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Solitary waves propagation of baryonic density perturbations, ruled by the Korteweg–de Vries equation 
in a mean-field quark–gluon plasma model, are investigated from the point of view of the theory of 
information. A recently proposed continuous logarithmic measure of information, called configurational 
entropy, is used to derive the soliton width, defining the pulse, for which the informational content of 
the soliton spatial profile is more compressed, in the Shannon’s sense.
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1. Introduction

Since the early decades of the past century, the information 
theory has been used in many areas of research. Even before the 
concept of information has arisen, the concept of entropy as a 
logarithmic measure of information had appeared in physics, rep-
resenting at that time a breakthrough in the understanding of 
many-particle systems. The concept of informational entropy was 
developed with the work of Fisher [1], Wiener [2] and Shannon [3], 
among others, between the middle of the 1920s and the end of the 
1940s. Since then, it has been applied in many areas, from physics 
to computer science, mathematical statistics and communication 
theory. Besides all this success, the majority of the applications re-
garding the information entropy use a discrete measure, instead of 
the continuous one that were proved to be a real threat. In fact, 
the so-called information dimension, that underlies any distribu-
tion of data, yields an upper bound on the compression rate of 
any variable in a given distribution. The information dimension en-
codes the growth rate of the Shannon entropy the finer the space 
discretization is [4].

In the last five years, a continuous logarithmic measure called 
configurational entropy (CE) has been used in the lattice approach 
as a new information tool, to study non-linear physical systems 
[6–9]. More precisely, the CE is a logarithmic measure, in the 
Fourier space, of the spatial complexity of spatially-bounded func-
tions. It represents the exact measure of information that is nec-
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essary to describe the spatial shape of functions with respect to 
their set of parameters. This approach has been used to study com-
pact astrophysical systems [6,10,11], to derive the dominance of 
light-flavor mesons in dynamical AdS/QCD holographic models [4], 
as well as to study scalar glueballs [12]. Besides, the CE was em-
ployed to study AdS-Schwarzschild black holes, in a robust setup 
that corroborates to the consistency of the Hawking–Page phase 
transition [13]. Moreover, the (nuclear) CE was used in QCD mod-
els to establish the onset of the quantum regime in the color glass 
condensate [14,15]. In addition, the informational entropy theory 
was successfully used in particle physics to determine the Higgs 
boson mass [16] and the axion mass in an effective theory at low 
energy regimes [17].

Traveling solitary waves, or solitons [18], and other topologi-
cal defects were already approached in the context of the con-
figurational entropy [19,20]. Solitons were proposed to be studied 
as solutions to non-linear equations of motion [21]. Although the 
analysis with respect to small perturbations was studied in other 
contexts [22–24], in particular in the QCD [25], among which other 
interesting applications have been found, we shall focus on the 
configurational entropy approach.

A special class of solitons is typified by the Korteweg–de Vries 
(KdV) ones. KdV solitons arise as a solution of a non-linear, dis-
persive partial differential equation, known as the KdV equation, 
whose solutions are spatially localized pulses, of finite energy, 
propagate with at most tiny distortions of their shape. The KdV 
equation has been frequently used to study waves in shallow-water 
and internal waves in oceans, to investigate acoustic waves propa-
gating across crystal lattices and, more recently, also to scrutinize 
waves in plasmas. In this context, it is useful to study the quark–
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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gluon plasma (QGP), which is a state of matter that is produced 
either at extremely high temperatures, as in the early stage of the 
universe, or at very high density, as in the core of neutron stars. 
The QGP has been achieved in laboratory [26]. Larger and longer 
living states in the QGP can consist of KdV solitons in the QCD 
plasma. Ref. [27] regarded perturbations on the baryons density in 
proton–nucleus collisions, where the incoming proton that might 
be absorbed by the nuclear fluid can generate a KdV soliton. This 
setup was refined in Ref. [28–30] with an equation of state ruling 
the nuclear matter, which is derived from a mean-field approxi-
mation to QCD in the case of zero-temperature and high density, 
called cold quark–gluon plasma (cQGP). The equations that gov-
ern the 1-dimensional relativistic fluid dynamics were studied in 
Ref. [31] in a context of perturbations beyond the linear regime, 
implying a KdV equation. Hence, the CE entropic-information setup 
shall be used to study KdV solitons propagating in the cold quark–
gluon plasma (cQGP), in a sense that concerns its spatial profile 
configuration in the Fourier space. The CE is here proposed to 
derive the optimal width of the solitonic pulse for which the in-
formation stored in its spatial shape are most compressed into its 
momentum modes.

