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We present the results of a lattice calculation of tetraquark states with quark contents q1q2Q̄Q̄; q1; q2 ⊂
u; d; s; c and Q≡ b, c in both spin-0 (J ¼ 0) and spin-1 (J ¼ 1) sectors. This calculation is performed on
three dynamical Nf ¼ 2þ 1þ 1 highly improved staggered quark ensembles at lattice spacings of about
0.12, 0.09, and 0.06 fm. We use the overlap action for light to charm quarks, while a nonrelativistic action
with nonperturbatively improved coefficients with terms up to Oðαsv4Þ is employed for the bottom quark.
While considering charm or bottom quarks as heavy, we calculate the energy levels of various four-quark
configurations with light quark masses ranging from the physical strange quark mass to that of the
corresponding physical pion mass. This enables us to explore the quark mass dependence of the extracted
four-quark energy levels over a wide range of quark masses. The results of the spin-1 states show the
presence of ground state energy levels which are below their respective thresholds for all the light flavor
combinations. Further, we identify a trend that the energy splittings, defined as the energy difference
between the ground state energy levels and their respective thresholds, increase with decreasing the light
quark masses and are maximum at the physical point for all the spin-1 states. The rate of increase is,
however, dependent on the light quark configuration of the particular spin-1 state. We also present a study
of hadron mass relations involving tetraquarks, baryons, and mesons arising in the limit of infinitely heavy
quarks and find that these relations are more compatible with the heavy quark limit in the bottom sector but
deviate substantially in the charm sector. The ground state spectra of the spin-0 tetraquark states with
various flavor combinations are seen to lie above their respective thresholds.
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I. INTRODUCTION

The past decade and a half has seen a remarkable number
of discoveries in heavy hadrons. These new findings not
only include regular mesons [1–7] and baryons [8,9] but
also involve exotic hadrons like tetra- [10–12] and penta-
quarks [13], while the structures of many are still puzzling
(like many of the so-called X, Y, and Z states) [14–22].
These hadrons, in particular, the multiquark states, are
reshaping our understanding of bound states and are
providing new insights into the dynamics of strong
interactions at multiple scales. Among the most notable
multiquarks hadrons, Zbð10630Þ and Z0

bð10650Þ were
discovered first [12], followed by Zcð4430Þ [10–12] and
then Pc pentaquarks [13]. Naturally, these discoveries have

kicked off a flurry of activities in heavy hadron physics,
both theoretically and experimentally, and there is a real
prospect of discovering more exotic hadrons, particularly
with one or more bottom quark contents at various
laboratories [23–26]. The current status of these new
discoveries, particularly on exotics, is provided in various
recent review articles [18–20,27–29].
Theoretical studies of exotic hadrons are not new.

Among the exotics, perhaps tetraquarks are the most
studied states. Historically, they were introduced by Jaffe
[30] as color neutral states of diquarks and antidiquarks1 in
the context of describing light scalar mesons as tetraquarks
and later for exotic spectroscopy [31,32]. Subsequently, the
diquark picture of tetraquarks was investigated in detail
by many authors through various models [18–20,27,28].
Phenomenologically, a four-quark state can also be mod-
eled as molecules [33,34], hadroquarkonia [35,36], and*parikshit@theory.tifr.res.in
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1A diquark can be interpreted as a compact colored object
inside a hadron and is made out of two quarks (or antiquarks) in
the 3̄ð3Þ or 6ð6̄Þ irrep of SU(3) and can have spin 0 (scalar) or spin
1 (vector). With this model, one can build rich phenomenology
for mesons, baryons, as well as multiquark states.
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also as threshold cusps [37,38], depending on how the four
quarks interact mutually.
Though these models are effective with varying degrees

in describing these states, it is essential to have a first
principles description of these strongly interacting hadrons.
Lattice QCD, being a first principles nonperturbative
method, ideally provides such an avenue to investigate
these states comprehensively. The success of lattice QCD,
however, is still limited for these exotic states for multiple
reasons. First, almost all such states that are observed lie
very close to their threshold energy levels. Though sub-
stantial progress has been made for resolving close-by
states, it is essential to use novel techniques like distillation
[39] that allows for the construction of a large set of
operators with the desired overlap onto the ground state
which can then be computed using the variational principle
[40,41]. Second, to identify a resonance state unambigu-
ously from its noninteracting thresholds, one has to perform
the rigorous finite volume analysis [41] of the discrete
spectrum on multiple volumes and/or multiple momentum
frames. Moreover, these heavy hardons are very much
susceptible to discretization error, and a precise statement
cannot be made unless one takes a controlled continuum
limit of the results obtained at finite lattice spacings. All
these issues amount to a very large computationally
intensive calculation, which presumably will be carried
out in the future but currently is beyond the scope of any
lattice group.
Current lattice QCD methods with available computa-

tional resources can, however, be a useful tool for studying
hadrons which are far below their strong decay thresholds.
For example, taking advantage of these methods and
available computational resources, one can study the
deeply bound multiquark states to investigate whether such
state exist in nature. One can employ lattice methodology
for a systematic search for these states using various spin
and flavor combinations of interpolating operators and
then, dialing the quark masses, spanning over a wide range,
can study the onset of a stable state with a large binding
energy. In fact, it was already speculated several years ago
that there may exist deeply bound tetraquark states in the
heavy quark limit. Using one pion exchange between the
ground state Qq̄ mesons, Manohar and Wise showed that
QCD contains stable (under strong interactions) four-quark
QQq̄q̄ hadronic states in the infinite quark mass limit, and
for the bottom quark, this binding could well be sufficiently
large [42].
The heavy tetraquarks were also studied recently using

heavy quark effective theory [24,43], quark models [23,44–
50], QCD sum rules [51–53], and large Nc calculations
[54–56].2 The proposed doubly bottom tetraquark state and

its isospin cousins are believed to be strong interaction
stable states with relatively long lifetimes. Recently, lattice
QCD calculations [25,57] and a lattice-QCD-potential
based study [58–60] also identified a particular exotic
flavor-spin combination of two bottom quarks, namely
udb̄b̄, with a prediction of a deeply bound state which lies
below its noninteracting two-meson threshold. It is thus
quite crucial to investigate such and similar states using a
detailed lattice QCD study by incorporating various heavy
and light flavor combinations along with different spin
combinations and at multiple lattice spacings.
In this work, we carry out such a calculation in which we

use both the charm and bottom as heavy quarks and then
vary the light quark masses from the strange quark mass to
the corresponding lower pion masses leading to various
tetraquark states: q1q2Q̄Q̄; q1; q2 ⊂ u; d; s; c and Q≡ b, c
with both spin 0 (J ¼ 0) and spin 1 (J ¼ 1). These are
computed at three lattice spacings of approximately 0.12,
0.09, and 0.06 fm to investigate the discretization effects on
these heavy hadrons. We use the relativistic overlap action,
for light to charm quarks, while a nonrelativistic action with
nonperturbatively improved coefficients with terms up to
Oðαsv4Þ is employed for the bottom quark. Our results for
the spin-1 tetraquarks indicate the presence of energy levels
below the respective thresholds for all light flavor combi-
nations with doubly heavy, in particular, for doubly bottom,
quarks. The results for spin-0 tetraquarks, which are the
flavor symmetric cousin states of the spin-1 counterparts,
however, indicate the respective energy levels are above
their lowest strong decay two-meson thresholds. In addition
to computing the ground state spectra, we also present a
lattice study of the hadron mass relations between tetra-
quarks, heavy baryons, and mesons arising from the heavy
quark symmetry. In the future, we will incorporate also the
finite volume study so that more quantitative conclusions
about the pole structures of these tetraquark states can be
made, particularly for the near-threshold states.
The paper is organized as follows. In Sec. II, we

elaborate the lattice setup, actions employed, and quark
mass combinations that we use for this work. Section III
provides details of the tetraquark operators and the flavor-
spin combinations that we employ in this work. In Sec. IV,
with the details of analysis method, we present our results,
first for the spin-1 sector followed by the spin-0 sector.
Finite volume effects on our results are discussed thereafter.
A discussion on the hadron mass relations with the heavy
quark symmetry follows afterward. Finally, conclusions
from this work are discussed in Sec. V.

