000025198 001__ 25198
000025198 005__ 20180430134419.0
000025198 022__ $$a1029-8479
000025198 0247_ $$2DOI$$a10.1007/JHEP04(2018)147$$t2018-04-30T12:44:26Z
000025198 037__ $$9arXiv$$aarXiv:1707.07702
000025198 100__ $$aHawking, S.$$vDAMTP, CMS, Wilberforce Road, CB3 0WA, Cambridge, U.K.$$wUK
000025198 245__ $$aA smooth exit from eternal inflation?
000025198 260__ $$bSpringer/SISSA$$c2018-04-27
000025198 300__ $$a14
000025198 520__ $$aThe usual theory of inflation breaks down in eternal inflation. We derive a dual description of eternal inflation in terms of a deformed Euclidean CFT located at the threshold of eternal inflation. The partition function gives the amplitude of different geometries of the threshold surface in the no-boundary state. Its local and global behavior in dual toy models shows that the amplitude is low for surfaces which are not nearly conformal to the round three-sphere and essentially zero for surfaces with negative curvature. Based on this we conjecture that the exit from eternal inflation does not produce an infinite fractal-like multiverse, but is finite and reasonably smooth.
000025198 540__ $$aCC-BY-4.0$$uhttp://creativecommons.org/licenses/by/4.0/
000025198 542__ $$fThe Author(s)
000025198 592__ $$a2018-04-30
000025198 6531_ $$9author$$aAdS-CFT Correspondence
000025198 6531_ $$9author$$aGauge-gravity correspondence
000025198 6531_ $$9author$$aModels of Quantum Gravity
000025198 6531_ $$9author$$aSpacetime Singularities
000025198 700__ $$aHertog, Thomas$$v0000 0001 0668 7884, Institute for Theoretical Physics, University of Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium$$wBelgium$$x $$ygrid.5596.f
000025198 773__ $$c147$$pJHEP$$v1804$$y2018
000025198 8564_ $$s43957$$uhttps://repo.scoap3.org/record/25198/files/main.xml
000025198 8564_ $$s499396$$uhttps://repo.scoap3.org/record/25198/files/main.pdf?subformat=pdfa$$xpdfa