µ2f


 (16)

and TF = Nf/2. The physical effect that takes place when T is lowered well
below mE is that more and more bosonic Matsubara modes become soft and
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need to be resummed, a process depicted in Fig. 1. In other words, the őeld
content of EQCD is no longer sufficient to capture all of the soft physics in
need of a resummed treatment.

The minimal effective theory replacing EQCD at low temperatures turns
out to be a four-dimensional EFT constructed for all soft gluon modes sat-
isfying P 2 ≲ m2

E and thus requiring some form of resummed treatment3.
This EFT, the form of which can be most straightforwardly derived by con-
sidering the soft-external-momentum limit of gluonic amplitudes, is dubbed
Hard Thermal Loops (HTL) and was őrst introduced by Braaten and Pis-
arski already in 1989 [46, 47]. Since then, the HTL framework has been
successfully applied to the derivation of numerous physical quantities in-
cluding the bulk thermodynamic properties of high-temperature QGP at
vanishing [48] and nonzero chemical potentials [49], the EoS of cold and
dense QCD and QED [50ś54], dynamical observables such as production
and decay rates [28, 55], and even transport coefficients at various orders of
perturbation theory [29, 56].

Fig. 1. An illustration of how more and more bosonic Matsubara frequencies őt
inside a circle of constant radius mE as the temperature is lowered őrst to a small
number times mE ∼ gµ and then all the way to the T = 0 limit. Note that
for fermions, the result would be very different due to the imaginary offset of the
Matsubara frequency by iµ.

4. Hard Thermal Loops: basic properties and simple applications

The development of the HTL effective theory has been documented in
multiple review articles and even textbooks, including e.g. [23, 32, 57], and
the theory itself has been extended to new physical realms and higher pertur-
bative orders even relatively recently [58, 59]. To keep the present discussion

3 Note that fermions continue to be protected against IR problems also in the cold and
dense limit through their nonvanishing chemical potentials. This can be understood
in physical terms from the fact that all quantum-mechanical states are őlled within
the Fermi sphere, implying that only hard fermions with momenta of the order of µ
can propagate.
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at a tractable level, we will limit its treatment here to the parts of the theory
necessary for determining the leading soft contributions to the pressure of
cold and dense QM. This implies we will be mainly interested in the one-
loop HTL gluon self-energy, which characterizes how the propagation of soft
gluons is modiőed by the medium and that can be obtained from a particu-
lar (soft-external-momentum) limit of the same quantity in full QCD. While
the result can be shown to take a universal form, being equally applicable
in the high-temperature regime, we will for simplicity perform the computa-
tion in the strict T = 0 limit, allowing some technical simpliőcations to be
implemented. After the derivation of the leading-order HTL self-energies,
we will apply the result to the determination of the leading nonanalyticity
in αs of the weak-coupling expansion of the pressure of cold and dense QM.

The gluon self-energy, or the gauge őeld self-energy tensor, is deőned by
the SchwingerśDyson equation, which relates it to the difference of the full
and bare inverse propagators

Πab
µν(P ) =

(
D−1

)ab
µν

(P )−
(
D−1

(0)

)ab

µν
(P ) . (17)

Here, the free propagator takes the usual form

(
D(0)

)ab
µν

(P ) =
δµµ − (1− ξ)PµPν/P

2

P 2
δab (18)

in the covariant gauges, with ξ being the corresponding gauge parameter.
Simply put, Πab

µν(P ) is thus gauge-theory generalization of the scalar-őeld

self-energy, which dresses the massless scalar propagator as 1
P 2 → 1

P 2+Π(P )
.

Although a symmetric rank-two tensor in four dimensions, in principle,
contains 10 independent components, various symmetries of the system can
be seen to signiőcantly reduce this number. First, while four-dimensional
Lorentz invariance is broken by the existence of a preferred frame in a system
in thermal equilibrium Ð the rest frame of the heat bath of the medium Ð
three-dimensional rotational invariance is enough to strongly limit the pos-
sible structures appearing in the result. In practice, it implies that the
self-energy tensor can be given as a linear combination of at most four in-
dependent elements: the metric δµν and three symmetric rank-two tensors
composed with the external momentum Pµ and the four-vector singling out
the temporal direction, nµ ≡ δµ0. Current conservation, implemented via
the SlavnovśTaylor identities, further restricts the possible form of the tensor
by requiring it to be transverse with respect to the external four-momentum
in vacuum. As discussed in detail in [59, 60], the situation becomes more
complicated in a thermal setting, where transversality depends on whether
non-Abelian interactions are present, what loop order is being considered,
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and even which (covariant) gauge has been chosen. Here, it suffices to note
that for QCD at nonzero µ but vanishing temperature, the one-loop self-
energy must be transverse irrespective of the gauge one is working in.

The transversality of the LO self-energy implies that the tensor can pos-
sess at most two independent components, typically labeled according to
their transversality properties with respect to the external three-momentum.
Omitting the Kronecker delta function in the adjoint color indices, the result
of this decomposition reads

Πµν(P ) = Πvac
µν (P ) +ΠT(P )P

T
µν(P ) +ΠE(P )P

E
µν(P ) , (19)

where the UV divergent vacuum part Πvac
µν (P ) represents the T→0, µ→0

limit of the polarization tensor and can be seen to be proportional to P 2δµν−
PµPν , being thus subdominant for soft external momenta. The matter part
of the self-energy is, on the other hand, divided into a transverse (T) and a
longitudinal or Euclidean (E) part, with the corresponding projection oper-
ators reading

P
T
µν(P ) ≡ δµiδνj

(
δij −

pipj
p2

)
, (20)

P
E
µν(P ) ≡ δµν −

PµPν

P 2
− P

T
µν(P ) . (21)

It is straightforward to verify that apart from the obvious transversality of
P
T
µν(P ) with respect to the external three-momentum, these tensors satisfy

the following properties (see, e.g., [31]):

P
X
αβ(P )P

X
βγ(P ) = P

X
αγ(P ) , X = T, E , (22)

P
X
αβ(P )P

Y
βγ(P ) = 0 , X ̸= Y , (23)

P
T
µµ(P ) = d− 1 , P

E
µµ(P ) = 1 . (24)