This paper is organized as follows: Sect. 2 is devoted to present 
the model for the cQGP and the associated equation of state, re-
viewing the energy and pressure densities as functions of the 
baryon number density and the gluon mass, in the QCD setup. In 
Sect. 3, the KdV equation is derived for baryonic density perturba-
tions in the cQGP. The configurational entropy is then defined, dis-
cussed and calculated for the KdV soliton, as a function of solitary 
wave pulse width. Sect. 4 is devoted to point out the conclusions, 
discussions and outlook toward useful generalizations.

2. The equation of state in the QGP

The equation of state for a cQGP model consists of a mean-field 
approximation of QCD [28,30,32]. It can be derived from a QCD 
Lagrangian density [31],

L = 1

4
F a
μν F μν

a +
N f∑
q

ψ̄
q
j

[
gγ μT a

jkGa
μ + δ jk

(
iγ μ∂μ − mq

)]
ψ

q
k ,

(1)

where F aμν = ∂ [μGaν] + g f abc GbμGcν . The indexes q, i, j run over 
all quark flavors and colors respectively, T a

jk are the SU(3) gen-

erators and the f abc denote its structure constants. The mass of 
a quark with flavor q is denoted by mq , whereas the gluonic field, 
Gaμ , can be split into a condensate component and a high-moment 
one, as [31,32]

Gaμ = Aaμ + αaμ, (2)

where the Aaμ denote the soft low-momentum components of 
the gluon field, which condensate and are related with non-
perturbative long-range processes. Besides, the hard-momentum 
components, αaμ , are dominant in short-distances, perturbative, 
processes. Such a splitting requires a specification of a length scale, 
that must lie in the range �QCD � E � 1 GeV. In other words, 
the Aaμ represent the soft modes populating the vacuum, whereas 
αaμ are the modes for which the running coupling is small.

In order to obtain an effective Lagrangian for the conden-
sate, the mean-field approximation is considered, which means 
that the hard-modes are coordinate-dependent functions [28,30,
31], αa

μ(�x, t) = αa
0(�x, t)δμ0, whereas the low-momentum modes are 

occupied and coordinate independent. At this point, Refs. [28,30,
31] are followed, wherein the hard component is considered coor-
dinate dependent. This difference in the usual approach, one that 
assumes αaμ to be independent of coordinates, leads to an equa-
tion of state for the cQGP that allows a solitonic equation for the 
baryon density perturbation. With such assumptions and replacing 
the product of the soft modes in the Lagrangian by their expec-
tation values in the cQGP [28,30,31], one can obtain the effective 
Lagrangian density

L = −bφ4
0 + m2

g

2
αa

0α
a
0 + ψ̄i

(
iδi jγ

μ∂μ + gγ 0T a
i jα

a
0

)
ψ j

− 1

2
αa

0

(
∇2αa

0

)
, (3)

where the first term on the right hand side is related with the di-
mension four condensate 〈F 2〉, with b = 9

4(34)
, and φ0 is an order 

parameter driving the condensate. The hard gluon dynamical mass, 
mg , is obtained from its interaction with the low-momentum glu-
ons Aaμ and are related with the dimension two gluon condensate 
〈A2〉. The equation of state for the energy density, ε = 〈T00〉, and 
the pressure density, p = 〈Tii〉, can be now obtained from the ef-
fective Lagrangian. From the energy-momentum tensor given by

T μν = ∂L
∂

(
∂μηi

) (
∂νηi

) − gμνL−
[
∂β

∂L
∂

(
∂μ∂βηi

)
] (

∂νηi
)

