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Motivated by the Weyl scaling gauge symmetry, we present a theoretical framework to explain cosmic 
inflation and dark matter simultaneously. This symmetry has been resurrected in recent attempts to 
formulate the gauge theory of gravity. We show the inspired inflation model is well consistent with 
current observations and will be probed further by future experiments. Furthermore, we clarify and prove 
the stability of Weyl gauge boson in the general theory with multiple scalars. We show the massive Weyl 
gauge boson can be a dark matter candidate and give the correct relic abundance.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The accumulated compelling evidence for dark matter (DM) has 
been challenging the standard model (SM) of fundamental physics 
for decades. The supporting observations, such as cosmic mircow-
ave background (CMB), large-scale structure, rotation curves, scope 
from cosmological to galactic scales [1,2]. For the intrinsic nature 
of DM, however, we are still lacking sufficient information since 
the robust evidence is only able to suggest that DM must have 
gravitational interaction. Nevertheless, explanations of DM would 
require extensions of SM, either in the sector of particle physics or 
gravity.

We also know from experimental measurements that the power 
spectrum of fluctuations in our universe is almost scale invariant, 
which indicates Weyl/scaling symmetry may play some role in the 
theory of inflation that generates the primordial fluctuations. Then 
it is not unreasonable to expect that Weyl symmetry may be also 
behind the theory of DM, because symmetry has played a guid-
ing principle for constructing fundamental laws of nature since 
last century when Weyl first proposed [3] the scaling symmetry 
and tried to unify the electromagnetic interaction with Einstein’s 
general relativity. The original scale factor has to be modified as 
a phase to account for the gauge U (1) theory for electromag-
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netic interaction [4]. U (1) is later generalized to non-abelian the-
ory by Yang and Mills [5], which describes the interactions of all 
known fundamental particles in SM by incorporating the Higgs 
mechanism [6–8]. Variants of Weyl symmetry, however, still stim-
ulate explorations of theoretical and phenomenological studies, 
see Refs. [9–38] for various examples in cosmology and particle 
physics. Recently, Refs. [39,40] has shown the original Weyl sym-
metry can play a crucial role in formulating the gauge theory of 
gravity.

In this paper we propose that the original Weyl symmetry can 
provide a framework to explain the cosmic inflation [41–44] and 
DM simultaneously.1 The starting inflationary Lagrangian can be 
Weyl invariant and responsible for the generation of Planck scale. 
Theoretical predictions of observables, scalar spectral index and 
tensor-to-scalar ratio, are consistent with currect experiments and 
testable in future. After we clarify the stability issue of Weyl gauge 
boson in the literature [13,14,55] and prove in the general frame-
work with multiple scalars, we show the Weyl gauge boson can be 
identified as a DM candidate, if the coupling is small enough.

This paper is organized as follows. In Section. 2 we first estab-
lish the theoretical framework and the relevant notations. Then in 
Section. 3 we illustrate how viable inflation is provided in our for-
malism. Later in Section. 4 we demonstrate the Weyl gauge boson 

1 Our proposal is different from the scenario where inflaton is identified as dark 
matter, see Refs. [45–53] for such examples, and is also different from Ref. [54]
where DM is identified as the scalaron in f (R) gravity.
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can be a DM candidate and discuss its relic abundance. Finally, we 
give our conclusions.

Throughout our paper, we use the sign convention for the met-
ric, ηab = (1, −1, −1, −1), and natural unit M P ≡ 1/

√
8πG = 1. 

Sometime M P is written explicitly without confusion.

2. Framework

To illustrate the main physical points, we start with the fol-
lowing general Lagrangian with two real scalars, ϕ and φ, and a 
fermion ψ ,

L ⊃ √−g
[α

2

(
ϕ2 R − 6∂μϕ∂μϕ

)
+ β

2

(
φ2 R − 6∂μφ∂μφ

)
+ ζ1

2
DμϕDμϕ + ζ2

2
DμφDμφ

+ i

2

(
ψγ μDμψ − Dμψγ μψ

) + y ϕψψ

+ f φψψ − V (φ,ϕ) − 1

4g2
W

Fμν F μν
]
, (1)

where R is the Ricci scalar, the Weyl field Wμ ≡ gW wμ , gW is 
the corresponding gauge coupling, Fμν = ∂μWν − ∂ν Wμ and the 
covariant derivative Dμ = ∂μ − Wμ , y and f are Yukawa couplings. 
More complete Lagrangian can be found in Refs. [39,40] where 
gravity is formulated as a gauge theory of the fundamental field 
χa