Moving on to the actual evaluation of the gluon self-energy, we őrst
note that the one-loop gluon polarization tensor can be obtained from the
sum of all amputated one-particle-irreducible Feynman diagrams with two
external gluon lines. Its general expression at nonzero T and µ is rather
lengthy, and we refer the interested reader to Eq. (C1) of [45], where the
Feynman gauge version of this quantity is displayed. In the strict T = 0
limit, some simpliőcations occur, though, and e.g., the purely bosonic term
only contributes to the vacuum limit of the tensor. If we are moreover
interested in the soft (or HTL) limit of the result, where |P | ≪ µ and the
components of the loop momentum Q can subsequently be assumed to be
dominant over those of P , we observe part of the fermionic contribution
dropping out as well. This leaves us with the much more manageable T = 0
expression
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Πµν(P )|T=0 = −g2
∑

f





∫

Q̃

2δµν
Q2

−
∫

Q̃

(2Q− P )µ(2Q− P )ν
Q2(Q− P )2





(25)

to work with, where the fermionic integration measures remind us of the
presence of µf in the corresponding fermion propagators.

To derive results for the two functions ΠT(P ) and ΠE(P ), it suffices
to consider two independent components or contractions of the self-energy
tensor, for which we choose Πµµ and Π00. Omitting terms that are clearly
subdominant for soft external momentum P , we obtain

Πµµ(P )|T=0 ≈ −2(D − 2)g2
∑

f

∫

Q̃

1

Q2
, (26)

Π00(P )|T=0 ≈ −g2
∑

f





∫

Q̃

2

Q2
−

∫

Q̃

(2q0 − p0)
2

Q2(Q− P )2




, (27)

of which we have already evaluated the tadpole integral in Eq. (11). To this
end, let us here concentrate on the latter term in the above expression for
Π00, i.e., the only integral with nontrivial dependence on P .

A key observation simplifying the evaluation of the q0 integral in

Π̃(P ) ≡
∫

Q̃

(2q0 − p0)
2

Q2(Q− P )2
(28)

is that two of the four poles, including q0 = −iµ − iq, always reside on the
lower halfplane, while two, including q0 = −iµ + iq, can reside on either
halfplane depending on the magnitude of the three-momentum q in compar-
ison with the chemical potential µ. Writing the resulting step function in
the form of Θ(q − µ) = 1 − Θ(µ − q) and recognizing the appearance of a
µ-independent integral that can be dropped, we straightforwardly obtain for
the vacuum-subtracted łmatterž part of the function

Π̃(P )mat = −1

2

∫

q

Θ(µ− q)

q

{
(2iq − p0)

2

(iq−p0)2 + (q−p)2
+

(2iq + p0)
2

(iq+p0)2 + (q−p)2

}

= − 1

8π2

µ∫

0

dq q

π∫

0

dθ sin θ

{
(2iq − p0)

2

P 2 − 2iqp0 − 2q · p + c.c.

}
, (29)

where we have on the latter row set d = 3 and abbreviated the complex
conjugate of the őrst expression (for real Pµ) by c.c.
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The two integrations remaining in Eq. (29) can now be straightforwardly
carried out. Upon an expansion of the result to leading order in P/q, the
őnal expression becomes

Π̃(P )softmat =
µ2

4π2

{
1− ip0

p
ln
ip0 + p

ip0 − p

}
, (30)

implying that we have obtained a remarkably simple analytic form for the
soft-external-momentum limit of the original integral. In particular, all de-
pendence on the hard scale µ has neatly factorized from the rest, leaving
behind a nontrivial function of the ratio of the two independent components
of the external momentum, p0 and p = |p|.

Combining the above result with that of Eq. (11), we are now ready to
write down őnal expressions for the HTL self-energy components ΠT(P ) and
ΠE(P ). Setting d = 3 everywhere, a simple calculation produces

ΠE(P ) =
P 2

p2
Πmat

00 (P ) , ΠT(P ) =
1

2
Πmat

µµ (P )− P 2

2p2
Πmat

00 (P ) , (31)

using which [and taking into account the sum over ŕavors in Eqs. (26) and
(27)] we quickly reach the őnal gauge-invariant result

ΠHTL
T (P ) = −m

2
E

2

P 2

p2

{
p20
P 2

− ip0
2p

ln
ip0 + p

ip0 − p

}
, (32)

ΠHTL
E (P ) = m2

E

P 2

p2

[
1− ip0

2p
ln
ip0 + p

ip0 − p

]
, (33)

with mE denoting the leading-order electric screening mass from Eq. (16).
With these self-energies, the full HTL-resummed gluon propagator őnally
becomes

Dab
µν(P ) = δab

{
P
T
µν(P )

P 2 +ΠT(P )
+

P
E
µν(P )

P 2 +ΠE(P )
+
ξPµPν

(P 2)2

}
, (34)

where we have again reinstated the gauge-parameter term from the free
propagator.

Interestingly, the őnal result for the HTL self-energies and the HTL-
resummed gluon propagator take precisely the same forms as in the more
general case of nonzero temperatures and chemical potentials; see, e.g., Sec-
tion 8 of [22]. It is also worth noting that both self-energy components de-
pend on the external momentum only through the ratio p0

p , so that deőning

an angle ϕ via tanϕ ≡ p/p0, we can parameterize the entire LO HTL self-
energy as a function of this single dimensionless variable. This result suffices
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for typical low-order computations utilizing the HTL effective theory, while
at higher orders, one may, depending on the quantity being determined, also
require the use of the HTL vertex functions, the HTL fermion self-energy, or
subleading corrections to the above result from higher loop orders or a power
expansion in P/µ. For detailed derivations of these additional features of
the HTL theory, we recommend a recent review by Haque and Mustafa [57]
as well as the original research article [59], where the real-time formalism of
perturbation theory is applied to the gluon polarization tensor at nonzero T
and µ.

As a straightforward application of the LO HTL self-energy derived
above, let us now brieŕy return to the weak-coupling expansion of the pres-
sure of dense zero-temperature QM. Here, we őrst note that the only three-
loop vacuum diagram displaying an IR divergence in the T = 0 limit can be
written in the form

1

4
=

dA
4

∫

P

{
(d− 1)

Π2
T(P )

(P 2)2
+
Π2

E(P )

(P 2)2
+ . . .