II. LATTICE SETUP

We perform this calculation on three dynamical 2þ1þ1
flavors lattice ensembles generated by the MILC
Collaboration [61]. These ensembles, with lattice sizes
243 × 64, 323 × 96 and 483 × 144, at gauge couplings

2There are many model calculations on tetraquarks, and for a
detailed reference list, readers may want to see review articles
[18–20,27–29].
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10=g2 ¼ 6.00, 6.30 and 6.72, respectively, were generated
with the highly improved staggered quark (HISQ) action
and with the one-loop, tadpole improved Symanzik gauge
action with coefficients corrected through Oðαsa2; nfαsa2Þ
[62]. The masses of strange and charm quarks on these
ensembles are set to their physical values, while the light
sea quark masses are set such that ms=ml ¼ 5. The lattice
spacings as measured using the r1 parameter for the set
of ensembles used here are 0.1207(11), 0.0888(8), and
0.0582(5) fm, respectively [61]. Further details of these
lattice QCD ensembles can be found in Ref. [61].
In the valence sector, for light, strange, and charm quarks,

we employ the overlap fermion action [63,64], which has
exact chiral symmetry at finite lattice spacings [63–65] and
is automatically OðmaÞ improved. The numerical imple-
mentation of the overlap fermion is carried out following the
methods in Refs. [66,67]. Awall source smearing is utilized
to calculate the light to charm quark overlap propagators on
Coulomb gauge fixed lattices. In Table I, we list the quark
masses and corresponding pion masses that we use for this
calculation. The strange quark mass is tuned by equating the
lattice estimate of the s̄s pseudoscalar meson mass to
688.5 MeV [68–70]. We follow the Fermilab prescription
of heavy quarks for tuning the charm quark mass [71]. We
tune it by equating the spin-averaged kinetic mass of the 1S
charmonia [aM̄kinð1SÞ ¼ 3

4
aMkinðJ=ψÞ þ 1

4
aMkinðηcÞ] to

its experimental value, 3068.6 MeV [22]. The tuned bare
charm quark masses are found to be 0.528, 0.427, and 0.290
on coarse to fine lattices, respectively, all of which satisfy
mca ≪ 1, ensuring reduced discretization artifacts in this
calculation. Details on the charm quark mass tuning can be
found in Refs. [69,70].
For the bottom quarks, we employ a nonrelativistic QCD

(NRQCD) formulation [72]. In the NRQCD Hamiltonian,
we include all the terms up to 1=M2

0 as well as the leading
term of the order of 1=M3

0, where M0 ¼ amb is the bare
mass of the bottom quarks in lattice units [73]. The bottom
quark propagators are obtained by the usual time evolution
of the NRQCD Hamiltonian, H ¼ H0 þ ΔH, where the
interaction term, ΔH, is given by

ΔH ¼ −c1
ðΔð2ÞÞ2
8ðambÞ3

þ c2
i

8ðambÞ3
ð∇ · Ẽ − Ẽ ·∇Þ

− c3
1

8ðmbÞ2
σ · ð∇ × Ẽ − Ẽ ×∇Þ − c4

1

2amb
σ · B̃

þ c5
ðΔð4Þ

24amb
− c6

ðΔð2ÞÞ2
16ðambÞ2

: ð1Þ

Here, c1…c6 are the improvement coefficients, and for the
fine lattice, we use their tree level values, while for the
coarser two lattices, we employ their nonperturbative
values as estimated by the HPQCD Collaboration [74]
on the same set of lattices. To tune the bottom quark mass,
we first calculate the kinetic mass of the spin average 1S
bottomonia,

aMKin ¼
3

4
aMKinðϒÞ þ 1

4
aMKinðηbÞ; ð2Þ

from the relativistic energy-momentum dispersion relation
aMKin ¼ ððapÞ2 − ðaΔEÞ2Þ=ð2aΔEÞ, and then equate it
with its experimental value. Details on the bottom quark
mass tuning is given in Ref. [75].
With this setup of light, strange, charm, and bottom

quark propagators, we proceed to calculate the tetraquark
correlators from the interpolating fields with various flavor-
spin combinations that we discuss in the next section.

III. FOUR-QUARK INTERPOLATING
OPERATORS

In this section, we describe four-quark interpolating
fields (operators) that we employ in this work. We construct
these operators with two heavy and two light quarks and
with the total spin J ¼ 0 and 1. As in Ref. [25], for both
spins, we construct two types of operators, with the goal
that one overlaps onto a tetraquark state of given quantum
numbers and the other one overlaps onto the lowest strong
decay two-meson states of the same quantum numbers. The
tetraquark-type operators are constructed using the diquark
prescription of Jaffe [31,32] where a color neutral hadronic

TABLE I. Parameters of ensembles used in this work.

N3
s × Nt a (fm) amq mπ (MeV)

243 × 64 0.1207(14) 0.0738 689
0.054 589
0.045 539
0.038 497
0.030 449
0.024 400
0.020 367
0.0165 337
0.0125 297
0.0090 257
0.0075 237
0.0060 216
0.0051 202
0.0042 186
0.0028 153

323 × 96 0.0888(5) 0.049 688
0.030 537
0.020 441
0.016 396
0.0135 367
0.012 345

483 × 144 0.0582(5) 0.028 685
0.025 645
0.020 576
0.018 545
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operator is constructed as a product of diquarks and
antidiquarks. These diquarks (antidiquarks) can be in the
3̄cð3cÞ or 6cð6̄cÞ of the color SU(3) irreducible representa-
tion (irreps). Phenomenologically, the one gluon exchange
model [31,32] favors an attractive interaction of two quarks
and is in the 3̄ irrep of SU(3). In this work, we construct
tetraquark operators with both irreps of SU(3).
In the spin J ¼ 1 sector, we use diquarks and antidi-

quarks with the following configuration:

ðl1; l2Þ → ð3̄c; 0; FAÞ; ðQ̄; Q̄Þ → ð3c; 1; FsÞ: ð3Þ

The light quark (l1; l2; l1 ≠ l2) combinations are con-
structed with color, spin, and flavor degrees of freedom
(d.o.f.) as antisymmetric and are restricted within
⊂ ðu; d; s; cÞ. The heavy quark combination (Q̄, Q̄) is
constructed with color antisymmetric 3c, forced by (l1, l2)
being in the 3̄c, and since flavor is manifestly symmetric,
the spin is also symmetric. This combination is restricted
to only heavy flavors ⊂ ðc̄; b̄Þ with a further restriction of
Q ≠ l1 ≠ l2. With these diquarks and antidiquarks, a
spin-1 tetraquark-type operator of flavor (l1l2Q̄Q̄) is con-
structed as

T 1ðxÞ ¼ ðl1ÞaαðxÞðCγ5Þαβðl2ÞbβðxÞQ̄a
κ ðxÞðCγiÞκρQ̄b

ρðxÞ: ð4Þ

The label x is a shorthand notation for (x⃗, t), where x⃗ is the
spatial local site and t is the time slice. We then construct
the two-meson-type operators corresponding to each flavor
of the (l1l2Q̄Q̄) tetraquark operator, T 1ðxÞ, with the
appropriate flavor antisymmetry as

M1ðxÞ ¼ M1ðxÞM�
2ðxÞ −M2ðxÞM�

1ðxÞ
M1;2ðxÞ ¼ ðl1;2ÞaαðxÞðγ5ÞαβQ̄a

βðxÞ
M�

1;2ðxÞ ¼ ðl1;2ÞaαðxÞðγiÞαβQ̄a
βðxÞ: ð5Þ

The tetraquark operator T 1ðxÞ is related to the two-meson
product M1ðxÞM�

2ðxÞ via a Fierz transformation, and the
relation is explicitly shown in the Appendix of Ref. [76]
with the appropriate change in flavor labels. The various
flavor and isospin (I) combinations that we explore for
these spin-1 tetraquark-type and two-meson-type operators
are tabulated in Table II.
For the spin-0 sector, we employ following diquark/

antidiquark configuration in which both diquarks are with
spin 0:

ðl; lÞ → ð6c; 0; FSÞ; ðQ̄Q̄Þ → ð6̄c; 0; FsÞ: ð6Þ

The combination (l, l) being manifestly flavor symmetric
requires the color d.o.f. to be in the 6c. For the combination
(Q̄, Q̄), the color d.o.f. is consequently restricted to 6̄c,
while the flavor d.o.f. is manifestly symmetric. In the above
expression, for the combination (l, l), we incorporate the

flavors (u, s, c), while both c and b are used forQ. A spin-0
tetraquark-type operator of flavor (llQ̄Q̄) constructed from
the product of the aforementioned diquarks and antidi-
quarks is given by

T 0ðxÞ ¼ laαðxÞðCγ5ÞαβlbβðxÞQ̄b
κ ðxÞðCγ5ÞκρQ̄a

ρðxÞ: ð7Þ

As previously done, we also construct a two-meson-type
operator with the same quantum number as that of (llQ̄Q̄),
and it is given by

M0ðxÞ ¼ Q̄a
αðxÞðγ5ÞαβlaβðxÞQ̄b

κðxÞðγ5ÞκρlbρðxÞ: ð8Þ

In Table III, we tabulate the spin-0 tetraquark configura-
tions with the possible flavor combinations with the above
flavor-spin configurations.
With the operators so constructed, we proceed to

compute the correlation matrices of all the possible
combinations of these operators for a given spin and flavor
and then extract the associated energy states from the
generalized eigenvalue solutions. In the next section, we
discuss this in detail.