μ with its connection to metric, χa
μχb

ν ηab = gμν . The potential 
V can have a general form of 

∑4
i=0 ciφ

iϕ4−i . The parameters ζi in 
the front of scalar kinetic terms can be positive, negative or zero. 
Note that negative ζi is not necessary associated with theoretical 
issues, as long as the total energy of the system is positive [56]. 
We shall explicitly demonstrate how negative ζi is allowed in the 
end of this section.

It should be emphasized that Wμ does not couple to fermions 
directly. This is because there is no factor i in the covariant deriva-
tive with Wμ . As a result, Wμ-dependent terms will cancel in the 
parentheses. Scalars can also couple to fermions with Yukawa in-
teractions, which can lead to the generation of fermion mass, decay 
of scalars and reheating after inflation.

At first sight, it seems there are many free parameters in Eq. (2). 
Actually, not all of them are independent. For example, if αβ �= 0, 
we can always rescale φ and ϕ to make |α| = 1 = |β|. Or if |ζi| �= 0, 
we can keep α and β general but make |ζi | = 1. As long as one of 
ζi is not zero, we can always relabel the fields and rewrite the 
Lagrangian as follows

L√−g
= α

2

(
ϕ2 R − 6∂μϕ∂μϕ

)
+ β

2

(
φ2 R − 6∂μφ∂μφ

)
+ 1

2
DμϕDμϕ + ζ

2
DμφDμφ

+ i

2

(
ψγ μDμψ − Dμψγ μψ

) + y ϕψψ + f φψψ

− V − 1

4g2
W

Fμν F μν, (2)

where ζ can be positive or negative.
In addition to the general covariance of coordinate transforma-

tion, the above Lagrangian is invariant under the following local 
Weyl or scaling transformation

gμν (x) → g′
μν (x) = λ2(x) gμν (x) , ϕ (x) → ϕ′ (x) = λ−1(x)ϕ (x) ,

φ (x) → φ′ (x) = λ−1 (x)φ (x) , ψ (x) → ψ ′ (x) = λ−3/2 (x)ψ (x) ,

Wμ (x) → W ′
μ (x) = Wμ (x) − ∂μ lnλ(x), (3)

whe
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Or 

ϕ(S

whe
tion
re the scale factor λ (x) acts as a gauge parameter that may be 
n in the domain λ > 0. After fixing φ2 = v2, Einstein-Hilbert 
 R can be recovered. Weyl boson Wμ gets a mass due to the 
tic term of φ and fermion ψ gets a mass from Yukawa inter-

on. Afterwards, the theory describes Einstein’s gravity with a 
-minimally coupled scalar ϕ , a massive gauge boson Wμ and 
rmion ψ . We shall show that ϕ can be responsible for cosmic 

ation and Wμ can be a DM candidate.
We understand that Weyl symmetry is broken by quantum cor-
ions, namely the fields and parameters in the theory will be 
ning and depend on the energy scale at which our physics is 
sidered. Therefore, it can not be an exact symmetry. However, 
 still useful to utilize Weyl symmetry at classical level since 
rovides a guiding principle for the starting Lagrangian, as we 
wed above. Also, if the couplings are small or the considered 
rgy scale does not change much, we may neglect the running 
 treat Weyl symmetry as approximate.
To demonstrate the above framework can provide a viable 
hanism for cosmic inflation and DM, in the following we shall 

strate with a concrete example by fixing

0 and V = c(ϕ2 − ξφ2)2, (4)

re ξ > 0 is a numeric number in the Higgs-like potential. Since 
 rescaling of φ would rescale ζ and ξ correspondingly, only the 
o ζ/ξ is physical. Hence, we can work in the basis that ξ ≡ 1
le keeping ζ free. However, it should be kept in mind that ζ in 
 rest of the paper can be effectively interpreted as ζ/ξ . We also 

hasize that the above choice by no means is the only viable 
 it is just a simple option that can elucidate the main physics. 
 general analysis for other options with β �= 0 and different V s 
explored in [57].