}

→ dA
4

∫

P

{
(d− 1)

(
ΠHTL

T (P )
)2

(P 2)2
+

(
ΠHTL

E (P )
)2

(P 2)2

}
, (35)

where we őrst utilized the expansion (19) for the gluon self-energy, left out
IR-convergent terms generated by the vacuum part, and őnally retained only
the LO IR behavior of the integrand by replacing the full self-energies by
their HTL limits.

To cure the IR divergence in the őnal form of Eq. (35), the simplest way
to proceed is to explicitly resum all ring diagrams of the same type, each
taking the form

INring ≡ (−1)NdA
2N

∫

P

{
(d− 1)

(
ΠHTL

T (P )
)N

(P 2)N
+

(
ΠHTL

E (P )
)N

(P 2)N

}
, (36)

with N denoting the number of one-loop self-energy insertions in the graph.
Recognizing here the coefficients of the Taylor expansion of the function
ln(1+x), we may explicitly perform the sum

∑∞
N=1 I

N
ring, obtaining a quan-

tity identiőable as the LO pressure of the HTL effective theory

pLOHTL = −dA
2

∫

P

{
(d− 1) ln

[
K2 +ΠHTL

T (P )
]
+ ln

[
K2 +ΠHTL

E (P )
]}

= −dAm
D
E

2

∫

P̂

{
(d− 1) ln

[
P̂ 2 + Π̂T(ϕ)

]
+ ln

[
P̂ 2 + Π̂E(ϕ)

]}
. (37)
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Here, we have on the lower line deőned the scaled quantities P ≡ mEP̂ and
ΠHTL

X (P ) ≡ m2
E Π̂X(ϕ), with X standing for either T or E.

To proceed from here, we őrst make use of the standard integral

∫
dDK

(2π)D
ln(K2 +m2) = −m

DΓ (−D/2)
(4π)

D
2

(38)

that can be used to take care of the radial integration in Eq. (37). This
quickly produces (see [22] for details)

pLOHTL =
dAm

D
E Γ (D/2)Γ (−D/2)

(4π)
D+1

2 Γ ((D − 1)/2)

×
π∫

0

dϕ sin2−2ϵϕ
[
(d− 1) Π̂

D/2
T (ϕ) + Π̂

D/2
E (ϕ)

]
, (39)

where the prefactor is of the order of m4−2ϵ
E /ϵ. It is precisely this product

of a D-dependent power of mE and 1/ϵ that upon a power expansion in ϵ
gives rise to a term of type α2

s lnαs in the weak-coupling expansion of the
QM pressure.

Setting now ϵ = 0 in the angular integral of Eq. (39), a straightforward
calculation produces

π∫

0

dϕ sin2ϕ
[
(d− 1) Π̂2

T(ϕ) + Π̂2
E(ϕ)

]
=
π

4
. (40)

With this result, we may őnally read off the coefficient of the leading non-
analyticity in the weak-coupling expansion of the pressure,

pLOHTL =
dAm

4
E Λ

−2ϵ

8(4π)2

(
Λ2

m2
E

)ϵ
1

ϵ
+O

(
ϵ0
)
= − dAm

4
E

8(4π)2
lnαs + · · · , (41)

a contribution őrst derived by Freedman and McLerran in 1977 using con-
siderably more involved computational techniques [35]. Note that the corre-
sponding 1/ϵ divergence that we have discarded here is of UV type (in the
HTL effective theory) and cancels against a corresponding IR divergence in
the three-loop full theory vacuum diagram considered in Eq. (35).

5. QM thermodynamics at three and four loops

Next, we move on to the full three-loop order and beyond, i.e. towards
the state-of-the-art in perturbative calculations for QCD thermodynamics.
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Up to and including O(g5) contributions, the pressure of deconőned QCD
matter at nonzero temperature and density is most conveniently expressed
in a form őrst introduced in [51],

pQCD = pQCD − psoft + psoft

= pnaiveQCD − pnaivesoft + pressoft

= pnaiveQCD + presDR − pnaiveDR + presHTL − pnaiveHTL . (42)

Here, we have őrst added and subtracted the pressure of a properly deőned
soft effective theory from the full QCD pressure, then noticed that the differ-
ence pQCD−psoft is an IR-safe quantity that can be evaluated in a naive loop
expansion in the respective theories, and őnally introduced a dimensionally
reduced (DR) effective theory as the minimal EFT for the n = 0 Matsubara
modes of gluons and HTL for all the nonstatic modes.

The őve terms appearing in Eq. (42) are deőned as follows:

Ð pnaiveQCD denotes the naive loop expansion of the pressure of full QCD,
evaluated up to and including the three-loop order. Dimensional reg-
ularization is used to regulate both UV and IR divergences, of which
the former cancel upon renormalization. IR divergences of the form
1/ϵ, however, remain, in addition to which the O(α2

s ) part of the result
contains terms that diverge as µ4 ln T

µ in the small-T limit.

Ð presDR denotes the pressure of the dimensionally reduced effective the-
ory EQCD, evaluated in a weak-coupling expansion within this theory
featuring a massive A0 propagator. The resulting contribution to the
pressure is IR safe by construction but contains a UV divergence.

Ð pnaiveDR denotes a version of the EQCD pressure evaluated by treating the
A0 mass as an interaction. This leads to an expression that identically
vanishes in dimensional regularization due to the integrals becoming
scalefree, but the calculation can be seen to contain a cancellation
between equal but opposite UV and IR 1/ϵ poles that convert the UV
divergence of presDR into an IR one in the difference presDR − pnaiveDR . This
remaining IR divergence cancels against a similar term in pnaiveQCD.

Ð presHTL and pnaiveHTL denote the logarithmic HTL ring sum [cf. Eq. (37)]
and its expansion in self-energies up to and including quadratic order,
but with the contribution of the Matsubara zero mode left out. Both
expressions are IR őnite at nonzero T , but contain UV divergences
that cancel in the difference of the two terms. In the T → 0 limit, the
difference presHTL−pnaiveHTL develops an IR divergence proportional to lnT ,
which is seen to cancel against the corresponding term in the T → 0
limit of pnaiveQCD.



