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Abstract The stability of the modular field in a warped
brane world scenario has been a subject of interest for a
long time. Goldberger and Wise (GW) proposed a mecha-
nism to achieve this by invoking a massive scalar field in the
bulk space-time neglecting the back-reaction. In this work,
we examine the possibility of stabilizing the modulus with-
out bringing about any external scalar field. We show that
instead of flat 3-branes as considered in Randall–Sundrum
(RS) warped braneworld model, if one considers a more gen-
eralized version of warped geometry with de Sitter 3-brane,
then the brane vacuum energy automatically leads to a mod-
ulus potential with a metastable minimum. Our result further
reveals that in this scenario the gauge hierarchy problem can
also be resolved for an appropriate choice of the brane’s cos-
mological constant.

1 Introduction

After the discovery of the Higgs like scalar at 126 GeV [1,2],
the fine tuning problem of the Higgs mass, originating from
its large radiative correction, has become a pressing issue
within the framework of various proposals beyond standard
model physics. Among various extra dimensional models
[3–25] the ADD [3–5] and the RS [14,15] model drew spe-
cial attention as regards this problem. In particular, the RS
[14,15] model keeps the Higgs mass well within the accept-
able upper bound without invoking any hierarchical parame-
ters in the theory. The phenomenology that follows in such a
beyond standard model (BSM) physics [26–31] is crucially
dependent on the stable value of the radius modulus of the
model which determines the various parameters in the 4-
dimensional effective theory of the model. However, the issue
of stabilizing the modulus, consistent with the requirement
of the solution of gauge hierarchy problem, was proposed by
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Goldberger and Wise [32] by invoking an additional scalar
field in the bulk. By choosing the appropriate boundary val-
ues of this scalar at the two orbifold fixed points they could
obtain the appropriate value for the warp factor. Subsequently
the RS model was generalized with curved 3-branes, in par-
ticular with a de Sitter (DS) and anti-de Sitter (ADS) 3-brane
sitting at the orbifold fixed points [33]. The phenomenolog-
ical implications of this have also been discussed in [33,34].
Here, we demonstrate that, for the de Sitter 3-brane, a posi-
tive value of the brane vacuum energy can naturally lead to
a modulus potential which has a metastable minimum. The
value of the corresponding radius modulus depends on the
brane cosmological constant and can be tuned to address the
gauge hierarchy and stability issue concomitantly. Thus, we
do not require any external bulk scalar to achieve modulus
stabilization. In this context it may be mentioned that Csaki
et al. [35] explored how the 3-brane matters namely matter
on either of the two branes or in bulk may contribute to Hub-
ble expansion on the brane. They showed in such a scenario
how the Hubble expansion equation on the brane comes with
the correct signature only after assuming a stabilizing mech-
anism for the modulus. In our work we demonstrate how
the modulus stabilization can be achieved in the presence
of brane vacuum energy without introducing any other bulk
scalar potential.

2 A brief survey of warp geometry in non-flat 3-branes

RS model is formulated in a 5-dimensional anti-de Sitter
bulk space-time where the extra dimension is compactified
in a M4 ×S1/Z2 manifold. In the RS model two 3-branes are
placed at the two orbifold fixed points, which are assumed to
be flat such that the cosmological constant induced on the vis-
ible brane is zero. It has been shown that an appropriate tuning
between the brane tension and the bulk induced cosmolog-
ical constant on the brane can exactly cancel the resulting
effective cosmological constant on the brane to make it flat
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[36]. However, a slight imbalance between these may lead
to positive or negative brane vacuum energy, which leads to
warped geometry models with non-flat 3-branes.

A generalized version of the RS model with non-flat 3-
branes was addressed in [33] where a more general warp
factor was derived and the correlation between the extra
dimensional modulus and brane cosmological constant was
discussed in the light of the gauge hierarchy problem.

The metric ansatz in the generalized-RS scenario, satisfy-
ing the 5-d Einstein equations with a negative bulk cosmo-
logical constant is [33]

ds2 = e−2A(rcφ)gμνdxμdxν + r2
c dφ2. (1)

This results in the 4-d Einstein equations,

4Gμν − gμνe
−2A[−6A′2 + 3A′′] = − �

4M3 gμνe
−2A, (2)

while the component of the equation along the extra dimen-
sion is

− 1

2
e2A 4R + 6A′2 = − �

4M3 (3)

along with the boundary conditions

[A′(y)]i = εi

24M3 Vi . (4)

Here, � is the bulk cosmological constant, R the bulk
Ricci scalar and Vi the brane tension on the i th brane, where
i = vis(hid) is for visible (hidden) branes, respectively, and
εhid = −εvis = 1.

On solving Eqs. (2) and (3) one obtains the equations

6A′2 = �

4M3 + 2�e2A (5)

and

3A′′ = �e2A (6)

where � represents the effective cosmological constant
induced on the brane.