After some algebra to make the kinetic terms canonical and to 
rganize the resulting Lagrangian (see Appendix for the detailed 
ivation), we have

g
⊃ 1

2
R̄ + 1

2
∂μS∂μS − c

α2

[
1 − 1

αϕ2(S)

]2

+ i�γ μ∂μ� − f v + yϕ(S)√
αϕ(S)

��

− 1

4g2
W

Fμν F μν + ζ v2 + ϕ2

2αϕ2(S)
W μW

μ
, (5)

re v2 ≡ 1/α. Note that the new fields are related with the old 
s through

= λ2 gμν, λ2 = αϕ2,� = λ−3/2ψ,

= Wμ − ∂μ ln
√

|ζ/α + ϕ2|,
(6)

 the inflation field S with canonical kinetic term is a function 
,

1√
α

×

⎧⎪⎨⎪⎩
ln

X

1 + √
1 + X2

, ζ > 0, X ≡ ϕ√+ζ/α
,

ln
X

1 + √
1 − X2

, ζ < 0, X ≡ ϕ√−ζ/α
.

(7)

inversely ϕ can be expressed as a function of S ,

) =

⎧⎪⎨⎪⎩
√+ζ/α

2Y

1 + Y 2
, ζ > 0,

√−ζ/α
2Y

1 − Y 2
, ζ < 0,

(8)

re Y = exp
√

αS . In the vicinity of X 	 1, we have simple rela-
s, S = (ln X)/

√
α or ϕ ∝ exp

√
αS . From the above formalism, 
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Fig. 1. Illustration of (ns, r) when ζ = 102 (left panel) and ζ = 10 (right panel). The theoretical values of (ns, r) are shown for e-folding number N = 50 (squares) and 60
(circles) with α = 0.005, 0.02, 0.1, 0.5 (from top to bottom), in comparison with the shaded regions allowed by Planck [59] with 1-σ and 2-σ contours, and the future 
projection of CMB-S4 [60] in smaller red contours. Along the solid lines, dashed lines indicate the cases with √|ζ |/α � 30.
we can also see that both positive and negative ζ could give con-
sistent theories, without theoretical pathology. However, if ζ = 0, 
the kinetic term for S would vanish and S can be solved by equa-
tion of motion. This is because S is defined by the differential 
equation to have canonical kinetic term (see Appendix for details),

dS

dϕ
=

√
ζ v2

αϕ2
(
ζ v2 + ϕ2

) . (9)

The mass of S can be obtained at the minimum ϕ2(S0) = 1/α,

m2
s = ∂2V

∂ S2
= 8c

α

1 + ζ

ζ
. (10)

Similarly, the mass of � is given by m� = ( f + y)/
√

α and the 
mass of W μ is calculated as mW = gW (ζ +1)/α, all in Planck unit.

3. Inflation

In this section, we elucidate how S can be responsible for a 
successful inflation and contrast the predictions with experimental 
constraints. The potential of S is given by

V (S) = c

α2

[
1 − 1

αϕ2(S)

]2

, (11)

where ϕ(S) is given in Eq. (8). The potential is very flat when 
ϕ2(S) � 1/α where inflation happens, and its minimum V = 0 is 
reached at ϕ2(S) = 1/α.

3.1. Inflationary observables

To compare with the observations, we calculate the standard 
slow-roll parameters [58],

ε ≡ 1

2

(
V ′

V

)2

= 8α
(
ζ + αϕ2

)
ζ

(
αϕ2 − 1

)2
, (12)

η ≡ V ′′

V
= −4α

[−4ζ + α2ϕ4 + α(2ζ − 3)ϕ2
]

ζ
(
αϕ2 − 1

)2
, (13)

where ′ is denoted to the derivative over S . The slow-roll param-
eters are related with the cosmological observables, spectral index 
ns = 1 − 6ε + 2η and tensor-to-scalar ratio r = 16ε ,
ns = 1 − 8α
[
2ζ + α2ϕ4 + α(2ζ + 3)ϕ2

]
ζ

(
αϕ2 − 1

)2
, (14)

r = 128α
(
ζ + αϕ2

)
ζ

(
αϕ2 − 1

)2
. (15)

The e-folding number N is defined as

N ≡ ln
ae

ai
�

tend∫
t

Hdt �
Si∫

Se

dS√
2ε

=
ϕi∫

ϕe

dS

dϕ

dϕ√
2ε

, (16)

where ai(ae) is the scale factor at initial (end) time of the infla-
tion, ϕi(ϕe) is the corresponding field value, and H is the Hubble 
parameter. Here ϕe is determined by the violation of slow-roll 
condition, ε ∼ 1 or η ∼ 1. To solve the flatness and horizon prob-
lems, the universe should inflate at least by eN with the typical 
N � 50 ∼ 60 before inflation ends.