Particle-theory Input for Neutron-star Physics 4-A4.19

All in all, combining the őve terms in the őnal form of Eq. (42), we recover
an expression that is free of both UV and IR divergences and agrees with all

previously known limits of the pressure up to and including order α
5/2
s . This

was the main result of [51] and continues to represent the state-of-the-art
result for the pressure up to and including all fully known perturbative orders
(i.e., not counting logarithms). The only exception to this is the large-Nf

limit of QCD, where an all-orders result for the high-temperature pressure
has been determined thanks to simpliőcations that occur in precisely this
limit (see, e.g., [61ś64]).

Proceeding beyond the three-loop order, the derivation of new terms
in the weak-coupling expansion of the pressure becomes considerably more
involved and the methods used in the low- and high-temperature regimes
become increasingly disjoint. Here, we restrict our discussion to the strict
T = 0 limit, which was at the center of our attention already in the pre-
vious sections of these notes and which is importantly free of the famous
Linde problem [65], plaguing high-order perturbative calculations at őnite
temperature. Given the complexity of the problem and the fact that parts
of it remain under active work, we will keep our discussion at a mostly qual-
itative level, concentrating on the structure of the weak-coupling expansion,
the physical origins of various contributions entering at the α3

s order, and the
computational tools required in these calculations. For a reader interested
in further computational details, we will provide numerous references to the
original research articles below.

Up to and including the four lowest orders, the weak-coupling expansion
of the pressure of cold (T = 0) and dense unpaired QM matter obtains the
schematic form [50, 66]

p = pFD + αsp
h
1 + α2

sp
h
2 + α3

sp
h
3

+α2
sp

s
2 + α3

sp
s
3

+ α3
sp

m
3 , (43)

where the coefficients ps2 and pm3 contain linear logarithms of the coupling
αs and the coefficient ps3 both linear and quadratic (ln2 αs) logs [67]4. The
letters łhž, łsž, and łmž refer here to the łhardž, łsoftž, and łmixedž sectors,
corresponding to different regions of momentum space that contribute to the
pressure at these orders. A detailed account of the different contributions can
be found in [66], the results of which we summarize here, paying particular
attention to the state-of-the-art α3

s order.

4 Note that many terms here also depend on logs of the renormalization scale Λ̄ that
cancel the scale dependence from the running of αs order by order. We will mostly
skip this topic here, but a reader interested in the precise mechanism, in which these
cancellations occur, is referred to the Supplemental Material of [52].
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Hard sector: Similarly to the case of the őnite-temperature pressure in
Eq. (42), the contribution of the hard momentum scale µB to the pressure
of cold and dense QM originates through a naive loop expansion of the full
theory pressure. This necessitates the evaluation of all four-loop vacuum,
or bubble, diagrams of QCD at nonzero chemical potentials but vanishing
temperature, using dimensional regularization to regulate all divergences.
The UV divergences of the result are expected to be removed upon renor-
malization, while Ð similarly to the őnite-T calculation described above Ð
IR divergences will be seen to cancel against corresponding UV divergences
from the EFT calculations corresponding to the soft and mixed contributions
to the pressure.

At one-, two-, and three-loop orders, the evaluation of vacuum diagrams
can be performed analytically for vanishing quark masses, for which it was,
in fact, completed for arbitrary values of T and µ in [44]. When a nonzero
strange-quark mass is implemented, numerical methods are, on the other
hand, required even in the strict T = 0 limit, where the three-loop pressure
was őrst determined in [68]. This computation relied on the use of the so-
called cutting rules, where the underlying idea is to őrst perform all fermionic
(but not bosonic) temporal momentum integrals, reducing the evaluation of
the original Feynman integral to a sum of three-dimensional łphase-spacež
integrations over vacuum (T = µ = 0) on-shell amplitudes. Below, we
will brieŕy specify the cutting rules and apply them to a simple example
calculation at the two-loop level, referring a reader interested in details of
their formal derivation to the original article [69].

The cutting rules act on a scalarized T = 0 Feynman integral corre-
sponding to either a vacuum diagram or a Euclidean N -point function with
real-valued external momenta. The integral is assumed to be composed of
two types of (massive or massless) propagators, bosonic and fermionic, of
which the former are composed of real-valued momenta, while the temporal
components of the latter are shifted by iµ as discussed in Section 2. We fur-
thermore assume that no fermionic propagator is raised to a power higher
than unity, although this restriction can be relaxed if proper care is taken
in the calculation [70, 71].

With these assumptions, the cutting rules amount to the following set of
őve operations:

(i) Graphically perform all possible cuts of independent internal fermion
lines in the diagram, ranging from zero to the number of loops in
the graph. Here, the independence of a given set of internal lines is
equivalent to being able to choose the corresponding momenta as the
loop momenta in the Feynman integral in question.



Particle-theory Input for Neutron-star Physics 4-A4.21

(ii) For each cut fermion line with momentum P , remove the corresponding
propagator from the integral and place the same momentum on shell
in the thus generated amplitude by writing p0 = iEp, Ep ≡ p2 +m2.

(iii) Set µ = 0 in each of the uncut fermion propagators and evaluate the
corresponding integrals while assuming all components of the external
momenta to be real-valued.

(iv) Integrate over the three-momenta of the cut lines with integration
measure −Θ(µ− Ek)/(2Ek) (times the usual 1/(2π)3 associated with
momentum integrals), with the integrand being the vacuum (µ = 0)
on-shell amplitude generated by the cutting.

(v) Sum all the individual contributions together.

This procedure reduces the evaluation of the original őnite-µ diagram to a
number of separate terms, in which the µ-dependence resides only in the
theta functions of the phase-space integration measures. This is a signiő-
cant simpliőcation, as the values of the vacuum amplitudes can typically be
taken from collider-physics literature and the phase-space integrals are by
construction UV őnite.

