Hawking-Unruh Hadronization and Strangeness Production in High Energy Collisions

Castorina, Paolo (Dipartimento di Fisica ed Astronomia, Università di Catania, Via Santa Sofia 64, 95100 Catania, Italy) (INFN Sezione di Catania, Via Santa Sofia 64, 95100 Catania, Italy) (PH Department, TH Unit, CERN, 1211 Geneva 23, Switzerland) ; Satz, Helmut  (Fakultät für Physik, Universität Bielefeld, Germany)

11 May 2014

Abstract: The thermal multihadron production observed in different high energy collisions poses many basic problems: why do even elementary, e+e- and hadron-hadron, collisions show thermal behaviour? Why is there in such interactions a suppression of strange particle production? Why does the strangeness suppression almost disappear in relativistic heavy ion collisions? Why in these collisions is the thermalization time less than 0.5  fm/c? We show that the recently proposed mechanism of thermal hadron production through Hawking-Unruh radiation can naturally answer the previous questions. Indeed, the interpretation of quark (q)-antiquark ( q̅ ) pairs production, by the sequential string breaking, as tunneling through the event horizon of colour confinement leads to thermal behavior with a universal temperature, T170  Mev, related to the quark acceleration, a, by T=a/2π . The resulting temperature depends on the quark mass and then on the content of the produced hadrons, causing a deviation from full equilibrium and hence a suppression of strange particle production in elementary collisions. In nucleus-nucleus collisions, where the quark density is much bigger, one has to introduce an average temperature (acceleration) which dilutes the quark mass effect and the strangeness suppression almost disappears.


Published in: Advances in High Energy Physics 2014 (2014) 376982
Published by: Hindawi Publishing Corporation
DOI: 10.1155/2014/376982
License: CC-BY-3.0



Back to search

Fulltext:
Download fulltextPDF Download fulltextXML Download fulltextPDF (PDFA)