Although � < 0 (AdS bulk), � can be both positive and
negative (� < 0 for AdS and � > 0 for DS space-times,
respectively).

de Sitter Brane

When � > 0 the solution of Eqs. (5) and (6) gives the gen-
eralized warp factor as

e−A = ωsinh
(

ln
c2

ω
− krc|φ|

)
, (7)

where ω = �
3k2 and c2 = 1 + √

1 + ω2.

On equating the ratio of the Higgs mass and the Planck
mass to the warp factor at the visible brane,

m

m0
= 10−16 = e−A = ωsinh

(
ln
c2

ω
− krcπ

)
, (8)

one obtains

e−krcπ = 10−16

c2

[
1 +

√
1 + ω21032

]
. (9)

It is important to note here that e−krcπ assumes a definite
solution for every value of ω. The value of the present day
cosmological constant � ∼ 10−124 (in Planck units) yields
krcπ ∼ 16ln10, which in turn produces the required warping
of the Higgs mass on the visible brane as in the RS scenario.

Anti-de Sitter Brane

When � < 0 the solution of Eqs. (5) and (6) yields the
generalized warp factor

e−A = ωcosh

(
ln

ω

c1
+ krc|φ|

)
, (10)

where ω = − �
3k2 and c1 = 1 + √

1 − ω2.
Once again to solve the gauge hierarchy problem, the ratio

of the Higgs mass m to the Planck mass m0 at the visible
brane, i.e., φ = π , yields

m

m0
= 10−16 = e−A = ωcosh

(
ln

ω

c1
+ krcπ

)
, (11)

which implies that

e−krcπ = 10−16

c1

[
1 ±

√
1 − ω21032

]
. (12)

This leads to ω2 ≤ 10−32, thereby establishing a con-
straint on the upper limit of ω. It is quite clear from Eq.
(9) that e−krcπ has two solutions for every allowed value of
ω except for ω2 = 10−32, and both values give rise to the
necessary warping.
Thus the generalized RS scenario [33] incorporates the
effects of the brane cosmological constant on the warp factor
and also successfully addresses the gauge hierarchy problem
such that the Higgs mass on the visible brane is appropri-
ately warped to the TeV scale. The fact that the cosmological
constant can assume such small values and yet address the
hierarchy issue implies that the gauge hierarchy problem and
the cosmological fine tuning problem are interlinked.

3 Modulus potential in a curved brane scenario

In the generalized RS scenario [33], rc represents the distance
between the two branes. However, rc is assumed to have a
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stable non-zero value in both cases. The mechanism of gener-
ating this stable value is not addressed in this model. Hence,
the next step would be to treat the distance between the two
branes as a 4-dimensional field, the so called radion field or
the modular field, T (x), whose vacuum expectation value
would be rc. An appropriate mechanism is now required
to stabilize the modulus to its vacuum expectation value by
generating a potential term for the modulus in the effective
4-dimensional Lagrangian. Goldberger and Wise [32] intro-
duced a bulk scalar field in the RS [14,15] Lagrangian, which
in turn generated a 4-dimensional potential for rc. The param-
eters of this potential are dependent on the newly introduced
terms in the action and could be adjusted such that the mini-
mum of the potential settles at the value of rc to generate the
required warping. Goldberger and Wise [32], in their analysis
assumed flat 3-branes as in the original RS [14,15] scenario
and neglected any possible back-reaction of the stabilizing
bulk scalar on the background metric. Motivated by the non-
flat warped geometry scenario [33], as discussed in the pre-
vious section, we now explore the possibility of stabilizing
the modulus rc, without invoking any external scalar field.
In this work, we investigate the stability of the radion field
from a modular potential which may be generated due to the
non-flat character of the 3-branes at the orbifold boundaries.

The metric ansatz we consider is the following:

ds2 = e−2A(xμ,φ)gμνdxμdxν + T (x)2dφ2, (13)

which satisfies the Einstein equations obtained from the
action

S = Sgravity + Svis + Shid (14)

Sgravity =
∫ ∞

−∞
d4x

∫ π

−π

dφ
√−G(2M3R − �), (15)

Svis =
∫ ∞

−∞
d4x

√−gvis(Lvis − Vvis), (16)

Shid =
∫ ∞

−∞
d4x

√−ghid(Lhid − Vhid). (17)

3.1 Case A: de Sitter 3-branes

In this section we consider de Sitter 3-branes for which the
generalized warp factor is given by

e−A = ωsinh
(

ln
c2

ω
− k|φ|T (x)

)
. (18)

Considering the above form of the warp factor, the first term
of Eq. (15) becomes