As a simple example case, we inspect next the T = 0, µ ̸= 0 integral

I2(µ) =

∫

P̃

∫

Q̃

1

P 2 +m2

1

Q2 +m2

1

(P −Q)2
, (44)

where the momenta P and Q correspond to massive fermions at nonzero
chemical potential and P − Q to a massless boson. Identifying two as the
number of independent fermionic momenta, the cutting rules amount to
writing the integral in the form (see Fig. 2)

I2(µ) = I0−cut
2 + I1−cut

2 (µ) + I2−cut
2 (µ) , (45)

where the 0-cut part refers to the (uninteresting) µ = 0 version of the original
integral, while the 1- and 2-cut parts carry all the µ-dependence of the
original graph

I1−cut
2 (µ) = −2

∫

p

Θ(µ− Ep)

2Ep



∫

Q

1

Q2 +m2

1

(P −Q)2




p0→iEp

,

I2−cut
2 (µ) =

∫

p

Θ(µ− Ep)

2Ep

∫

q

Θ(µ− Eq)

2Eq

[
1

(P −Q)2

]

p0→iEp, q0→iEq

. (46)
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−→ − 2

∫

p

θ(µ− Ep)

2Ep

∣

∣

∣

∣

∣

p0 →iEp

+

∫

p

θ(µ− Ep)

2Ep

∫

q

θ(µ− Eq)

2Eq

∣

∣

∣

∣

∣

p0 →iEp,q0→iEq

Fig. 2. A graphical illustration of the cutting of the two-loop graph I2(µ) discussed
in the main text, with solid lines corresponding to a massive scalarized fermion
propagator with nonzero µ, dashed lines to its µ = 0 version, and dotted lines to a
massless bosonic propagator. The őgure is taken from [23].

The resulting integrals can be performed numerically at ease, or even ana-
lytically for m = 0 (see Appendix D of [71] for details), to reach the őnal
result for the two-loop diagram. Note that the factor of two in the one-
cut expression above results from the two separate one-cut terms producing
identical results due to a symmetry of the original integral. It should be
noted that such symmetries are not always present in higher-loop cases, and
care must be taken not to automatically equate two terms that differ, e.g.,
by the relative direction of fermion ŕow in two separate fermion loops.

The cutting rules were őrst used in [68] to evaluate all massive three-loop
vacuum diagrams of QCD in a calculation that would have been considerably
more challenging without this crucial computational aid. Proceeding all the
way to four loops, the complexity of the calculations becomes considerably
more challenging, however, and only two out of the altogether 52 individual
graphs depicted in Fig. 3 have been fully evaluated so far [53, 72]. From the
rest, the őrst 12 of Fig. 3 are found to vanish because they either contain
a factorized scalefree integral or their color trace gives zero. Active work is
currently underway to evaluate the remaining diagrams, with promising őrst
steps taken recently in a yet unpublished article [73]. The steps involved in
this process include performing the color traces and Lorentz algebra of all
graphs (in a general covariant gauge), then dividing the result into group-
theory-invariant sectors, and őnally systematically implementing momentum
shifts and other standard manipulations to achieve the cancellation of the
covariant gauge parameter ξ within each group theory sector.
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Fig. 3. A list of all four-loop vacuum diagrams of QCD containing at least one
fermion loop, shown together with the associated signs and symmetry coefficients.
The őrst 12 diagrams can be shown to exactly vanish due to either containing a
factorized scalefree integral (őrst 11 graphs) or being proportional to a vanishing
color algebra (graph 12). The őgure has been composed by Pablo Navarrete.

After the above process, we are left with a relatively high number of
independent master integrals (of the order of 100) to evaluate, which one
may try to reduce using various novel methods, including but not limited to
four-dimensional IBP identities recently generalized to the T = 0, µ ̸= realm
in [71]. Finally, once the seemingly irreducible masters have been identiőed,
the remaining task is to evaluate them starting from the ones that factorize
into lower-loop-order entities.

The evaluation of the genuine four-loop master integrals is a very chal-
lenging task that involves a mix of analytic and numerical methods, with
only a handful of cases completed so far [73]. An important complementary
tool, which holds for the simultaneous evaluation of all IR convergent four-
loop integrals, is based on the loop-tree duality (LTD) method of vacuum
perturbative QFT [74]. This method was recently generalized to nonzero
chemical potentials and successfully applied to the evaluation of the infa-
mous łbugblatterž diagram [72]5, which represents the LO difference between
the pressures of cold and dense QCD and its phase-quenched version (see,
e.g., [76]). The main difference between the LTD and cutting rules methods
is that in the former, one őrst evaluates all temporal momentum integrals
instead of just the fermionic ones, which avoids the generation of artiőcial IR
divergences and, at least in some cases, leads to more manageable numerical
calculations.

5 For the etymology of the name of this diagram, see [75].
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Soft and mixed sectors: The only soft scale present in cold and
dense QM originates from the long-distance screening of gluon őelds and
can be identiőed with the T → 0 limit of the chromoelectric screening mass
mE ∼ gµB in Eq. (16), i.e., the same parameter that appears in the LO
HTL self-energy derived in the previous section. At the O(α3

s ) order for the
pressure, it no longer suffices to only work with this quantity, but we need
to additionally consider other elements of the effective theory, including the
HTL vertex function, and derive corrections to the LO self-energy both in
the form of two-loop contributions and power corrections in the soft exter-
nal momentum. The necessary calculations were őrst described in [66] and
subsequently carried out in [50, 54], to which we refer the interested reader
for technical details. Here, we instead restrict our attention to a qualitative
account of the origins of the soft and mixed O(α3

s ) contributions to the QM
pressure, see Eq. (43).

The physical nature of the mixed and soft contributions to the O(α3
s )

pressure can be neatly illustrated through a practical example depicted in
Fig. 4, borrowed from [50]. Here, we begin with a single unresummed four-
loop vacuum diagram of full QCD that consists of two quark loops and four
additional gluon propagators. The fermion propagators are by construction
łhardž, being characterized by the scale µ present in their temporal mo-
mentum components, while the gluon momenta can be either hard, with
P ∼ µ, or soft, with P ∼ mE. Should one or several of the gluonic momenta
in the graph Ð say the vertical ones ŕowing into the one-loop self-energy
insertion in the őrst diagram of Fig. 4 Ð become soft, a simple power-
counting exercise shows that similar diagrams containing an arbitrary num-
ber of one-loop gluon self-energy insertions contribute at the same order in
the weak-coupling expansion [step (i) in Fig. 4]. Summing all such diagrams
using the low-momentum limit of the gluon self-energy [step (ii)] leads to the
emergence of a three-loop graph containing an HTL resummed gluon propa-
gator, which represents a typical mixed contribution to the O(α3

s ) pressure,
denoted by pm3 in Eq. (43). Repeating, őnally, the same exercise for the
two remaining unresummed gluon lines, which clearly become both soft at
the same time [step (iii)], leads to a fully soft two-loop contribution com-
putable within the HTL effective theory [step (iv)]. The őnal HTL graph
features also two resummed HTL vertex functions, one of which arises from
the lower quark loop of the original diagram, and contributes to the ps3 term
of Eq. (43).