TABLE II. The tetraquark-type and two-meson-type operators
that we study in this work with possible flavor combinations and
allowed isospin (I) in the spin-1 sector. The last column shows
the range of pion masses that we use for the light quarks on the
coarsest lattice spacing.

(l1l2Q̄Q̄) ½ðM1M�
2ÞðM2M�

1Þ� I mπ (MeV)

udb̄b̄ ðBB0�ÞðB0B�Þ 0 (257–688)

usb̄b̄ ðBB�
sÞðBsB�Þ 1

2
(186–688)

ucb̄b̄ ðBB�
cÞðBcB�Þ 1

2
(153–688)

udc̄c̄ ðDD0�ÞðD0D�Þ 0 (257–688)
usc̄c̄ ðDD�

sÞðDsD�Þ 1
2

(257–688)

TABLE III. The tetraquark-type and two-meson-type operators
for various flavors of in the spin-0 sector. The range of pion
masses used for uub̄b̄ and uuc̄c̄ states is indicated in the last
column. All other states are computed at their physical quark
mass.

(l1l2Q̄Q̄) (M1M2) I mπ (MeV)

uub̄b̄ (BB) 1 (337–688)
uuc̄c̄ (DD) 1 (297–688)
ssb̄b̄ (BsBs) 0 � � �
ccb̄b̄ (BcBc) 0 � � �
ssc̄c̄ (DsDs) 0 � � �
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IV. RESULTS

In this section, first we elaborate the analysis procedure
that we utilize to extract the energy levels from the matrix
of correlation functions constructed from the interpolating
fields mentioned above. Results obtained will be discussed
after that.

A. Analysis methods

To evaluate the energy levels corresponding to the
operators discussed in Sec. III, we first construct a
correlator matrix of these operators and then use the
variational method [40,41]. This matrix of correlation
functions CijðtÞ is given as

CijðtÞ ¼
X

x⃗

h0jOiðx⃗; tÞO†
jð0⃗; 0Þj0i; ð9Þ

where the operator Oiðx⃗; tÞ ∈ fT kðx⃗; tÞ;Mkðx⃗; tÞg is
either a tetraquark-type operator or a two-meson-type
operator of a particular spin k. For the spin-1 tetraquark
states, Oi’s correspond to Eqs. (4) and (5), whereas for the
spin-0 states, these are from Eqs. (7) and (8). We analyze
each spin sector separately. After constructing the corre-
lation matrix,CðtÞ, for a given spin and flavor combination,
we solve a generalized eigenvalue problem (GEVP) to
obtain the two energy levels [40,41]. The standard methods
for GEVP [40,41,77,78] are typically suited for a Hermitian
correlator matrix. We note that, since we are using a wall
source, the correlator matrix is non-Hermitian.3 Hence, we
employ a variation of the GEVP method, named the
eigenvector method, involving eigenvector projection in
evaluating the ground state energies [79]. The method
involves using the left and right eigenvectors of the
correlator matrix to construct the principal correlator as
discussed below:
(1) Compute left and right eigenvectors of the correlator

matrix CðtÞ at chosen time slices (t1, t0) as

Cðt1ÞvR;nðt1; t0Þ ¼ λnðt1; t0ÞCðt0ÞvR;nðt1; t0Þ
vL;nðt1; t0ÞCðt1Þ ¼ λnðt1; t0ÞvL;nðt1; t0ÞCðt0Þ: ð10Þ

The time slices (t1, t0) are chosen such that t1=t0 > 2
and t1 chosen in the region where the correlator is
expected to be dominated by the ground state.

(2) The eigenvectors vL;R;nðt1; t0Þ are then used to
construct the principal correlator as

ΛnðtÞ ¼ v†L;nðt; t0ÞCðtÞvR;nðt1; t0Þ; ð11Þ

and the effective masses are then obtained from
mn;eff ¼ logðΛnðtÞ=Λnðtþ δtÞÞ.

For a Hermitian correlator matrix, the left and right
eigenvectors will be identical, and hence this method
will be the same as standard methods [40,41,77,78]. For
a non-Hermitian correlator, the source and sink operators
are accordingly rotated by the left and right eigenvectors,
respectively. To check the effects of non-Hermiticity, we
also solve the GEVP with the standard methods
[40,41,77,78]. We find that results obtained with either
GEVP methods are consistent with each other, while the
results from the eigenvector method is observed to be more
stable.
The principal correlators thus obtained correspond to

two energy levels, and the ground state energy is computed
from the lowest one. On the other hand, we calculate the
noninteracting two-meson threshold from the sum of the
ground state masses of the two mesons involved. We then
compare the lowest energy level obtained from the GEVP
solution with the noninteracting two-meson threshold and
evaluate the energy splitting between them as

ΔEk ¼ ET k − E2M; ð12Þ

where ET k is the ground state energy obtained from the
principal correlator of the GEVP, while E2M ¼ EM1

þ EM2

is the energy of the noninteracting two-meson (M1 andM2)
threshold. The above energy splitting (ΔEk) can be
evaluated directly by fitting the two datasets separately
and then computing the difference on each resample.
Alternatively, this can also be evaluated by taking the
jackknife ratio of the principal correlator [ΛðtÞ] of the
GEVP to two-meson correlators, M1ðtÞ ×M2ðtÞ), as

Λ0ðtÞ ¼ ΛðtÞ
M1ðtÞ ×M2ðtÞ

→ Ae−ΔE
kt þ � � � ð13Þ

A fit to the ratio correlator [Λ0ðtÞ] will then directly yield
the energy splitting with respect to the relevant threshold.
Such a construction offers the advantage of reducing the
systematic errors through jackknifing. However, in using
such an effective correlator, caution must be exercised as
this construction can produce spurious effects since the
saturation of the ground states of the numerator and the
denominator may not happen at the similar time slices.
In this work, in estimating the energy splitting, we utilize
both the direct and ratio methods and find consistent
results. However, as expected, we find smaller uncertainties
in the ratio method. We now present the results obtained
through the above-mentioned analysis.

B. Spin one tetraquarks JP = 1+

We begin with presenting data for the spin-1 doubly
bottom tetraquark states. As described earlier, we compute
a matrix of correlation functions of the tetraquark T 1ðxÞ
and two-meson operators M1ðxÞ. The diagonal correlators
of this matrix correspond to the same source-sink operators,