In Fig. 1 we numerically solve the inflationary dynamics and 
present the calculated values of (ns, r) for e-folding number 
N = 50 and 60, in comparison with the allowed regions by 
Planck [59]. We illustrate with α = 0.005, 0.02, 0.1, 0.5 and ζ =
10, 102. The projected sensitivities of the next-generation CMB ex-
periments [60] are plotted as smaller red contours. Along the solid 
lines, the dashed lines represent the cases when 

√|ζ |/α � 30, an 
attractor behavior as |ζ | increasing. We have also checked that the 
predictions do not change for negative ζ , as long as 

√|ζ |/α � 30. 
Below we give an intuitive explanation for this attractor behavior.

When 
√|ζ |/α � 30, analytic treatments are possible for qual-

itative understanding. In such a case, in the field range that is 
relevant for the observable universe we have ϕ ∝ exp(

√
αS), a 

result of X 	 1 in Eq. (7). When α � 0.1, we find it is a good 
approximation in our model with analytical formula,

ns � 1 − 2

N
, r � 2

αN2
, (17)

which are independent on ζ , the so-called attractor behavior. This 
situation is very similar for the inflation in the induced gravity [9]
with the following Lagrangian,

L√−g
= α

2
ϕ2 R + 1

2
∂μϕ∂μϕ − c

(
ϕ2 − v2

)2
, (18)

where we have similar (ns, r) but with α in Eq. (17) replaced with 
ᾱ ≡ α

1 + 6α
. They can also be compared with ns � 1 − 2/N and 

r � 12/N2 in Starobinsky’s inflation.
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The measured overall amplitude of scalar power spectrum by 
Planck [59]

�2
s (k) ≈ 1

24π2

V
ε

∼ 2.2 × 10−9, (19)

requires c � 2α × 10−11 when 
√|ζ |/α � 30, a typical value in 

large-field inflation models. The Hubble parameter during inflation 
in this case can be estimated as H ∼ V1/2/3 ∼ 1/

√
α × 1013 GeV. 

Thus, in this framework, only α and ζ are effectively free parame-
ters.

3.2. Reheating

After inflation, inflaton field S will oscillate around the poten-
tial minimum, transfer its energy to other fields and reheat the 
universe. The details of reheating depend on how inflaton and 
other fields are coupled. In the minimal model we considered, 
through the Yukawa interaction inflaton can decay into �-pair, 
namely S → ��. When S is much heavier than ψ , the decay width 
is

�S ∼ mS f 2/8π ×
(

ζ − 1

ζ

)2

. (20)

The reheating temperature T R is given by

T R � √
�S Mp � 1.5 f

ζ − 1

ζ
× 1016 GeV (21)

This estimation shows that the reheating temperature can be as 
high as T R ∼ 1015 GeV for f ∼ 0.1 and ζ ∼ 2.

Note that the reheating temperature T R is referred to � only 
and can be different from the highest temperature of SM particles, 
because just after reheating � may not be in thermal equilib-
rium with SM. To connect � with SM, we can introduce a new 
U (1) gauge symmetry with coupling g and gauge boson Vμ , under 
which both � and SM fermions are charged. These new inter-
actions still respect the local Weyl symmetry and do not affect 
our previous discussions. We find that depending the interaction 
strength, � would reach thermal equilibrium with SM through the 
scattering and annihilation processes mediated by Vμ , at temper-
ature Th � g4Mp (≤ T R) when the scattering rate �� = n�σ� ∼
g4Th is equal to the Hubble parameter H ∼ T 2

h /Mp . By changing 
the interaction strength g , we can get different Th for SM parti-
cles. For instance, we can have Th ∼ 1015 GeV for g ∼ 0.14 and 
Th ∼ 105 GeV for g ∼ 5 × 10−4.