The successful evaluation of the soft and mixed contributions to the
O(α3

s ) pressure presents a technically very challenging task that was com-
pleted only recently in [50, 54]. In these calculations, it was crucial to ensure
the proper cancellation of all IR divergences in the hard four-loop diagrams
of QCD against UV divergences originating from the soft two-loop diagrams
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through the response of the system to an imbalance in some local quantity,
and their evaluation often begins with the Boltzmann equation, describing
the evolution of an off-equilibrium statistical system. Here, our treatment of
the subject will be rather superőcial, and the interested reader is referred to
the excellent review article [84] for more details on the transport phenomena
of dense QCD matter, including its conőned phase.

The study of transport phenomena in dense QM often begins with the
Boltzmann equation describing the behavior of the quark distribution func-
tion f(r,p, t)

(
∂

∂t
+ v · ∇r + F · ∇p

)
f (ϵp) =

(
∂f (ϵp)

∂t

)

coll

. (47)

Here, F is an external force, r and p denote the position and three-momen-
tum of the quark being tracked, and the gluon-mediated scattering between
quarks is described by the highly nonlinear collision term on the right-hand
side of the equation (see, e.g., Eq. (1) of [56]). The near-equilibrium solutions
of this equation under various boundary conditions, say with a speciőc type
of external force or a őxed ŕow velocity for one quark ŕavor, inform us about
the response of the system to the perturbation in question and often allow
for solving a particular transport coefficient.

A very crude approximation to solving the Boltzmann equation amounts
to linearizing the collision term in the difference between the off-equilibrium
and equilibrium distribution functions. This amounts to the so-called relax-
ation time approximation, which was applied in the őrst works on transport
in dense QM or hot QGP, such as [85]. A major step forward was taken
somewhat later in [56], where the őrst self-consistent perturbative study of
transport in dense QM was performed with the full nonlinear collision term.
In this work, a major challenge was related to the long-range interactions
mediated by soft gluons, which Ð analogously to the O(α2

s ) pressure dis-
cussed above Ð would lead to divergent results if screening effects are not
properly taken into account.

While present also at high temperatures, the effects of dynamical screen-
ing, such as Landau damping, are particularly pronounced in transport cal-
culations at large chemical potentials and small temperatures, where the
system is characterized by three distinct momentum scales, µB, T , and mE.
Of the three, the őrst can typically be assumed to be the largest, but the
ordering of the latter two is a priori unclear in the physical systems of inter-
est, such as binary NS mergers. This leads to technical complications in the
Boltzmann description, where the quarkśquark scattering matrix element
within the collision term needs to be dressed with HTL-resummed gluon
propagators, featuring the self-energies of Eqs. (32) and (33).
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From this point onwards, the steps needed to obtain LO results for var-
ious transport coefficients depend strongly on the quantity in question, and
we refer the interested reader to [56] for computational details. Here, we
merely note that two key quantities that aid the determination of a number
of transport coefficients from the diffusion constant to various conductivi-
ties and the shear viscosity include the momentum transfer between quarks
and the so-called momentum stopping time. Since the publication of these
LO results in 1993 [56], no perturbative improvements have, however, been
reported, which is largely due to the technical complexity of the NLO cal-
culations, reŕected also in the őrst appearance of NLO transport results for
high-temperature QGP as late as in 2018 [29, 86]. Promising advances have,
however, been recently made in the holographic description of the same
transport coefficients as well as neutrino transport in the strongly-coupled
regime of QCD-like theories [87ś89].

Returning őnally to the transport coefficient of highest relevance for NS
mergers, the bulk viscosity ζ of dense QM, we encounter a quantity whose
evaluation differs dramatically from the computations discussed above. In-
terestingly, it turns out that in an NS setting, the dominant contribution
to ζ does not originate from QCD alone, but emerges when rapid density
oscillations in the macroscopic system force matter to depart from chemi-
cal equilibrium due to weak interactions not being able to keep up with the
compression rate. In rotating quiescent pulsars, these oscillations are related
to the different oscillation modes of the star (see, e.g., [90]), while in binary
NS mergers, they are often related to the complicated merger dynamics. A
straightforward calculation reviewed, e.g., in Appendix A of [81] shows that
in the so-called neutrino-transparent regime, where the dominant contribu-
tion to the bulk viscosity comes from the nonleptonic W -boson exchange
process u+ d↔ u+ s, the bulk viscosity obtains the schematic form

ζ =
λ1A

2
1

ω2 + (λ1C1)2
. (48)

Here, ω is the angular velocity of the density oscillations, λ1 an electroweak
rate deőned by dnd

dt = −dns

dt = λ1(µs − µd), and the coefficients A1 and C1

are linear combinations of quark densities and susceptibilities, reproduced
in Eqs. (4) and (5) of [81]. Interestingly, A1 turns out to identically vanish
for mass-degenerate quarks, reŕecting the vanishing of the bulk viscosity for
conformal systems and implying that it is necessary to include a nonzero
strange-quark mass in the evaluation of the coefficients A1 and C1.

Barring loop corrections to the electroweak data λ1 (that may well be
sizable, see, e.g., [95]), a crucial implication of the form of Eq. (48) is that the
QCD contribution to the bulk viscosity of dense QM enters solely through
the thermodynamic quantities appearing in the coefficients A1 and C1. As





4-A4.30 A. Vuorinen

system, the details of the pairing channel remain unclear at nonasymptotic
densities. Unlike in the case of equilibrium thermodynamics, where pairing
contributions to the EoS are expected to be strongly suppressed at all den-
sities where pQCD is applicable, many transport coefficients are moreover
thought to be highly sensitive to pairing, so calculations performed in the
unpaired phase will need to be generalized to color-superconducting phases
in the future. Given the technical nature of this topic, we refrain from a
more extensive discussion here and instead refer the interested reader to two
excellent review articles by Schmitt and collaborators [84, 96].