S(1)
gravity = −2M3

∫
d4x

∫ π

−π

dφ
√−ge−2A

[
T (x) 4R

+ 8k2e−2AT (x) + 12k2e−2AT (x)coth2

×
(

ln
c2

ω
− kT (x)|φ|

)

+ 6k|φ|T (x),α T (x),α coth
(

ln
c2

ω
− kT (x)|φ|

)

− 6k2|φ|2T (x)T (x),α T (x),α coth2

×
(

ln
c2

ω
− kT (x)|φ|

)]
,

while the second term gives

S(2)
gravity = −

∫
d4x

∫ π

−π

e−4A√−g �. (19)

The effective action, which is obtained by integrating over
the higher dimension, is

4S =
∫

d4x(4S(1) +4 S(2) +4 S(3)) (20)

where

4S(1) = −2M3
∫

d4x
√−g4R

[
c2

2

4k
+ ω2

k
ln




f

+ ω4

4kc2
2

f 2


2 − ω4

4kc2
2

− c2
2


2

4k f 2

]
(21)

4S(2) =
∫

d4x
√−g

[
− 1

2
∂μ
∂μ
 − 4

M3

k
ω2

×
(

1


2 ln



f

)
∂μ
∂μ
 + 3M3

k

ω4

c2
2

f 2 ∂μ
∂μ



4

]

(22)

4S3 = −2M3
∫

d4x
√−g[V (
)]. (23)

Here, 
 = f e−kT (x)π and f =
√

6M3c2
1

k . 4S(1) is the con-
tribution to the effective action from pure gravity and grav-
ity coupled with the modular field T (x). 4S(2) is the kinetic
term of the effective action and 4S(3) is the contribution to
the effective action purely from the modulus, which in turn
generates the modular potential.
The modular potential V (
) is given by

V (
) =
[

6kω4ln



f
− 3kω4 + 2k

ω6

c2
2

f 2


2 + 2kω2c2
2 − 1

2
k
ω8

c4
2

− 1

2
kc4

2

4

f 4 − 3kω4

(
ω2

c2
2 − ω2

+ c2
2


2

ω2 f 2 − c2
2


2+

)

+ 2kω6

c2
2 − ω2

(
ω2

c2
2

+ c2
2

ω2

)
+ 2kc2

2ω
4
2

ω2 f 2 − c2
2


2

×
(

ω2 f 2

c2
2


2
+ c2

2

2

ω2 f 2

)
− 1

2

kω6

c2
2 − ω2

(
ω4

c4
2

+ c4
2

ω4

)

− 1

2

kc2
2ω

4
2

ω2 f 2 − c2
2


2

(
ω4 f 4

c4
2


4
+ c4

2

4

ω4 f 4

)]
. (24)

It may be seen that in the limit ω → 0, we retrieve the
gravity-radion action as derived in Goldberger and Wise [37].
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Fig. 1 Modular potential for the DS brane for ω = 10−5

Fig. 2 First derivative of the modular potential for the DS brane for
ω = 10−5

Clearly, the presence of ω generates a potential term for the
modular field 
.

To obtain the minimum of the potential, we find that its
first derivative with respect to 


f is

dV (
/ f )

d(
/ f )
= 6M3kω2c2

2

[
ω4 f 3

c4
2


3
+ 


f
− 2ω2 f

c2
2


]
. (25)

From Eq. (28) it is clear that the first derivative of the potential
vanishes when 


f → ω
c2

. The potential and its first derivative

for ω = 10−5 are illustrated in Figs. 1 and 2, respectively.
From Figs. 1 and 2 it is evident that the potential attains

a metastable minimum, 

f = e−kT (x)π → ω

c2
. One should

note that, from the form of the warp factor given in Eq. (18),


f < ω

c2
is not possible. Hence, we consider 


f = ω
c2

+ ε

where ε << ω
c2

. Using this in Eq. (18) and neglecting higher

order terms for ε we obtain e−A � c2ε. Adjusting the value
of ε ∼ 10−16 we find that a proper resolution to the gauge
hierarchy problem can be achieved.

Case B: Anti-de Sitter 3 brane

Here, we assume that the 3-branes are AdS branes. In such a
scenario, the generalized warp factor is given by

e−A = ωcosh

(
ln

ω

c1
+ k|φ|T (x)

)
. (26)

Under such circumstances

S(1)
gravity = −2M3

∫
d4x

∫ π

−π

dφ
√−ge−2A

[
T (x) 4R

+ 8k2e−2AT (x) + 12k2e−2AT (x)tanh2

×
(

ln
ω

c1
+ kT (x)|φ|

)
− 6k|φ|T (x),α T (x),α

× tanh

(
ln

ω

c1
+ kT (x)|φ|

)

−6k2|φ|2T (x)T (x),α T (x),α )