4. Weyl boson as dark matter

It is apparent that in Eq. (5) there is a discrete Z2 symmetry 
for Weyl gauge boson W μ , W μ → −W μ . Then it would be tempt-
ing to ask whether W μ can be a DM candidate. This was first 
pointed out in Refs. [13,14] in a different context and investigated 
further [55,61]. However, the claims in the literature were contro-
versial. The author in Refs. [13,14] stated that Weyl gauge boson 
was stable through an illustration with Higgs boson and sigma 
model, while later it was shown to be decaying when there are 
two scalars [55]. Below we shall set down the issue by presenting 
a general proof that W μ is stable, regardless of how many scalars 
are present.

4.1. Proof of stability

We consider the case with N scalars whose Lagrangian is given 
by
L√−g
⊃

N∑
i=1

αi

2

(
φ2

i R − 6∂μφi∂
μφi

)

+ 1

2

N∑
i=1

ζi Dμφi Dμφi − V (φi) − 1

4g2
W

Fμν F μν. (22)

As general as possible, we have included the factor ζi in the front 
of the covariant kinetic term, Lk ≡ 1

2

∑N
i=1 ζi Dμφi Dμφi . As shown 

in previous sections, ζi is not necessarily positive. To show the sta-
bility of Weyl gauge boson, we rewrite the covariant kinetic term 
as

2Lk =
N∑

i=1

[
ζi∂μφi∂

μφi − Wμ∂μ
(
ζiφ

2
i

)
+ ζiφ

2
i WμW μ

]

= �

(
WμW μ − Wμ

∂μ�

�

)
+

N∑
i=1

ζi∂μφi∂
μφi

= �

(
Wμ − 1

2
∂μ ln�

)2

− 1

4
� × (

∂μ ln�
)2

+
N∑

i=1

ζi∂μφi∂
μφi

= �W μW
μ − �

4

[
∂μ ln�

]2 +
N∑

i=1

ζi∂μφi∂
μφi, (23)

where we have defined � ≡ ∑N
i=1 ζiφ

2
i , W μ = Wμ − 1

2
∂μ ln �. The 

above derivation does not depend on the potential form and is also 
valid for Higgs-like potential. One may wonder whether the proof 
still holds if there are other scalars that were not included in �
from the beginning, like standard model Higgs or hidden scalar. In 
the Appendix, we show the proof is still valid in the presence of 
additional scalars that coupled to Wμ covariantly.

Note that the redefinition of Weyl gauge field does not affect 
Fμν due to its anti-symmetric identity. Since W μ can get mass 
and interact only through the �W μW

μ
term, it is now clear that 

Z2 symmetry for W μ is manifest, even if taking the radiative cor-
rection into account. As a DM candidate, it would be stable.

The rest procedures go as standard. Define �2 ≡ ∑N
i=1 αiφ

2
i , we 

are now left with

L√−g
⊃ 1

2
�2 R + 1

2

N∑
i

(ζi − 6αi) ∂μφi∂
μφi −

(
∂μ�

)2

8�

− V (φi) − 1

4g2
W

Fμν F μν + 1

2
�W μW

μ
. (24)

To make things more familiar, we can make conformal transforma-
tion gμν = �2 gμν and change to Einstein frame. Then we obtain

L√−ḡ
= 1

2
R + 1

2�2

[
6�2∂μ ln�∂μ ln �

+
N∑
i

(ζi − 6αi) ∂μφi∂
μφi −

(
∂μ�

)2

4�

]
− V (φi)

�4

− 1

4g2
W

Fμν F μν + 1

2�2
�W μW

μ
, (25)

where we have used the following relation,

R = �2 [
R̄ + 6ḡμν∂μ ln�∂ν ln�

]
. (26)
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The non-canonical kinetic term for φi in Eq. (25) is rather com-
plicated. Only in several special cases there are analytic and trans-
parent reductions, see our thorough analysis in Ref. [57] for details. 
However, for the illustration of W μ as a DM candidate, it is now 
sufficient to use the Lagrangian in Sec. 2, Eq. (5).