− ∂L
∂

(
∂μ∂βηi

) (
∂β∂νηi

)
, (4)

the energy density can be written as

ε = 1

2
αa

0

( �∇2αa
0

)
− m2

g

2
αa

0α
a
0 + bφ4

0 − gρaαa
0

+ 3
γQ

2π2

kF∫
0

dkk3, (5)

where ρa is the color charge density, ρ = ψ†ψ is the quark num-
ber density, γQ is the quark degeneracy factor γQ = 2 (spin) ×
3 (flavor), g is a small coupling constant of the hard modes, and 
kF is the Fermi momentum defined by ρ = γQ

2π2 k3
F . The pre-factor 

3 on the momentum integral term arises from the sum over all 
quark colors. It is possible to write the hard modes αa

0 in terms of 
ρ and ρa as [31]

αa
0 = − g

m2
g
ρa − g

m4
g

�∇2ρ2 (6)

and relates the quark color density ρa and the quark number den-
sity ρ , by [30] ρaρa = 3ρ2. With these identities and performing 
the momentum integral, the energy density reads

ε = 27g2

2m2
g
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, (7)

where ρB = 1
2 ρ is the baryon number density, as pointed out the 

ref. [31]. Similar calculations leads to the expression for pressure 
density,

p = 9g2
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In the next section we will carry out a perturbation beyond the 
linear order on this baryonic density, to obtain a KdV equation, and 
use the solution to construct the configurational entropy density to 
explore the it informational content.

3. The KdV equation and configurational entropy

Relativistic hydrodynamics is a well-established paradigm, be-
ing useful in many areas of physics. One of its key equations is 
the Euler equations, that consist of a system of quasilinear hy-
perbolic equations that rule adiabatic inviscid flows, and represent 
the continuity law and the energy-momentum conservation. Euler 
equations are particular cases of Navier–Stokes equations, for fluid 
flows with no viscosity and zero thermal conductivity. The rela-
tivistic version of the Euler equation reads [33]

∂t �v + (�v · �∇) �v + 1

(ε + p)γ 2

(
∇p + �v ∂t p

)
= 0, (9)

where �v and γ are the velocity and the Lorentz factor respec-
tively. Natural units c = 1 = h̄ shall be adopted hereon. Space and 
time coordinates will be in unit of [fm]. The relativistic version of 
the continuity equation for the baryon density is ∂ν jν = 0, reading 
[28]

∂tρB + γ 2�v ρB (∂t �v + �v · ∇�v) + ∇ · (ρB �v) = 0, (10)

where ρB is the baryon density defined on the Section 2. In the 
1-dimensional relativistic fluid dynamics, the velocity field is writ-
ten as �v = v(x, t) ̂ı, where ı̂ is the unit vector in the x direction. 
Eqs. (9) and (10) can be respectively rewritten in the simple form:

∂t v + v∂xv − (v2 − 1)

ε + p
(∂x p + v∂t p) = 0, (11)

vρB(∂t v + v∂x v) + (1 − v2)(∂tρB + ρB∂x v + v∂xρB) = 0. (12)

Now, Eqs. (11) and (12) can be merged to derive the KdV equation 
for the baryon density perturbations, in the variables

ρ = ρB

ρ0
, v = v

cs
(13)

where ρ0 stands for a central density and cs denotes the speed of 
sound. It is worth to note that this cs is the same usual thermo-
dynamical speed of sound cs = ∂ p

∂ε , that in this case is hard to be 
obtained directly from the equations of state (7) and (8), and shall 
be perturbatively computed in what follows. Besides, the ζ and τ
coordinates read [27]:

ζ =
√

σ

R
(x − cst) , τ =

√
σ 3 cs

R
t (14)

where R is a size scale of the cQGP and σ denotes a parameter rul-
ing the expansion of Eqs. (13) ρ = ∑∞

k=0 σ kρk and v = ∑∞
j=0 σ j v j , 

for ρ0 = 1 and v0 = 1. Eqs. (11) and (12) were written in the ζ −τ
space in Ref. [31], up to σ 2. The notation

γ = 27g2ρ2
0

m2
g

(15a)