3The same correlator matrix is found to be Hermitian when
computed with the unsmeared point sources and sink.
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while the off-diagonal correlators have a tetraquark oper-
ator at the source and a two-meson operator at the sink and
vice versa. The correlator matrix is non-Hermitian, and as
mentioned earlier, in obtaining our final results, we employ
the eigenvector method of diagonalization.
As a representative plot on analysis, in Fig. 1, we show

the effective mass of the lowest energy level obtained from
such a diagonalization along with the effective mass of the
noninteracting two-meson threshold correlator for the case
of usb̄b̄. The data in orange are the effective mass of the
noninteracting two-meson correlator, which in this case is
obtained from the product of the correlators of the B and B�

s
mesons.4 The data in green are the effective mass of the
lowest eigenvalue (the ground state), which is clearly below
the effective mass of the threshold correlator. We also find
that the effective mass corresponding to second eigenvalue
overlaps with the effective mass of the threshold correlator
in its approach to the plateau. However, as expected, it is
noisier and needs a bigger basis of operators to extract it
reliably. As discussed previously, for each flavor combi-
nation, we calculate the energy splitting ΔE1 directly from
Eq. (12) by fitting the individual correlators as well as from
the ratio of correlators using Eq. (13).
Following the above procedure, we calculate the energy

splittings (ΔE1) for all the doubly bottom tetraquarks with
various flavor combinations mentioned in Table II. This is
performed on three different lattices (a ∼ 0.12, 0.09, and
0.06 fm), and on each one, we vary the light quark masses
over a wide range as listed in Table II. In Fig. 2, we show

these results; in the left panel, we plot these energies
computed at various pion masses. The results for the flavor
combinations, uqb̄b̄ with q ∈ ðd; s; cÞ, are shown by red,
green, and blue colored data, respectively. For a represen-
tative plot, we choose to show results at the coarse lattice
spacing since here we have the maximum number of pion
masses and therefore can show the pion mass dependence
of these energy splittings (ΔE1) more prominently. The
result for the udb̄b̄ state exhibits larger uncertainties at
lower pion masses due to the presence of two light quarks,
while the state usb̄b̄ allows us to extract results at much
lower pion masses. For ucb̄b̄, we could extract results even
at the physical light quark mass.
It can be noted that for all the flavor combinations there

is a trend of increment of ΔE1 with the lowering of pion
masses, and we will discuss the details shortly. The
availability of a large number of data points allows us to
perform the chiral extrapolation very reliably. At each
lattice spacing, we first perform the chiral extrapolation of
ΔE1 and then perform a continuum extrapolation from the
results obtained at three lattice spacings. We use the
following simple quadratic Ansatz for both chiral and
continuum extrapolations:

ΔEk
mπ

¼ ck1 þ ck2m
2
π; ð14Þ

ΔEk
a ¼ ck;a1 þ ck;a2 a2: ð15Þ

Here, the label k for the spin is kept general since we will
also use these Ansätze for both spin sectors. We perform
two fittings: one including all data points to show the pion
mass dependence over a wide range of pion masses and the
other with only the lower few pion masses to perform the
chiral extrapolation. The fit results are shown in Table IV, in
which in the second column we show the relevant slope
parameter labeled as c1;mπ

2 , which is indicative of the pion
mass dependence of the energy splitting ΔE1. It is
instructive to compare c1;mπ

2 parameters for different tetra-
quark states with different flavor combinations at a given
lattice spacing. The fits indicate that the state udb̄b̄ exhibits
the most pronounced trend in the increase ofΔE1, followed
by the state usb̄b̄, while the state ucb̄b̄ exhibits a very
minute variation. The results at the finest lattice spacings do
not indicate such a clear trend as we do not have data points
at much lighter pion masses at this lattice spacing.
For the second fit, i.e., for the chiral extrapolation, we

use the Ansatz in Eq. (14) and employ cuts on the largest
pion masses and include data corresponding to as low pion
masses as can be afforded by meaningful uncertainties in
the extrapolation. The results of the chiral extrapolation are
shown in Table IV with the appropriate slope parameter
labeled as c1;chiral2 in column 5, and the relevant maximum
pion mass used in the fit being labeled as mcut

π is shown in
column 4. The chirally extrapolated values of ΔE1jmphys

π
are

FIG. 1. Effective mass of the ground state energy level (data in
green) obtained from the GEVP solution for the spin 1, usb̄ b̄
tetraquark state at mπ ¼ 688 MeV and a ¼ 0.0582 fm. The data
in orange are the effective mass of the threshold correlator BB�

s.

4In the case of the usb̄ b̄ state, there exist two relevant
threshold states, namely, BB�

s and BsB�. Of these two, we choose
BB�

s , which has relatively lower energy than that of BsB�.
Similarly, for all other flavor combinations, such as ucb̄ b̄,
usc̄ c̄, and scb̄ b̄, we again choose the lowest strong decay
threshold.
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shown in the last column. We then use these chirally
extrapolated ΔE1jmphys

π
from three different lattice spacings

and perform a continuum extrapolation using the Ansatz in
Eq. (15). The results of this extrapolation are shown in the
right panel of Fig. 2, and the fit results are listed in Table V.
The slope parameter c1;a2 in this case will be an indicator of
the lattice spacing dependence of the particular state. For
udb̄b̄ and usb̄b̄, these are consistent with zero, indicating
no dependence on lattice spacing. The parameter c1;a2 for

the ucb̄b̄ state indicates a mild dependence on the lattice
spacing. The state scb̄b̄, which is the SU(3) symmetric state
of ucb̄b̄, requires no chiral extrapolation since all quark
masses are at their physical values. The corresponding
lattice spacing dependence parameter, c1;a2 , as shown in
Table V, indicates no dependence on lattice spacing of this

state. The continuum extrapolated results ΔE1jmphys
π

a¼0 are
shown in Fig. 3.
It can be noted that at the finest lattice spacing the lowest

pion mass available is mπ ¼ 545 MeV, which may not be
low enough for a chiral extrapolation. Because of this, the
chirally extrapolated results at this lattice spacing may have
a systematic effect arising from the absence of lower pion
masses, and that may reflect in the lattice spacing depend-
ence of some of our findings such as for the ucb̄b̄ state.
Hence, we also report our results without including data

FIG. 2. Results of udb̄b̄, usb̄b̄, and ucb̄ b̄ doubly bottom tetraquark states color coded in red, green, and blue, respectively, in both
panels. Left panel: Energy splittings at several pion masses at a ¼ 0.1207 fm for each of the states. The fit bands indicate a chiral
extrapolation fit as per Eq. (14) color coded appropriately for each state. Right panel: Continuum extrapolation results as per Eq. (15)
from three lattice spacings. The data point at each lattice spacing is the result of the chiral extrapolation to the physical pion mass at that
lattice spacing.

TABLE IV. Pion mass dependence and chiral extrapolation
results for the spin-1 tetraquarks with different flavor combina-
tions on three different lattices.

State a (fm) c1;π2 (MeV) mcut
π c1;chiral2 ΔE1jmphys

π (MeV)

udb̄b̄ 0.1207 165(40) 539 152(76) −158.1ð18.0Þ
0.0888 246(71) 688 246(71) −171.9ð27.4Þ
0.0582 102(56) 645 102(85) −134.3ð29.6Þ

usb̄b̄ 0.1207 80(13) 297 82(376) −121.2ð16.4Þ
0.0888 91(55) 537 130(133) −108.8ð28.5Þ
0.0582 21(53) 645 3(80) −93.1ð27.8Þ

ucb̄b̄ 0.1207 30(9) 257 183(306) −33.3ð10.9Þ
0.0888 21(14) 441 71(89) −24.6ð12.1Þ
0.0582 6(17) 645 3(25) −12.0ð8.6Þ

udc̄c̄ 0.1207 54(10) 449 44(28) −31.4ð5.8Þ
0.0888 43(17) 688 43(17) −31.9ð6.6Þ
0.0582 8(18) 688 9(34) −18.5ð11.9Þ

usc̄c̄ 0.1207 4(6) 449 −8ð9Þ −11.4ð2.5Þ
0.0888 −7ð11Þ 537 −31ð30Þ −10.2ð3.8Þ
0.0582 −7ð17Þ 688 −7ð17Þ −11.0ð6.6Þ

TABLE V. Continuum extrapolation results for the various
flavors of tetraquark states in the spin-1 sector. The fourth
column is the continuum extrapolation results from three lattices.
The last column is obtained by averaging results from the coarser
two lattices.