4.2. Relic density

Admittedly, for gW ∼ 1, mW would be naturally around Planck 
scale, which is too heavy to be produced in the early universe and 
whose cosmological consequence is uncertain in this context. How-
ever, if we temporarily put aesthetic reasons aside, and treat gW

as a free parameter, tiny gW would induce a light W μ that can be 
produced abundantly, a potential DM candidate with Z2 symmetry.

To demonstrate in principle there are parameter spaces that can 
give rise to the correct relic abundance for W μ , we focus on the 
interactions in Eq. (5). The interaction between inflaton S and Weyl 
boson W μ can be obtained by expanding ϕ around the potential 
minimum, ϕ2(S0) = 1/α. For ζ > 0, in the linear order we have

1

ϕ
� √

α +
√

α

ζ
sinh(

√
αS0)

√
αs = √

α + α
ζ − 1

ζ
s, (27)

where s ≡ S − S0, sinh(
√

αS0) = √
ζ − 1 and cosh(

√
αS0) = √

ζ . 
Then, we can obtain the linear interaction term

−
√

ζ(ζ − 1)

α
sW μW

μ
. (28)

Note that explicitly each W μ has a gW factor in it.
As mentioned above, if gW ∼ 1, we would expect mW ∼ M P

and it is difficult to produce such heavy particle in the early uni-
verse. If gW 	 1, the interaction would be too weak to keep it 
in thermal equilibrium. Therefore, W μ can not be a thermal DM. 
Nevertheless, we may consider non-thermal production. Below, we 
discuss two possible mechanisms.

In the case that gW is extremely small, we may neglect the 
above interaction and only consider the gravitational produc-
tion [62,63] which gives the relic abundance �W ,

�W � �DM ×
√

mW

6 × 10−11 GeV
×

(
H

1013 GeV

)2

, (29)

where �DM � 0.25. In this case, gW ∼ 10−29, a very tiny coupling, 
which indicates how challenging it is to detect such a DM particle.

When gW can not be neglected, the above production mech-
anism would not apply. We may consider an alternative produc-
tion from inflaton’s decay. We can calculate the decay width s →
W μ + W μ ,

�
(
s → W μ + W μ

) = g4
W ζ(ζ − 1)

32πα2

M2
P m3

s

m4
W

× √
1 − xW

(
1 − xW + 3

4
x2

W

)
, (30)

where xW = 4m2
W /m2

s . We denote Br as the branch ratio of the 
above decay mode, which can be estimated as ∝ m2

s /( f 2M2
P ) by 

taking the ratio of Eq. (30) to Eq. (20). The relic abundance from 
inflaton decay is evaluated as

ρW

s
∼ 2mW nsBr

s
∼ 2mW T 4

RBr

ms T 3
R

= 2mW T RBr

ms
, (31)

where ρW is energy density of W μ and s is the entropy den-
sity. Putting in the relevant quantities, we can actually simplify the 
above formula to
ρW

s
= 2mW T RBr

ms
� 2mW

f

(
ms

mP

)3/2 α2ζ 2

(ζ + 1)4

� 10−9 GeV ×
(mW

TeV

)(
0.1

f

)
, (32)

where in the last step we have used ζ ∼ 102 and α ∼ 0.1 for 
consistent inflation. For 

ρW

s
∼ 10−9 GeV, we can have the correct 

relic abundance of DM. If we restrict f � 4π for perturbativity, we 
would have an upper bound, mW � 100 TeV.

5. Conclusion

We have presented a theoretical study that the original Weyl 
scaling symmetry can provide a unified framework to explain the 
cosmic inflation and DM simultaneously. The inspired inflationary 
scenario has a Weyl-symmetric Lagrangian from the beginning. Af-
ter the generation of Planck scale, the potential can be flat enough 
to allow a slow-roll inflation. The theoretical values of scalar spec-
tral index and tensor-to-ratio are well consistent with current ob-
servations and can be tested in future CMB experiments, which can 
be clearly seen in Fig. (1).