τ = (πρ2
0 )2/3 (15b)

is adopted [31]. Eqs. (11) and (12) yield

σ
[−(γcs + 3τ cs)∂ζ v1 + (γ + τ)∂ζ ρ1

]
+ σ 2

[
(γ + τ)∂ζ ρ2 − cs(γ + 3τ)∂ζ v2 + cs(γ + 3τ)∂τ v1
+ v1∂ζ v1 + γρ1∂ζ ρ1 + τ
ρ1

3
∂ζ ρ1 − 2cs[γ + 2τ cs]ρ1∂ζ v1

− cs[γ + τ]v1∂ζ ρ1 + 3γ
2R2

∂3
ζ ρ1

]
= 0 (16)

and

σ(∂ζ v1 − ∂ζ ρ1) + σ 2 (
∂ζ v2 − ∂ζ ρ2 + ∂τ ρ1 + ρ1∂ζ v1

+ v1∂ζ ρ1 − cs v1∂ζ v1
) = 0, (17)

respectively. The first term in Eq. (17) yields ρ1 = v1, implying 
that cs = γ+τ

γ+3τ . These results can be replaced into the terms pro-

portional to σ 2, yielding the KdV equation [31]:

γ
2R2m2

g
∂3
ζ ρ1 +

(
2 − cs(1 + 2γ + 2τ) + τ

3

)
ρ1∂ζ ρ1

+ A∂τ ρ1 = 0, (18)

where A = γ + τ. Returning to the spacetime coordinates yields 
[31]

∂tρ1 + cs∂xρ1 + αcsρ1∂xρ1 + β∂3
x ρ1 = 0, (19)

where

α = 1 − c2
s

2
− 1

A

[
(2c2

s − 1)
γ
2

− τ
(

c2
s − 1

6

)]
(20a)

β = 3γcs

m2
g A

. (20b)

Eq. (19) is the so called KdV equation [31], whose solutions are 
spatially localized pulses with finite energy which propagate with 
a very small distortion of the characteristic shape of the solitary 
wave solution.

The KdV equation (19) has an analytical soliton solution given 
by

ρ1(x, t) = 3(u − cs)

αcs
sec h2

(
λ−1(x − ut)

)
, (21)

where u is an arbitrary supersonic velocity and λ is the width of 
the solitonic pulse,

λ2 = 4
β

u − cs
. (22)

Now, the configurational entropy as a logarithmic measure of 
the information of square-integrable functions shall be employed 
to analyze the KdV solitons arisen in the cQGP. Considering f (x)
to be a square-integrable function defined on Rd , and its Fourier 
transform

F (k) =
∫
Rd

exp (−ik · x) f (x)ddx, (23)

one defines the modal fraction [9]

f (k) = |F (k)|2∫ |F (k)|2ddk
, (24)

which is the relative weight of a given mode k. The configurational 
entropy of f (x) hence reads [9]

S[ f ] = −
∞∫

∞
f̃ (k) ln f̃ (k)ddk, (25)

where f̃ (k) = f (k)
fmax(k)

is the normalized fraction that lies in the 
range [0,1] and also makes the CE to converge. The informational 
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properties of the definition (25) are more evident when compared 
with the Shannon’s entropy

H = −
∑

i

pi log pi, (26)

where pi are the probabilities of a given symbol of an alphabet A
appears in a string codified in an alphabet B. The amount of in-
formation needed to decode such a string depends on the code (a 
chosen map from A to B) used. The more information needed, the 
less compressed the information is. Nevertheless, there is a limit in 
the compression of the information by the code, given an arbitrary 
alphabet and any probability distribution. Such a limit is given by 
the Shannon’s entropy (26). For the configurational entropy, the 
spatial shape of a spatially bounded function f (x) plays the role of 
the string in the original alphabet, whereas the Fourier transform 
F (k) is this shape codified in the momentum alphabet {k}. The 
modal fraction (24) is then the probability distribution associated 
to a momentum configuration F (k). It measures the contribution 
of a given momentum configuration to the description of the spa-
tial profile of the function f (x). Following this interpretation, the 
configurational entropy is a measure of the amount of informa-
tion needed to described the spatial profile of f (x), by means of 
its Fourier transform F (k). However, since the Fourier transform 
is just an isometry of the square-integrable function space (with 
respect with L2 norm), the CE is, in fact, a measure of the infor-
mational content of the spatial shape of f (x).