State c1;a1 c1;a2 ΔE1jmphys
π

a¼0 (MeV) ΔE1javg (MeV)

udb̄b̄ −143ð34Þ −1239ð2915Þ −143.3ð33.9Þ −165.0ð32.5Þ
usb̄b̄ −87ð32Þ −2393ð2725Þ −86.7ð32.4Þ −115.0ð32.8Þ
ucb̄b̄ −6ð11Þ −1918ð1239Þ −6.4ð11.2Þ −28.95ð16.3Þ
scb̄b̄ −8ð3Þ −395ð398Þ −7.67ð3.21Þ −11.94ð4.7Þ
udc̄c̄ −23ð11Þ −637ð1001Þ −23.3ð11.4Þ −31.7ð8.8Þ
usc̄c̄ −8ð8Þ −241ð574Þ −7.7ð7.5Þ −10.8ð4.5Þ
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from the fine lattice. Since we are left with only two
data points, we have not performed any fit (with 2 d.o.f.) in
this case. Instead, we average the results obtained on those
two lattices (with spacings 0.0888 and 0.1207 fm) and
report that with error bars added in the quadrature. In
column 5 of Table V, we show those average results
by ΔE1javg.
We now discuss the results of the spin-1 doubly charm

tetraquarks. In Fig. 4, we show those results where the left
panel shows the pion mass dependence and the chiral
extrapolation on the coarse lattice. The right panel repre-
sents results for the continuum extrapolation. The relevant
lowest thresholds for the flavor combinations udc̄c̄ and
usc̄c̄ are the noninteracting D-D� and D-D�

s mesons,
respectively. For both cases, we find an energy level below
their relevant strong decay thresholds, while the other
energy level appears at the threshold. As in the doubly

bottom cases, we calculate the energy splittings [ΔE1 in
Eq. (12)] between the lowest energy levels and the thresh-
old states by direct fitting as well as from the ratio of
correlators [as in Eq. (13)]. We represent the fitted results
for udc̄c̄ by red data points, while results for usc̄c̄ are
shown by green points. The fitted results for pion mass
dependence and chiral extrapolation are shown in Table IV,
while the results for continuum extrapolation are shown in
Table V. In the case of udc̄c̄, similar to udb̄b̄, we observe a
trend in the increase of ΔE1 with the lowering of the light
quark constituents. This is evident from the fits for the pion
mass dependence and is indicated by the c1;mπ parameter on
the coarsest two lattice spacings. The finest lattice spacing
results do not clearly indicate this trend due to the lack of
lower pion masses at that lattice spacing. The pion mass
dependence of the energy splitting for usc̄c̄, color coded in
green, is much flatter in comparison to udc̄c̄, and this trend
is reflected in the c1;mπ

2 coefficient. The continuum extrap-
olations for both udc̄c̄ and usc̄c̄ indicate no discernible
dependence on the lattice spacing.
In column 4 of Table V, we show the continuum

extrapolated results for doubly charmed tetraquarks.
Column 5 shows the average results obtained the two
coarser lattices. Both columns show the presence of energy
levels below their respective thresholds for both udc̄c̄ and
usc̄c̄. However, they are very close to their respective
strong decay thresholds, as was also observed in Ref. [80].
Because of their close proximity to thresholds, a careful
finite volume analysis [41] is needed to make conclusive
statements about the nature of these states. Though they
could be stable under strong interaction, they may not
appear as bound states because of threshold effects.

FIG. 3. Continuum extrapolation of the scb̄ b̄ state.

FIG. 4. Results of udc̄ c̄ and usc̄ c̄ doubly charm tetraquark states color coded in red and green in both panels. Left panel: Effective
splittings at several pion masses at a ¼ 0.1207 fm for each of the states. The fit bands indicate a chiral extrapolation fit as per Eq. (14)
color coded appropriately for each state. Right panel: Continuum extrapolation results as per Eq. (15) from three lattice spacings. The
data point at each lattice spacing is the result of the chiral extrapolation to the physical pion mass at that lattice spacing.
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C. Spin zero tetraquarks JP = 0+

In the spin-0 sector, we compute the energy levels of the
tetraquark states with various flavor combinations that are
listed in Table III. These tetraquark states are flavor
symmetric cousins of those listed in Table II. As in the
case of the spin-1 sector, we compute a matrix of
correlation functions consisting tetraquark-type, T 0ðxÞ,
and two-meson-type, M0ðxÞ, interpolating fields and
employ the eigenvector method of diagonalization in
obtaining our final results.
We shall begin by discussing the spin-0 doubly charmed

and doubly bottom tetraquark states with I ¼ 1. The

effective masses of the principal correlators, obtained from
GEVP analysis, for the flavor combination uub̄b̄ are shown
in Fig. 5. This representative figure is obtained on the fine
lattice and at the pion mass mπ ¼ 688 MeV. The relevant
strong decay threshold in this case is the two noninteracting
B mesons. The effective mass of the product correlator of
two B mesons is represented by the orange data. The
effective mass of the lowest eigenvalue, shown in green, is
seen to coincide with the threshold correlator. This behavior
is in contrast when compared with its flavor antisymmetric
partner udb̄b̄ where there is a clear indication of the ground
state level being below the relevant threshold. The energy
splitting [ΔE0 in Eq. (12)] of the tetraquark state uub̄b̄ is
shown in the left panel of Fig. 6 by red colored data points,
and results are obtained at various pion masses (on the
coarser lattice) to explore the pion mass dependence. We
note that the determination of these energy splittings is
significantly noisier in comparison to the energy splittings
in spin-1 udb̄b̄ state with the same statistics. This limits us
to using much lighter pion masses for uub̄b̄. Furthermore,
this also forces us to use the entire dataset for exploring
both the pion mass dependence as well as the chiral
extrapolation. We perform a chiral extrapolation with the
Ansatz in Eq. (14) at each lattice spacing, and the results are
listed in Table VI. The fits for the parameter c0;mπ

2 indicate a
dependence on pion mass for a ¼ 0.1207 fm, and no
dependence is seen for the other two lattice spacings, since
c0;mπ
2 is consistent with zero. It can be noted that this
behavior again is in contrast with the pion mass dependence
of the udb̄b̄ state where a nontrivial dependence was clearly
identified. After the chiral extrapolation, we perform the
continuum extrapolation using the Ansatz in Eq. (15), and

8 16 24 32

(t/a)

0.72

0.80

0.88

aEeff

Energy level 0

BB

FIG. 5. Effective mass of the ground state energy level (green)
obtained from the GEVP solution for the spin 0, uub̄ b̄ tetraquark
state. The data in orange is the effective mass of the threshold
correlator BB. Results computed at a ¼ 0.0583 fm and at
mπ ¼ 688 MeV.

FIG. 6. Results of spin-0 uub̄ b̄ and uuc̄ c̄ tetraquark states. Left panel: Energy splittings at several pion masses at a ¼ 0.1207 fm for
both the states. The fit bands indicate a chiral extrapolation fit as per Eq. (14) color coded appropriately for each state. Right panel:
Continuum extrapolation results as per Eq. (15) from three lattice spacings. The data point at each lattice spacing is the result of the chiral
extrapolation to the physical pion mass at that lattice spacing.
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fits are shown in Table VII. The slope parameter c0;a2 for the
state uub̄b̄ is consistent with zero, indicating no depend-
ence on the lattice spacing. The physical and continuum
extrapolated result for uub̄b̄ clearly indicates that there is
no energy level below its lowest strong decay threshold
with any statistical significance and is consistent with zero.
The green data points in Fig. 6 show the results for ΔE0

(on a ¼ 0.1207 fm lattice) for the spin-0 doubly charmed
tetraquarks uuc̄c̄. In this case, the GEVP solutions also
display similar qualitative features, as the corresponding
doubly bottom states where the ground state coincides with
the threshold and a well-separated second state lies above
that. Here, the threshold is that of the two noninteracting D
mesons. As in the previous case, we use the entire dataset for
the pion mass dependence as well as chiral extrapolation.
The chiral extrapolation fits at each lattice spacing shown in
Table VI indicate no dependence on the pion mass since the
parameter c0;mπ

2 is found to be consistent with zero. The
continuum extrapolation for this case, color coded in green,
is shown in the right panel of Fig. 6, which indicates a mild
dependence on the lattice spacing. The physical and con-

tinuum extrapolated results (ΔE1jmphys
π

a¼0 ) are shown in the fifth
column of Table VII, and all are found to lie above the
respective threshold states. As in the spin-1 case, we have
also calculated the average values of these energy splittings
from the results obtained on two coarse lattices and show
that in the last column of Table VII.