We have also clarified and proved the stability of Weyl gauge 
boson and demonstrated it can be a DM candidate if the gauge 
coupling is tiny, thanks to the Z2 symmetry. The stability is valid 
for any theory with multiple scalars, as long as they are coupled to 
Weyl gauge boson covariantly. The mass of Weyl boson is gener-
ally very heavy unless the gauge coupling is very tiny, which then 
requires non-thermal productions. We discussed two viable mech-
anisms, gravitational production and inflaton’s decay. However, de-
tection of such DM would be challenging since its couplings to 
standard model particles are very small.
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Appendix A

A.1. Derivation of Eq. (5)

Here, we give the detailed derivation of Eq. (5) in the main 
context. We start with the Lagrangian for two real scalars (ϕ and 
φ) and a fermion ψ ,

L ⊃ √−g
[α

2

(
ϕ2 R − 6∂μϕ∂μϕ

)
+ β

2

(
φ2 R − 6∂μφ∂μφ

)
+ ζ1

2
DμϕDμϕ + ζ2

2
DμφDμφ

+ i

2

(
ψγ μDμψ − Dμψγ μψ

) + y ϕψψ + f φψψ

− V (φ,ϕ) − 1

4g2
W

Fμν F μν
]
,

where Dμ = ∂μ − Wμ, γ μDμ ≡ γ aχ
μ
a Dμ, χμ

a χν
b ηab = gμν . As 

explained in the main text, for an illustration, we fix the follow-
ing model parameters

β = 0, ζ1 = 1, ζ2 ≡ ζ and V = c(ϕ2 − φ2)2,
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and set φ2 = v2 ≡ 1/α, thanks to the freedom from the local Weyl 
gauge symmetry. Then we have the following Lagrangian in Jordan 
frame,

L ⊃ √−g

[
α

2

(
ϕ2 R − 6∂μϕ∂μϕ

)
+ 1

2
DμϕDμϕ − c(ϕ2 − v2)2

+ iψγ μ∂μψ − f vψψ − y ϕψψ − 1

4g2
W

Fμν F μν

+1

2
ζ v2WμW μ

]
.

Note that ϕ is not minimally coupled to gravity. To compare with 
Einstein’s gravity and observations, we can redefine the fields by 
conformal transformations,

gμν = λ2 gμν, � = λ−3/2ψ, λ2 ≡ αϕ2,

and rewrite the Lagrangian as

L√−g
⊃1

2
R̄ + 1

2λ2
∂μϕ∂μϕ − c

λ4
(ϕ2 − v2)2

+ i�γ μ∂μ� − λ−1 ( f v + yϕ)��

− λ−2ϕ∂μϕW μ + 1

2
λ−2

(
ζ v2 + ϕ2

)
WμW μ

− 1

4g2
W

Fμν F μν.

We can rearrange the gauge interactions

1

2λ2

[(
ζ v2 + ϕ2

)
WμW μ − W μ∂μϕ2

]
= ζ v2 + ϕ2

2λ2
W μW

μ − ϕ2∂μϕ∂μϕ

2λ2
(
ζ v2 + ϕ2

) ,

where the new Weyl field has a gauge transformation W μ = Wμ −
1
2 ∂μ ln |ζ v2 + ϕ2| and the last term in the above equation would 
contribute additionally to the kinetic term for ϕ , which in total is 
given by

1

2λ2

[
1 − ϕ2

ζ v2 + ϕ2

]
∂μϕ∂μϕ = 1

2

ζ v2

αϕ2
(
ζ v2 + ϕ2

)∂μϕ∂μϕ

≡ 1

2
∂μS∂μS.

Here we have defined the new field S through

dS

dϕ
=

√
ζ v2

αϕ2
(
ζ v2 + ϕ2

) .

One can immediately notice ζ �= 0, otherwise ϕ is not a dynamical 
field. And ζ can be negative as long as 

(
ζ v2 + ϕ2

)
ζ v2 > 0.

Generally we have the solutions for S = S(ϕ),

S = 1√
α

×

⎧⎪⎨⎪⎩
ln

X

1 + √
1 + X2

, ζ > 0, X ≡ ϕ√+ζ/α
,

ln
X

1 + √
1 − X2

, ζ < 0, X ≡ ϕ√−ζ/α
.

