HOME ::
SCOAP^{3} ::
HELP ::
ABOUT ::
IDEA BOARD |

Home > Journal of High Energy Physics (Springer/SISSA) > Affine q -deformed symmetry and the classical Yang-Baxter σ -model |

Delduc, F. (Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342, Lyon, France) ; Kameyama, T. (Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342, Lyon, France) ; Magro, M. (Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342, Lyon, France) ; Vicedo, B. (School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, United Kingdom)

27 March 2017

**Abstract: **The Yang-Baxter σ -model is an integrable deformation of the principal chiral model on a Lie group G . The deformation breaks the G × G symmetry to U(1) rank( G ) × G . It is known that there exist non-local conserved charges which, together with the unbroken U(1) rank( G ) local charges, form a Poisson algebra , which is the semiclassical limit of the quantum group U q g $$ {U}_q\left(\mathfrak{g}\right) $$ , with g $$ \mathfrak{g} $$ the Lie algebra of G . For a general Lie group G with rank( G ) > 1, we extend the previous result by constructing local and non-local conserved charges satisfying all the defining relations of the infinite-dimensional Poisson algebra , the classical analogue of the quantum loop algebra U q L g $$ {U}_q\left(L\mathfrak{g}\right) $$ , where L g $$ L\mathfrak{g} $$ is the loop algebra of g $$ \mathfrak{g} $$ . Quite unexpectedly, these defining relations are proved without encountering any ambiguity related to the non-ultralocality of this integrable σ -model.

**Published in: ****JHEP 1703 (2017) 126**
**Published by: **Springer/SISSA

**DOI: **10.1007/JHEP03(2017)126

**arXiv: **1701.03691

**License: **CC-BY-4.0