With our available quark propagators, we are also able to
study I ¼ 0, J ¼ 0 tetraquark states, ssb̄b̄, ssc̄c̄, and ccb̄b̄,
where the strange, charm, and bottom quark masses are
tuned to their physical values. Energy levels obtained for
these states will thus be at the physical points, and there is
no need for any chiral extrapolation. The thresholds for
these states are the noninteracting BsBs, DsDs, and BcBc,
respectively. These require only a continuum extrapolation,
which is shown in the two panels of Fig. 7, and the fitted
results are shown in Table VII. The estimates of the energy
splitting ΔE0 for the state ssb̄b̄ (color coded in red) show
no lattice spacing dependence, and the final result is
consistent with zero, indicating the absence of any bound
state. For the state ssc̄c̄, we also find similar results, and the
continuum extrapolated result lies above its respective
threshold, which is most likely to be a scattering state.
Results for the state ccb̄b̄ indicate a mild lattice spacing
dependence, and the continuum result is also most likely be
a scattering state. In conclusion, our analysis on the I ¼ 0,
spin-0, tetraquarks with flavor combinations ssb̄b̄, ssc̄c̄,
and ccb̄b̄ suggest the absence of any bound state, and the
observed energy levels correspond to the scattering states.
Recently, a potential based lattice QCD study in Ref. [59]
for doubly bottom spin-0 states also concluded the same.

D. Finite volume effects

For all the spin-1 tetraquark states with various flavor
combinations listed in Table II, we have found the energy
levels below their respective strong decay thresholds. In
some cases, the energy splittings (ΔE1) between the ground
state and the threshold state are very large, while for others,
they are close to and below their respective thresholds.
However, all these energy levels are obtained within a
single volume of about 3 fm. It is thus necessary to estimate
the finite volume effects on these energy differences and
obtain their infinite volume estimates, which can then be
interpreted as the binding energies of the corresponding
bound states. However, repeating these calculations on
multiple lattice volumes is computationally very expensive
and so is beyond the scope of this work.
However, it is possible to identify a few states for which

the finite volume corrections will be suppressed, i.e., could
be very small. The estimation of ΔE1 on a single large
enough volume for such a case, in fact, would be close to its
binding energy (B∞). As demonstrated in Refs. [81–83],
the finite volume corrections ΔFV to energy levels corre-
sponding to an infinite volume bound state with energy E∞
scale as

ΔFV ¼ EFV − E∞ ∝ Oðe−k∞LÞ=L;
with k∞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1 þm2ÞB∞

p
; ð16Þ

where EFV is the energy level computed a cubic lattice, k∞
is the binding momentum of the infinite volume state, and

TABLE VI. Chiral continuum extrapolation results for various
lattice spacings and flavors of tetraquark states in the spin-0
sector.

State a (fm) c0;mπ
1 c0;mπ

2 ΔE0jmphys
π (MeV)

uub̄b̄ 0.1207 −11ð9Þ 50(25) −10.1ð8.6Þ
0.0888 −8ð9Þ 26(26) −7.2ð8.8Þ
0.0582 −9ð23Þ 33(57) −8.8ð21.9Þ

uuc̄c̄ 0.1207 8(4) 6(10) 8.4(3.4)
0.0888 16(9) −10ð22Þ 15.9(8.7)
0.0582 22(10) −12ð24Þ 22.2(10)

TABLE VII. Continuum extrapolation results for the various
flavors of tetraquark states in the spin-0 sector. The fourth column
is the continuum extrapolation results from three lattices. The last
column is obtained by averaging results from the coarser two
lattices.

State c0;a1 c0;a2 ΔE0jmphys
π

a¼0 (MeV) ΔE0javg (MeV)

uub̄b̄ −5ð18Þ −303ð1549Þ −5.5ð17.7Þ −8.7ð12.3Þ
uuc̄c̄ 26(11) −1202ð824Þ 25.9(10.9) 12.15(9.3)
ssb̄b̄ 3(9) 328(1108) 2.5(9.2) 6.6(11)
ssc̄c̄ 14(4) −319ð356Þ 14.1(3.9) 11.1(4.1)
ccb̄b̄ 16(1) −285ð139Þ 15.7(1.0) 12.5(1.69)
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(m1, m2) are the masses of the two noninteracting particles
with the threshold energym1 þm2. It should be noted from
the above expression that the finite volume effects are
suppressed by the threshold mass (m1 þm2) and that this
suppression is significantly enhanced for the cases in which
the threshold states are heavy mesons, such as those we are
studying here. In addition to that, if ΔE is also large, then
the finite volume corrections will further be suppressed
since it also enters in the exponential. Therefore, in the
doubly bottom sector, tetraquark states with the flavor
combinations, udb̄b̄ and usb̄b̄, for which the ΔE values are
found to be more than 150 and 100 MeV, respectively, will
have small finite volume corrections. For these cases, it is
quite natural to expect that the energy splitting ΔE will be
closer to their infinite volume binding energy. Therefore,
these states will be stable under strong interactions.
However, for the cases, particularly for the doubly charmed
tetraquarks, which are below but closer to their thresholds
(i.e., ΔE values are closer to zero), it will be difficult to get
any qualitative estimate for their finite volume corrections.
In those cases, one needs to perform a detail finite volume
study [41] to make any conclusive statement about their
infinite volume pole structures.

E. Heavy quark effective theory and hadron
mass relations

The Heavy quark effective theory (HQET) is a very
useful tool and is often utilized to understand various
properties of heavy hadrons including their energy spectra.
Using heavy quark symmetries, one can also obtain mass
relations between heavy flavored hadrons such as those
mentioned in Ref. [24]. Using such symmetry relations,
Ref. [24] predicted masses and binding energies of various
tetraquarks states including some of those studied in this

work. Although such relations are valid in the infinite quark
mass limit, they are used at the bottom and even at the
charm quark masses. It will therefore be interesting to
investigate these relations by a first principles nonpertur-
bative method, such as lattice QCD, with a goal to validate
these relations at a given quark mass and access their
deviation, if any, from the heavy quark limit. The avail-
ability of data on the ground state masses on mesons,
baryons, and tetraquarks obtained from this calculation,
both at the charm and the bottom quark masses, provides
such an opportunity to systematically investigate these
relations. Below, we elaborate that.
The work in Ref. [24] states the following relation

among the hadrons with heavy quarks,

mðfQiQjg½q̄kq̄l�Þ −mðfQiQjgqyÞ
¼ mðQx½qkql�Þ −mðQxq̄yÞ; ð17Þ

where Qi and qk denote heavy and light quarks, respec-
tively. Here, we use the same notation as in Ref. [24]. The
braces f…g and ½…� imply the symmetrization and anti-
symmetrization, respectively, with respect to the flavor
d.o.f. In this notation, (fQiQjg½q̄kq̄l�)5 represents a tetra-
quark operator with the flavor symmetries indicated by the
braces, while (fQiQjgqy), (Qx½qkql�) and (Qxq̄y) represent
a heavy-heavy-light baryon, heavy-light-light baryon, and
heavy-light meson, respectively. It should be noted that
Ref. [24] provides four such relations depending on the
combination of flavor symmetrization/antisymmetrization,
and the one shown here corresponds to our operator
construction. The relation in Eq. (17) can then be employed

FIG. 7. Left: Continuum extrapolation of ssb̄ b̄ and ssc̄ c̄ states from three lattice spacings. Right: Continuum extrapolation of
the ccb̄ b̄.

5The tetraquark operator used in this work is a complex
conjugate of this operator.
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to predict the masses of the tetraquark states by substituting
the relevant masses of heavy baryons and mesons. In
Ref. [24], this was calculated by using the spin average
masses of the charmonia, bottomonia, and heavy baryons
by inserting their experimental or quark model values.
Here, we aim to study this relation at both the charm and

the bottom quark masses. We do not consider the spin-
average mass and instead use the spin-1=2 states for
baryons and pseudoscalar mass for the heavy-light meson.
Any deviation from the equality in Eq. (17) would be
maximum in this choice. In doing so, we will be able to
estimate an upper bound of the deviation from the heavy
quark limit which originates from all ð1=mQÞn corrections.
In evaluating Eq. (17), we find it to be convenient6 to
redefine the relation as a ratio which for the charm and
bottom quarks is given by

Rb ≡Mudb̄b̄ −MΞbb

MΛb
−MB

; Rc ≡Mudc̄c̄ −MΞcc

MΛc
−MD

: ð18Þ

In the limit of infinitely heavy quarks, the ratio RQ will be
unity. In computing these ratios (Rc=b), we first evaluate the
jackknife ratios of the following correlators,

Cudb̄b̄ðtÞ
CΞbb

ðtÞ → A0e−ðMudb̄b̄−MΞbb Þt þ � � � ;