Or we can obtain inversely

ϕ =

⎧⎪⎨⎪⎩
√+ζ/α

2Y

1 + Y 2
, ζ > 0,

√−ζ/α
2Y

2
, ζ < 0,

w
(l
te

√

A

W
n
te

2

W

2

w

ζ

te

2

N
in
ce

2

1 − Y
here Y = exp
√

αS . In the vicinity of X << 1, we have S =
n X)/

√
α or ϕ ∝ exp

√
αS . Finally, the Lagrangian can be rewrit-

n as

L
−g

⊃ 1

2
R̄ + 1

2
∂μS∂μS − c

α2

[
1 − v2

ϕ2(S)

]2

+ i�γ μ∂μ� − f v + yϕ(S)√
αϕ(S)

��

− 1

4g2
W

Fμν F μν + ζ v2 + ϕ2

2αϕ2(S)
W μW

μ
.

.2. The second step for the proof

Let us assume there is another scalar field � that couples to 
μ covariantly (ζ Dμ�Dμ�), but was not included in the defi-

ition of � in Eq. (23), then we would have for the total kinetic 
rm

Lk = �W μW
μ − �

4

[
∂μ ln�

]2 +
N∑

i=1

ζi∂μφi∂
μφi

+ ζ
[
∂μ�∂μ� − Wμ∂μ�2 + �2WμW μ

]
. (33)

e shall prove with the above Lagrangian can be rewritten as

Lk = �̃W̃μW̃ μ − �̃

4

[
∂μ ln �̃

]2 +
N+1∑
i=1

ζi∂μφi∂
μφi, (34)

here φN+1 ≡ �, ζN+1 ≡ ζ , W̃μ = W μ − 1
2 ∂μ ln

�̃

�
, �̃ = � +

�2 = ∑N+1
i=1 ζiφ

2
i .

Replace Wμ = W μ + 1

2
∂μ ln � in Eq. (33) and combine W μW

μ

rms, we get

Lk =
(
� + ζ�2

)
W μW

μ − W μ∂μ
(
ζ�2

)
− 1

2
∂μ ln�∂μ

(
ζ�2

)
+ ζ�2W μ∂μ ln �

+ 1

4
ζ�2 [

∂μ ln�
]2 − �

4

[
∂μ ln�

]2 +
N+1∑
i=1

ζi∂μφi∂
μφi .

(35)

ote that there is a mixing term W μ∂μ
(
ζ�2

)
which appears to 

duce the decay of W μ . However, this term actually can be can-
led by a gauge transformation of W μ , as we shall show below.

Lk =
(
� + ζ�2

){
W μW

μ − W μ∂μ ln

(
� + ζ�2

�

)
+1

4

[
∂μ ln

(
� + ζ�2

�

)]2}

− 1

4

(
� + ζ�2

)[
∂μ ln

(
� + ζ�2

�

)]2

+ W μ∂μ
(
� + ζ�2

)
−

(
� + ζ�2

)
W μ∂μ ln (�)

− W μ∂μ
(
ζ�2

)
− 1

2
∂μ ln�∂μ

(
ζ�2

)
+ ζ�2W μ∂μ ln� + 1

4
ζ�2 [

∂μ ln�
]2

− �

4

[
∂μ ln�

]2 +
N+1∑
i=1

ζi∂μφi∂
μφi . (36)
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We immediately realize that all the linear terms of W μ cancel 
completely. So we have

2Lk =
(
� + ζ�2

)[
W μ − 1

2
∂μ ln

(
� + ζ�2

�

)]2

+
N+1∑
i=1

ζi∂μφi∂
μφi + C. (37)

C ≡ − 1

4

(
� + ζ�2

)[
∂μ ln

(
� + ζ�2

)
− ∂μ ln�

]2

− �

4

[
∂μ ln�

]2 − 1

2
∂μ ln �∂μ

(
ζ�2

)
+ 1

4
ζ�2 [

∂μ ln�
]2

.

(38)

Though tedious, it is however straightforward to show

C = −1

4

(
� + ζ�2

)[
∂μ ln

(
� + ζ�2

)]2
. (39)

Eventually, we have obtained the kinetic term for N + 1 scalars by 
two-step procedure,

2Lk =�̃W̃μW̃ μ +
N+1∑
i=1

ζi∂μφi∂
μφi − �̃

4

(
∂μ ln �̃

)2
, (40)

W̃μ = W μ − 1

2
∂μ ln

(
� + ζ�2

�

)
= Wμ − 1

2
∂μ ln �̃, (41)

where �̃ = � + ζ�2 = ∑N+1
i=1 ζiφ

2
i . Evidently, Z2 symmetry for W̃

is manifest.
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