7. Model-independent inference of NS-matter properties

After describing the determination of the thermodynamic and transport
properties of unpaired QM at some length above, it is natural to őnally ask,
how these results can be used in a more phenomenological setting within NS
physics. Here, the primary interest lies in a model-independent constraining
of the EoS and other properties of strongly interacting matter up to the
maximal O(5ś10ns) densities reached inside physical NSs and the maximal
O(50ś100MeV) temperatures reached during NS mergers. A priori, it is
far from clear that perturbative results of the kind described in these notes
contain any information of practical use in such settings, given that weak-
coupling expansions in pQCD typically start converging only at densities
many times higher. Somewhat counterintuitively, the perturbative high-
density constraint, however, turns out very useful especially in EoS inference,
and NS observations can, in turn, be shown to constrain the thermodynamic
properties of QCD matter up to relatively high densities. Below, we will
shed light on these developments, paying particular attention to the use
of the pQCD constraint in the model-independent inference of NS-matter
properties. For a reader interested in NS physics from a more astrophysical
point of view, we can recommend, e.g., the recent review [97].

The key microscopic quantity one typically tracks in the description of
quiescent NSs is the EoS of dense QCD matter in the limits of vanishingly
small temperature T , local charge neutrality6, and beta equilibrium. This
is because it is precisely the relationship between the pressure and energy
density of this type of matter that closes the famous TolmanśOppenheimerś
Volkov (TOV) equations governing hydrostatic equilibrium inside a nonro-
tating star [99, 100]

6 The requirement of local charge neutrality can, in principle, be relaxed to a global
one, allowing for the presence of two phases in coexistence, relevant for the case
of a őrst-order (deconőnement) phase transition. This is referred to as the Gibbs
construction, explained in more detail in, e.g., [98].
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dM(r)

dr
= 4πr2ϵ(r) ,

dp(r)

dr
= −(ϵ(r) + p(r))

r2
(M(r) + 4πr3p(r))

(1− 2M(r)/r)
, (49)

allowing one to solve the corresponding unique massśradius (MR) relation
that can be compared to observations. Up to small deviations caused by
rotational frequencies, magnetic őelds, and other similar quantities varying
from star to star, the masses and radii of every NS in existence should, in
principle, fall on the same MR-curve, dictated by the low-temperature EoS
alone. Conversely, should an accurate simultaneous determination of the
masses and radii of several individual NSs become feasible one day, one may
reverse engineer the TOV equations to obtain the EoS of cold and dense
beta-equilibrated QCD matter all the way from vanishing density to the
maximal central densities realized in stable NSs.

The most straightforward way, in which one could, in principle, use the
perturbative QM EoS in NS physics, is by extrapolating the result to much
lower chemical potentials, where it would be matched to a nuclear matter
EoS, similarly extrapolated from below. The simplest implementation of
such a setup would typically involve a őrst-order phase transition at the
baryon chemical potential where the two pressures are equal, while a more
reőned setting would allow for the presence of a mixed phase of both quark
and nuclear matter. Precisely this was done in [68, 101], where the three-
loop pressure of cold QM was őrst evaluated with a nonzero strange-quark
mass and then matched with phenomenological EoSs for high-density NM
(see Fig. 7). This represented a signiőcant step forward from earlier calcu-
lations employing simplistic model EoSs for QM, such as that of the MIT
bag model [102], but the approach nevertheless suffered from multiple prob-
lematic issues. First, the 3ś5ns densities, where the matching of the NM
and QM EoSs was performed, are well outside the realms of controlled őrst-
principles calculations in both phases, so that predictions for quantities such
as the transition density or the associated latent heat can be considered in-
dicative at best. Also, there is no robust way to quantitatively assess the
systematic uncertainty involved in such a setup, and potentially sizable con-
tributions from important physical phenomena such as the onset of hyperons
[103] or quark pairing [96] are altogether ignored.

The most important shortcoming of the above setup clearly originates
from the assumption that the low- and high-density EoSs and their respective
uncertainty ranges are applicable also in the problematic region of NS core
densities. To improve from here, a natural alternative is to divide the den-
sity interval from zero to inőnity into not two but three parts: a low-density
regime where ab-initio nuclear-physics methods such as CET produce reli-
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As to the second question concerning likelihoods and measurement un-
certainties, a very natural step forward is to extend the hard-cut analyses
described above towards Bayesian statistical inference, built on the famous
Bayes’ theorem

P (EoS|data) = P (data|EoS)P (EoS)
P (data)

. (50)

In short, the idea is to turn the (difficult) question of determining the relative
likelihoods of various EoSs based on given observational data around and
instead solve the (substantially easier) problem of determining the likelihood
of the observational data based on a given EoS. Such a setup has by now
been implemented to the NS-matter EoS inference by multiple groups, with
early adaptations including, e.g., [132ś136]. A key őnding from these studies
is the very likely presence of a bump, i.e. a maximum, in the speed of sound
of NS matter at densities realized within physical NSs.

Finally, successfully answering the third and last of the above questions
requires knowledge of the expected properties of both nuclear and quark
matter in the strongly-coupled regime, where the deconőnement transition is
expected to occur but no controlled őrst-principles tools are available. The
unavailability of ab-initio results makes the question somewhat ill-posed,
but at least some guidance can be sought from a more tractable regime
of high-energy-density QCD matter, high-temperature QGP. For this sys-
tem, lattice simulations carried out by multiple collaborations over the past
two decades (see, e.g., [137, 138]) have convincingly demonstrated that the
transition from a hot hadron gas to QGP takes place as a crossover transi-
tion at a temperature of approx. 155 MeV and an energy density of slightly
below 400 MeV/fm3, although the precise numbers slightly depend on the
quantities being tracked. The most striking difference between the conőned
and deconőned phases is related to the approximative conformal symme-
try of the latter: while the properties of hadronic matter are characterized
by the O(GeV) hadron masses, in QM, the only scaleful parameters are
the O(100 MeV) mass of the strange quark and the dynamically generated
ΛQCD ∼ 300 MeV scale parameter. This is reŕected in the rapid confor-
malization of lattice results for multiple quantities, when the temperature
of the system is increased past the transition region, cf., e.g., Figs. 7 and 11
of [138].