CΛQ
ðtÞ

CMQq̄
ðtÞ → B0e−ðMΛQ−MQq̄Þt þ � � � ; ð19Þ

which directly provide the difference of masses as shown
above. Rc=b are then evaluated from the fits to these ratio

correlators. In addition, we also fit the individual masses of
tetraquarks, mesons, and baryons and calculate Rc=b from
Eq. (18). We find consistent results with both methods, and
the evaluation with Eq. (18) provides improved uncertain-
ties. As we have access to a large number of light quark
masses, while keeping the heavy quark mass at the charm
and bottom quark, we vary the light quark mass and
calculate Rc=b for each case. In Fig. 8, we show these
results at several pion masses for the coarser lattice
(a ∼ 0.12 fm) using the entire dataset in fitting. This is
done for other lattice spacings as well. The results clearly
indicate a wide separation of ratios between the charm and
bottom quarks; while Rb is closer to the heavy quark limit
of unity, Rc deviates from it substantially. After repeating
this calculation on the other two lattices, we perform a
simplistic chiral and continuum extrapolation according to
the Ansatzes in Eqs. (14) and (15). The fit results are shown
in Tables VIII and IX at three lattice spacings. For both
ratios, Rb and Rc, we do not observe any appreciable
dependence on the pion mass as indicated by the parameter
cπ2 in Table VIII. In addition, the continuum extrapolation
fit in Table IX does not indicate any lattice spacing

FIG. 8. Results of the ratios Rb and Rc color coded as red and green, respectively. Left: Results of the chiral extrapolation at
a ¼ 0.1207 fm. Right: Continuum extrapolation results from three lattice spacings.

TABLE VIII. Chiral extrapolation of ratios RQ for charm and
bottom quarks.

Ratio a cπ1 cπ2 RQjm
phys
π

Rb 0.1207 0.91(2) −0.14ð5Þ 0.907(17)
0.088 0.89(3) −0.03ð0.1Þ 0.889(24)
0.058 0.83(4) 0.05(0.1) 0.835(38)

Rc 0.1207 0.50(1) 0.07(3) 0.500(13)
0.088 0.58(1) −0.05ð5Þ 0.580(14)
0.058 0.54(2) 0.03(6) 0.537(22)

6The use of the ratio of masses allows for the cancellation of
lattice artifacts in addition to the cancellation of uncertainties
from resampling.
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dependence for the bottom and charm quarks. The con-
tinuum extrapolated results are listed in the last column of
Table VIII; we find Rb ¼ 0.837ð38Þ and Rc ¼ 0.602ð22Þ.
These results clearly indicate that there is a substantial
deviation from the heavy quark limit at the charm quark
mass, implying there might be large contributions from
ð1=mQÞn corrections. However, results at the bottom quark
mass are much closer to the heavy quark limit. Our results
indicate that, as far as the heavy quark symmetry relations
such as that is shown in Eq. (17) are considered, the charm
quark mass is not heavy enough for the equality, and one
certainly needs to incorporate appropriate leading order
1=mQ and then higher order correction terms. However,
one can of course use these relations for bottom quarks with
higher order 1=mQ corrections.

V. DISCUSSION AND CONCLUSIONS

Recently, there has been tremendous amount of activities
in studying multiquark states both theoretically and exper-
imentally. In particular, heavy tetraquarks are being inves-
tigated at various laboratories aswell as studied theoretically
through differentmodels and by lattice QCDcalculations. In
this work, using lattice QCD, we have performed a detailed
study on the doubly heavy tetraquark states with quark
contents q1q2Q̄Q̄; q1; q2 ⊂ u; d; s; c, and Q≡ b, c, in both
spin-0 (J ¼ 0) and spin-1 (J ¼ 1) sectors. Not only do we
study udb̄b̄ and usb̄b̄, as was studied in Ref. [25], but we
also explore ucb̄b̄, udc̄c̄, and usc̄c̄ states and additionally
include the spin-0 sector of doubly heavy tetraquarks. In
doing so, we have presented a systematic dependence of the
ground state spectra of such states on their light quark
constituents over awide range of quarkmasses starting from
the quark mass corresponding to the physical pion mass to
the strange quark mass. Since all these hadrons involve
heavy quarks, naturally, like any heavy flavored hadrons,
they are susceptible to heavy quark discretization effects in a
lattice calculation. To check the lattice spacing dependence,
we have obtained results at three lattice spacings, the finest
one being at 0.0582 fm. At a given lattice spacing, we
perform a chiral extrapolation using several quark masses
and then perform a continuum extrapolation to get the final
results. For all the states in the spin-1 sector, we observe the
presence of energy levels below their respective two-meson
thresholds, the deepest one being for the doubly bottom
tetraquark, udb̄b̄. Furthermore, for various flavor combi-
nations of the tetraquark states, we find that there is a clear

trend of increase in the energy splitting (ΔE) as the light
quark masses of such states are decreased and it becomes
maximum at the physical quark mass. This energy splitting
in the infinite volume limit of such a state can be interpreted
as its binding energy. This trend was first indicated in the
lattice calculation in Ref. [25] for the states udb̄b̄ and usb̄b̄.
Here, we confirm that over a wide range of quark masses.
Additionally,we find that such a trend holds for all the spin-1
states considered here, including the doubly charm tetra-
quark states. For the doubly charmed tetraquark states, udc̄c̄
and usc̄c̄, we also find that the ground states are below their
respective thresholds. However, they are quite close to their
thresholds, which was also observed in Ref. [80]. Though
they could be stable under strong interactions, one needs to
carry out finite volume analysis to establish their bound state
properties, if there are any. We would also like to point out
that most of these states, except ucb̄b̄, show either no
discernible dependence or very mild dependence on lattice
spacing. However, this will be clear when in a future study
we include much lower pion masses on the fine lattice. Our
final results for doubly heavy spin-1 tetraquarks states from
this calculation are summarized in Table X. Our estimates
for the udb̄b̄ and usb̄b̄ are in agreement with those of
Ref. [25] at a lattice spacing (approximately 0.09 fm) where
both of our data points are available.
We also provide a comparison of global results of spin-1

doubly heavy tetraquark states with various flavors and
show that in Fig. 9. The results from Refs. [23,24] are based
on HQET and the potential model, respectively, while the
rest are lattice calculations. All results agree with the
existence of deeply bound spin-1 tetraquark states, udb̄b̄
and usb̄b̄, which are stable under strong interactions. Our
results for the doubly bottom states agree well with those
from the HQET predictions [24] as well as that of the result
in Ref [25] at similar lattice spacings (approximately
0.09 fm). Reference [25] usedNf ¼ 2þ 1 PACS-CS gauge
field configurations and Coulomb gauge fixed wall sources
with clover action in the valence sector. The results were
extracted at a single lattice spacing (a ∼ 0.09 fm) at three
pion masses, and a chiral extrapolation with m2

π was
performed to obtain the final result. The results from
Ref. [60] were obtained from the potential based lattice
QCD study in which potentials of two B mesons were
computed in the static approximation for various spin-
isospin combinations. These were then fitted to a phenom-
enologically motivated Ansatz and were further used to
solve a Schrödinger equation to determine a bound state.

TABLE IX. Continuum extrapolation of ratios RQ for charm
and bottom quarks.

Ratio ca1 ca2 RQjm
phys
π

a¼0

Rb 0.84(4) 5.01(3.18) 0.837(38)
Rc 0.60(2) −6.33ð2.01Þ 0.602(22)

TABLE X. Final results for the spin-1 tetraquarks.