These ideas are very general, and can be applied to a great va-
riety of problems, provided that one finds some spatially bounded 
function of the system for which the spatial shape are connected 
to quantities of interest. It has been accomplished in the past five 
years pretty much in non-linear and non-equilibrium dynamics 
[6–10], but also in others areas [4,11,12]. In all these works, the 
interpretation of configurational entropy given above holds.

In the case of (pure) KdV solitons, by its solitonic nature the 
shape remains the same as the time evolve, so it is sufficient to 
consider the solution at an initial time

ρ1(x, t = 0) = 3(u − cs)

αcs
sec h2

(
λ−1x

)
, (27)

and look for extremal points of the configurational entropy with 
respect to the width, in order to find whether there is a value 
of width, consequently a value of velocity, for which the soliton 
is at the most or the least information compressibility. In order 
to standardize our results with previous ones [31], the parameters 
g = 0.35, bφ4

0 = −6 × 10−4 GeV4 and ρ0 = 2 fm−3 are taken into 
account, which revealed a traverse perturbation in the QGP [31].

For the model presented in this section, we shall consider 
hereon d = 1, corresponding to the 1-dimensional soliton propa-
gation. Since the soliton (22) is already square-integrable, it can 
be directly used as the configurational entropy density. The KdV 
solitonic solution given by Eq. (27) is then taken into account to 
calculate the associated CE as a function of the soliton width in 
Eq. (22). Using Eqs. (24) and (25) yields the CE encoded, in Fig. 1.

In the above plot, the CE is represented as a function of the 
soliton width λ. For the gray dotted line, the hard gluon dynamical 
mass is 290 MeV and the most information compressibility config-
uration corresponds to a soliton with width λ = 1.634 fm. For the 
hard gluon with dynamical mass 300 MeV, such configuration oc-
curs for a soliton with width λ = 1.613 fm.

4. Concluding remarks and outlook

In this work, the informational content of a KdV solitonic pulse 
emerged from a perturbation in the baryonic density of a model 
Fig. 1. Configurational S(λ) as a function of the soliton width λ. For the gray dotted 
line, the minimum occurs at λ = 1.634 fm, whereas for the black dotted line the 
minimum is at λ = 1.613 fm.

for a cold quark–gluon plasma, beyond the linear regime are con-
sidered. The analysis was based upon the use of the configurational 
entropy. We showed that theres is a value of the soliton width 
for which the configurational entropy has a minimum, correspond-
ing to a configuration of maximum compressibility of information 
in the Fourier modes that describes the spatial shape of the soli-
ton.

These results show that even for the same solitonic solution of 
the KdV equation, the variations in the spatial shape induced by 
different choices of the relevant parameter are non-trivial in an in-
formational sense. The amount of information needed to describe 
the system is at the most compressed state for neither the min-
imum width nor the maximum one, as one could have expected. 
On the other hand, our results show that the configurational en-
tropy can be sensitive to variations of the spatial profile, not only 
between test functions and exact solutions of a non-linear PDE, as 
in Ref. [5], or between exact solutions of non-linear PDE with de-
generate energy as in [34,35], but even for the same solitary wave 
solution, with different values of the parameter.

Concerning the cQGP system, we also show that the larger the 
energy of the condensate (larger hard-gluon dynamical mass), the 
smaller the width of the informational optimal soliton is. It may 
indicate the most likely KdV solitons to appear as perturbations of 
the baryonic density, for each value of the energy, following the 
conjecture of [5].

An interesting direct extension for this work is the study of a 
non-zero temperature model of quark–gluon plasma in which soli-
tonic pulses are allowed, in particular a model for the regime of 
a QGP that is reproduced in the laboratory. Finally, it is interest-
ing to investigate whether the solitonic solutions of modified KdV 
equations show the same informational behavior, and if the con-
figurational entropy can detect the emergence of pure solitons as 
initially mixed states evolving with time.
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