For the cold and dense QCD matter inside NSs, the lack of őrst-principles
predictions to compare against means that phase identiőcation must at least
partially rely on a comparison of the inferred properties of NS matter with
the known properties of QM and NM at considerably higher and lower den-
sities, respectively. Fortunately, there exist a large number of physical quan-
tities with clear predictions in various limits to which we can compare the
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results of our model-independent EoS inference. Such quantities include,
e.g., the speed of sound squared c2s , the normalized trace anomaly and its
logarithmic derivative with respect to energy density, ∆ = (ϵ−3p)/(3ϵ) and

∆′ ≡ d∆/d ln ϵ, the łconformal distancež dc ≡
√
∆2 + (∆′)2, the polytropic

index γ = d ln p/d ln ϵ, as well as the normalized pressure p/pfree. In Ta-
ble 1, taken from [139], we summarize the values these quantities take in
various limits: sub-saturation-density CET calculations, model results for
NM at NS-core densities, pQCD calculations around nB = 40ns, őeld theo-
ries exhibiting exact conformal symmetry (CFTs), and systems undergoing
a discontinuous őrst-order phase transition (FOPTs). A key takeaway from
this table is that, as expected, high-density QM is considerably closer to
the conformal limit than low- or high-density NM, implying that a possible
conformalization of NS matter would be a strong indication of the presence
of deconőned matter within NS cores.

The őrst serious attempt to inspect the possible conformalization of mat-
ter inside NS cores in a model-independent fashion was made in [107], where
the primary quantities studied included the polytropic index γ, the speed
of sound squared c2s , and the normalized pressure p/pfree. The results that
emerged from this hard-cut-type study are summarized in Fig. 11. In short,
they indicate that while the properties of matter in the inner cores of light
1.4M⊙ NSs (blue and cyan diamonds in the őgure) are well in line with
those expected based on model calculations for dense NM, things look dra-
matically different in the cores of maximally massive NSs (red and magenta
circles). In the latter case, the inferred properties of NS matter lie consid-
erably closer to those of QM at perturbative densities, indicating the likely
presence of deconőned matter inside the most massive stable NSs.

Table 1. A summary of the values that several physical quantities take in various
limits deőned in the main text. The table is taken from [139].

CET Dense NM Pert. QM CFTs FOPT

c2s ≪ 1 [0.25 , 0.6] ≲ 1/3 1/3 0

∆ ≈ 1/3 [0.05 , 0.25] [0, 0.15] 0 1/3− pPT/ϵ

∆′ ≈ 0 [−0.4 ,−0.1] [−0.15, 0] 0 1/3−∆

dc ≈ 1/3 [0.25 , 0.4] ≲ 0.2 0 ≥ 1/
(
3
√
2
)

γ ≈ 2.5 [1.95 , 3.0] [1, 1.7] 1 0

p/pfree ≪ 1 [0.25 , 0.35] [0.5, 1] Ð pPT/pfree
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to construct EoSs that extend beyond the limits derived in papers such as
[107, 108]. More recently, Komoltsev implemented FOPTs to a Bayesian
framework involving GP regression [143], őnding no evidence either favoring
or disfavoring destabilizing solutions. Other features seen in previous EoS
inferences without explicit phase transitions were seen to stay intact, though,
including most importantly a clear peak in the speed of sound. More work is
clearly needed to conőrm or rule out the presence of a destabilizing FOPT,
possibly using a future postmerger GW signal that may carry traces of the
presence of a discontinuous transition [144, 145].

8. Outlook to future developments

In the lecture notes at hand, we have reviewed in some detail both the
methods used in őrst-principles perturbative thermal őeld theory calcula-
tions within high-density quark matter, and the applications of these results
to the model-independent determination of the neutron-star-matter equation
of state. In this discussion, we have not aimed at a self-consistent text-book-
style presentation, but have rather tried to aid the interested reader in their
journey of self-study. We have done so by őlling in a number of gaps left
uncovered in existing textbooks on thermal őeld theory and by providing nu-
merous references to original research articles, including both older classics
of the őeld and more recent studies.

The topic of these lecture notes belongs to a growing subőeld of nuclear
and particle physics, aimed at understanding the properties of strongly in-
teracting matter inside NSs. This is a rapidly evolving research topic, not
least due to the pace, at which neutron-star observations have progressed
during the past 10ś15 years. Many recent advances have been made possi-
ble by an efficient interplay between microscopic theoretical calculations and
new observational insights, of which the quest to discover a new phase of
QCD matter inside NS cores represents a prime example. Without ab-initio
limits for the properties of low-density nuclear matter and high-density QM,
NS observations would at best provide ballpark estimates for the properties
of NS interiors, and without new observational constraints, the accuracy of
EoS inference would not have progressed much during the past decade.

Within the next couple of years, several important advances relevant for
the physics of NSs and their potential QM cores can be expected to emerge
from the microscopic side. CET and pQCD calculations of the thermody-
namics of low-temperature QCD matter are advancing at a rapid pace, with
the completion of the O(α3

s ) pressure of cold and dense QM being őnally in
sight. Once complete, this result is expected to dramatically improve the
precision to which we know the properties of deconőned matter at densities
of the order of 15ś40ns. This will immediately have a signiőcant impact
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on the model-independent inference of the NS-matter EoS, which continues
to be an active topic of research [146ś148]. Alongside such developments,
the transport properties of dense QM are presently under intense scrutiny,
and model-independent bounds for the temperature dependence of the NS-
matter EoS, improving previous estimates such as those of [149, 150], are
upcoming. As reviewed in these lecture notes, a combination of such the-
oretical results and future observational advances, including the potential
detection of a postmerger GW signal from a binary NS merger, are expected
to hold the key to resolving long-standing puzzles in nuclear astrophysics.

I would like to thank Niko Jokela, Aapeli Kärkkäinen, Mika Nurmela,
Risto Paatelainen, and Tomi Ruosteoja for useful comments on early versions
of these lecture notes.
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