State ΔE1 (MeV) State ΔE1 (MeV)

udb̄b̄ −143ð34Þ usb̄b̄ −87ð32Þ
ucb̄b̄ −6ð11Þ scb̄b̄ −8ð3Þ
udc̄c̄ −23ð11Þ usc̄c̄ −8ð8Þ
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These calculations were performed at three pion masses
ranging from mπ ∼ 340–650 MeV, and the final results
were obtained after chiral extrapolation. Reference [80]
used an anisotropic Nf ¼ 2þ 1 clover action, and results
were obtained at a single lattice spacing (at ∼ 0.0035 fm
with anisotropy 3.5) and at a single pion mass
(mπ ¼ 391 MeV). For the doubly charm states, our results
are in disagreement with those from the HQET results [24].
As we showed earlier, this discrepancy is due to the
deviation of HQET relations at the charm quark mass.
Inspired by the results in the spin-1 sector, we also

explore the spin-0 tetraquark states with doubly bottom as
well as with doubly charm quarks. Here, we have computed
flavor symmetric uub̄b̄ and uuc̄c̄ states and also explored
the pion mass dependence by dialing the light quark mass.
To check the lattice spacing dependence of the observed
results, we perform the calculation on three different lattice
spacings. In addition, we have also computed the following
flavor symmetric states, namely, ssb̄b̄, ssc̄c̄, and ccb̄b̄ at
the physical strange, charm, and bottom quark masses. For
the doubly bottom state uub̄b̄, we find that the energy
splittings (ΔE0) are generally noisy and do not clearly
exhibit a trend of increase in ΔE0 as the pion mass is
lowered. Contrary to the results of its flavor antisymmetric
cousin udb̄b̄, the ground state energy of uub̄b̄ coincides
with its threshold at lower pion masses with no clear
indication of any level below the threshold. For the doubly
charm state, uuc̄c̄, the extracted energy levels clearly lie
above their respective thresholds with no discernible
dependence on pion mass, again contrary to the results
of its flavor antisymmetric cousin udc̄c̄. In performing the
continuum extrapolation, no lattice spacing dependence is
observed for the uub̄b̄ state, while the uuc̄c̄ exhibits a mild

dependence on the lattice spacing. The flavor symmetric
states ssb̄b̄, ssc̄c̄, and ccb̄b̄ exhibit similar qualitative
features in that all the energy levels are found to be above
their respective thresholds and no significant lattice spacing
dependence is observed in the continuum extrapolation.
Our final results for the spin-0 sector are shown in Table XI.
In conclusion, the states in the spin-0 sector do not indicate
energy levels below their thresholds, suggesting it is very
unlikely that there exists any doubly heavy bound tetra-
quark states with spin 0.
The availability of energy values of spin-1 tetraquark

states for a large number of light quarkmasses provide us an
opportunity to investigate the mass relations [Eq. (17)]
between different heavy flavored hadrons due to the heavy
quark symmetry, as mentioned in Ref. [24]. For this, we
redefine the relation as a ratio (R) between different hadron
masses [Eq. (18)] where a value of unity justifies the validity
of such a mass relation, and any deviation from unity
indicates the amount of breaking of the heavy quark
symmetry at a given heavy quark mass. We find that for
bottom quarks Rb ¼ 0.837ð38Þ, indicating that the bottom
quark is very close to the heavy quark limit. On the contrary,
at the charm quark mass, we find Rc ¼ 0.602ð22Þ, which
substantially deviates from the heavy quark limit. This
clearly suggests that the charm quark is not heavy enough
to impose heavy quark symmetry relations among hadron
masses such as inEq. (17); i.e., as far thosemass relations are
concerned, one needs to be careful while treating the charm
quark within HQET.
The tetraquark states studied in this work are computed

in a single volume. In order to make conclusive statements
about their scattering amplitudes and complex poles, one
needs to carry out similar studies on multiple volumes
followed by a finite volume analysis [41]. Such an analysis
will especially be useful for the states which are close to
their thresholds. However, a comprehensive finite volume
analysis for a calculation that is reported here requires
significantly large computational resources. Currently, that
is beyond the scope of this work, but we intend to pursue
such finite volume analysis in the near future. However, it is
worth noting that the finite volume corrections for many
heavy tetraquarks, particularly for which ΔE values are
large, will be substantially suppressed. This is because, as
has been pointed out before [81–83], such corrections to the
observed energy splitting are suppressed not only because
of its large value but also for the large masses of the
threshold states, which are two heavy mesons in these

FIG. 9. Comparison of global results on the spin-1 doubly
bottom and charm tetraquark states with various flavor combi-
nations. ΔE is the energy difference between the ground state and
the lowest strong decay threshold. Various flavor combinations
represented on the horizontal axis are color coded as blue, green,
red, magenta, and grey for the states udb̄b̄, usb̄b̄, ucb̄b̄, udc̄c̄,
and usc̄ c̄, respectively.

TABLE XI. Final results for the spin-0 tetraquarks.

State ΔE0 (MeV) State ΔE0 (MeV)

uub̄b̄ −5ð18Þ uuc̄c̄ 26(11)
ssb̄b̄ 3(9) ssc̄c̄ 14(4)
ccb̄b̄ 16(1)
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cases. It is thus expected that such tetraquark states will be
stable under strong interactions. Other errors related to our
calculations, namely, unphysical sea quark mass, quark
mass tuning, scale setting, mixed action effects, and excited
state contamination, together will be much smaller com-
pared to the statistical error [84], and the conclusion
reached here will be unaffected by those. It will therefore
be very useful to search experimentally spin-1 doubly
heavy tetraquarks particularly with two bottom quarks,
such as udb̄b̄. However, it is very unlikely that there exists
any doubly heavy bound tetraquark state with spin 0.
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APPENDIX

In Table XII, we show the energy splittings, ΔE, defined
as the difference between the threshold energy and the
ground state energy levels, of tetraquark states with various
flavor-spin combinations as studied in this work.

TABLE XII. Summary of splittings of tetraquark states in this work.

N3
s × Nt mπ (MeV) udb̄b̄ usb̄b̄ ucb̄b̄ udc̄c̄ usc̄c̄ uub̄b̄ uuc̄c̄

243 × 64 689 −83ð9Þ −83ð9Þ −15ð4Þ −11ð3Þ −11ð3Þ 17(10) 11(2)
589 −110ð13Þ −101ð9Þ −19ð4Þ −18ð3Þ −14ð3Þ 8(6) 9(2)
539 −117ð16Þ −104ð9Þ −22ð4Þ −18ð3Þ −12ð2Þ 6(6) 11(2)
497 −120ð14Þ −100ð14Þ −18ð6Þ −22ð5Þ −13ð3Þ 8(8) 9(3)
449 −127ð18Þ −111ð10Þ −25ð5Þ −25ð4Þ −13ð2Þ 4(10) 10(3)
400 −136ð24Þ −111ð12Þ −21ð5Þ −27ð5Þ −12ð3Þ 0(11) 8(5)
367 −145ð21Þ −116ð12Þ −29ð5Þ −28ð6Þ −12ð3Þ −3ð10Þ 9(4)
337 −146ð25Þ −109ð13Þ −20ð8Þ −26ð7Þ −11ð3Þ −2ð12Þ 8(7)
297 −164ð36Þ −119ð15Þ −30ð6Þ −28ð7Þ −11ð3Þ � � � 6(7)
257 −181ð43Þ −115ð18Þ −25ð9Þ −25ð8Þ −9ð4Þ � � � � � �
237 � � � −112ð21Þ −29ð8Þ � � � � � � � � � � � �
216 � � � −117ð14Þ −19ð13Þ � � � � � � � � � � � �
202 � � � −126ð18Þ −27ð11Þ � � � � � � � � � � � �
186 � � � −121ð17Þ −31ð11Þ � � � � � � � � � � � �
153 � � � � � � −33ð13Þ � � � � � � � � � � � �

323 × 96 688 −62ð13Þ −62ð13Þ −9ð3Þ −13ð3Þ −13ð3Þ 5(5) 12(3)
537 −93ð19Þ −77ð15Þ −12ð5Þ −19ð5Þ −13ð3Þ −1ð8Þ 9(7)
491 −123ð25Þ −74ð23Þ −14ð5Þ −23ð6Þ −14ð4Þ −2ð10Þ 12(9)
441 −135ð21Þ −79ð18Þ −12ð5Þ −23ð8Þ −10ð4Þ −6ð12Þ 15(12)
396 −147ð31Þ −91ð17Þ −16ð5Þ −27ð10Þ −10ð5Þ −6ð13Þ 19(8)
367 � � � −97ð19Þ −15ð6Þ −32ð13Þ −9ð5Þ 0(11) � � �
345 � � � � � � −17ð6Þ � � � � � � −5ð13Þ � � �

483 × 144 685 −88ð6Þ −88ð6Þ −10ð2Þ −15ð2Þ −15ð2Þ 6(7) 17(2)
645 −94ð7Þ −91ð7Þ −11ð2Þ −15ð2Þ −13ð3Þ 4(7) 17(3)
576 −102ð9Þ −94ð8Þ −10ð2Þ −15ð3Þ −13ð2Þ 3(8) 18(4)
545 −106ð10Þ −90ð10Þ −12ð3Þ −17ð3Þ −13ð3Þ −1ð8Þ 20(4)
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