× tanh2
(

ln
ω

c1
+ kT (x)|φ|

)]

and

S(2)
gravity = −

∫
d4x

∫ π

−π

e−4A√−g �. (27)

The contribution to S(1)
gravity from the brane boundaries is

the same as in the RS scenario.
The effective action for the AdS branes is

4S =
∫

d4x(4S(1) +4 S(2) +4 S(3)) (28)

where, defining as before, 
 = f e−kT (x)π ,

4S(1) = −2M3
∫

d4x
√−g4R

[
c2

1

4k
− ω2

k
ln




f

+ ω4

4kc2
1

f 2


2 − ω4

4kc2
1

− c2
1


2

4k f 2

]
, (29)

4S(2) =
∫

d4x
√−g

[
−1

2
∂μ
∂μ
 + 4

M3

k
ω2

×
(

1


2 ln



f

)
∂μ
∂μ
 + 3M3

k

ω4

c2
1

f 2 ∂μ
∂μ



4

]
,

(30)

4S3 = −2M3
∫

d4x
√−g[V (
)] (31)

where V (
) is the modular potential given by

V (
) =
[
−6kω4ln




f
− 3kω4 − 2k

ω6

c2
1

f 2


2 − 2kω2c2
1

− 1

2
k
ω8

c4
1

− 1

2
kc4

1

4

f 4 3kω4

(
ω2

c2
1 + ω2

+ c2
1


2

c2
1


2 + ω2 f 2

)

+ 2kω6

ω2 + c2
1

(
ω2

c2
1

+ c2
1

ω2

)
+ 2kc2

1ω
4
2

c2
1


2 + ω2 f 2

×
(

ω2 f 2

c2
1


2
+ c2

1

2

ω2 f 2

)
1

2

kω6

ω2 + c2
1

(
ω4

c4
1

+ c4
1

ω4

)

+1

2

kc2
1ω

4
2

c2
1


2 + ω2 f 2

(
ω4 f 4

c4
1


4
+ c4

1

4

ω4 f 4

)]
. (32)
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Fig. 3 Modular potential for the ADS brane for ω = 10−20

Fig. 4 First derivative of the modular potential for the ADS brane for
ω = 10−20

To solve for the critical points of this potential, we find
that its first derivative with respect to 


f is

dV (
/ f )

d(
/ f )
= 6M3kω2c2

1

[
ω4 f 3

c4
1


3
+ 


f
+ 2ω2 f

c2
1


]
(33)

From Eq. (33) it is clear that the first derivative of the potential
has no zero crossing. The potential does not have any min-
imum. The potential and its first derivative for ω = 10−20

are shown in Figs. 3 and 4 respectively. From the aforemen-
tioned figures it is quite evident that in the scenario of AdS
3-branes, the modular potential does not have any turning
points. Thus, in this situation stability cannot be attained.
However, the resolution to the gauge hierarchy problem is
independent of the radion field stabilization. Hence, in this
scenario, the gauge hierarchy problem can be addressed as
discussed in Sect. 2, although the stability of the modular
field cannot be achieved.

4 Summary and conclusion

In this work, we explore the possibility of stabilizing the
extra dimensional modulus in the context of warped non-flat
branes, without introducing any extra bulk scalar field. We

show that the non-flat maximally symmetric brane automati-
cally gives rise to a stable braneworld model when the brane
cosmological constant is positive; in other words, it is de
Sitter in character.

In the current work, we include the dynamics of the mod-
ular field in the context of warped geometry in a curved 3-
brane scenario that naturally incorporates the effect of the
brane cosmological constant on modular stability. We find
that the presence of the brane cosmological constant natu-
rally generates a potential energy term for the modulus field
in the Lagrangian of the effective action and no external scalar
field is required to stabilize the modulus.

We further show that if the branes are anti-de Sitter, then
the radion potential which arises self-consistently due to the
presence of the brane vacuum energy, does not have any turn-
ing points (Figs. 3 and 4) and hence modular stabilization
cannot be achieved in such a scenario. However, the reso-
lution to the gauge hierarchy problem which is independent
of modular stabilization can always be attained. This is dis-
cussed in Sect. 3. On the other hand, if the 3-branes are de
Sitter branes, then the modular potential has a metastable
minimum at which the radion field is stabilized (see Figs. 1
and 2). The value of this minimum depends on the brane vac-
uum energy and by tuning the brane cosmological constant
appropriately the gauge hierarchy problem can be resolved
at the minimum of this potential. Thus, the stabilization of
the modular field and the resolution to the gauge hierarchy
problem in the context of non-flat 3-branes in a warped brane
world scenario can all be addressed concomitantly. The fact
that we live presently in a de Sitter universe with a tiny cos-
mological constant therefore can account for the stability of
the modulus and points towards a stable braneworld descrip-
tion of our universe.
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ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
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