Search for the $X(5568)$ State Decaying into $B_s^0\pi^\pm$ in Proton-Proton Collisions at $\sqrt{s} = 8$ TeV

A. M. Sirunyan et al.*
(CMS Collaboration)

(Received 17 December 2017; revised manuscript received 19 February 2018; published 18 May 2018)

A search for resonancelike structures in the $B_s^0\pi^\pm$ invariant mass spectrum is performed using proton-proton collision data collected by the CMS experiment at the LHC at $\sqrt{s} = 8$ TeV, corresponding to an integrated luminosity of 19.7 fb$^{-1}$. The B_s^0 mesons are reconstructed in the decay chain $B_s^0 \to J/\psi\phi$, with $J/\psi \to \mu^+\mu^-$ and $\phi \to K^+K^-$. The $B_s^0\pi^\pm$ invariant mass distribution shows no statistically significant peaks for different selection requirements on the reconstructed B_s^0 and π^\pm candidates. Upper limits are set on the relative production rates of the $X(5568)$ and B_s^0 states times the branching fraction of the decay $X(5568)^{\pm} \to B_s^0\pi^\pm$. In addition, upper limits are obtained as a function of the mass and the natural width of exotic states decaying into $B_s^0\pi^\pm$.

The evidence presented by the D0 Collaboration of a new state decaying to $B_s^0\pi^\pm$ [1] initiated considerable interest within the exotic hadron community (discussed, e.g., in Refs. [2,3] and references therein) and triggered a similar search by the LHCb Collaboration [4]. The D0 experiment reported an unexpected, narrow structure, named $X(5568)$, in the $B_s^0\pi^\pm$ invariant mass distribution and interpreted it as a hadron composed of four quarks of different flavors ($b\bar{s}u\bar{d}$; inclusion of charge-conjugate modes is implied throughout this Letter). The measured mass and natural width of this state are 5567.8 \pm 2.9(stat)$^{+0.9}_{-1.9}$(syst) MeV and 21.9 \pm 6.4(stat)$^{+5.0}_{-2.5}$(syst) MeV, respectively [1]. Possible quantum numbers for the state are $J^P = 0^+$, if the $B_s^0\pi^\pm$ is produced in an S-wave, or $J^P = 1^+$, if the decay proceeds via the chain $X(5568)^{\pm} \to B_s^0\pi^\pm$, $B_s^0 \to J/\psi\gamma$ and the photon is not reconstructed. In the latter case, the mass of the new state would be shifted by $m_{B_s^0} - m_{B_s^0}$ with respect to the measured $X(5568)$ mass, where $m_{B_s^0}$ and $m_{B_s^0}$ are the nominal B_s^0 and B_{s0}^\mp masses [5].

The LHCb Collaboration searched for the $X(5568)$ state and reported a negative result [4]. Further independent searches are needed either to confirm the $X(5568)$ state or to set stronger limits on its production. In particular, the CMS detector can probe a central kinematic region of B_s^0 candidates similar to that of D0, complementing the LHCb search in the forward region. Recently, the CDF and ATLAS Collaborations reported independently negative search results for the $X(5568)$ [6,7], while the D0 Collaboration presented additional evidence for the $X(5568)$ by adding B_s^0 mesons reconstructed in semileptonic decays [8].

This Letter presents a search for the $X(5568)$ state performed by the CMS Collaboration at the LHC. The data sample corresponds to 19.7 fb$^{-1}$ of proton-proton (pp) collisions at $\sqrt{s} = 8$ TeV collected in 2012. The $B_s^0\pi^\pm$ candidates are reconstructed through the decay $B_s^0 \to J/\psi\phi$, with $J/\psi \to \mu^+\mu^-$ and $\phi \to K^+K^-$. The relative production rate of $X(5568)$, with respect to B_s^0, times the branching fraction of the decay $X(5568)^{\pm} \to B_s^0\pi^\pm$ decay is calculated using the relation

$$\rho_X = \frac{\sigma(pp \to X + anything)B(X \to B_s^0\pi^\pm)}{\sigma(pp \to B_s^0 + anything)} = \frac{N_X}{\epsilon_{rel}N_{B_s^0}},$$

where $X = X(5568)^{\pm}$, N_X ($N_{B_s^0}$) is the number of $X(5568)$ (B_s^0) signal candidates reconstructed in data and $\epsilon_{rel} = \epsilon_X/\epsilon_{B_s^0}$ is the relative efficiency. The D0 Collaboration measured $\rho_X = (8.6 \pm 2.4)\%$ and $(8.2 \pm 3.1)\%$ for $p_T(B_s^0) > 10$ and 15 GeV [1].

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Muons are detected in the pseudorapidity range $|\eta| < 2.4$ in gas-ionization chambers embedded in

*Full author list given at the end of the Letter.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
the steel flux-return yoke outside the solenoid. The main subdetectors used for the present analysis are the silicon tracker and the muon detection system. The silicon tracker measures charged particles within the range $|\eta| < 2.5$. For nonisolated particles with transverse momentum $1 < p_T < 10$ GeV and $|\eta| < 1.4$, the track resolutions are typically 1.5% in p_T and 25–90 (45–150) µm in the transverse (longitudinal) impact parameter [9]. Matching muons to tracks measured in the silicon tracker results in a relative meson mass [5].

The first level (L1), composed of custom hardware processors, uses information from the calorimeters and muon detectors. The second level, known as the high-level trigger (HLT), consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing. This analysis uses events collected with HLT algorithms requiring two muons that are consistent with originating from a J/ψ meson decaying at a significant distance from the luminous region.

The reconstruction of the B^0_s candidates closely follows the procedure described in Ref. [13], where the CP-violating phase ϕ_s was measured using the same decay chain, $B^0_s \to J/\psi K^0_s$, with $J/\psi \to \mu^+ \mu^-$ and $K^0_s \to \pi^0 \to \gamma \gamma$. The B^0_s candidates were reconstructed from the same data set and triggered by the same L1 and HLT algorithms.

The reconstruction requires two muons of opposite charge that must match those that triggered the event readout. The offline muon selection is more restrictive than the trigger requirements and includes $p_T (\mu^\pm) > 4$ GeV, $|\eta (\mu^\pm)| < 2.2$, $p_T (\mu^+ \mu^-) > 7$ GeV, soft muon identification [10], the dimuon vertex χ^2 fit probability $P_{\chi^2}(\mu^+ \mu^-) > 10\%$, and the dimuon mass within the range 3.04–3.15 GeV. The angle α_{ℓ_1} of the muons is constrained because the width of the $\phi(1020)$ resonance exceeds the mass resolution. Additional requirements imposed on the B^0_s candidates include $p_T (B^0_s) > 10$ GeV, $P_{\chi^2}(B^0_s) > 1\%$, $D_{\chi^2}(B^0_s)/\sigma_{D_{\chi^2}(B^0_s)} > 3$, and $\cos \alpha_{\ell_1} (B^0_s) > 0.99$, where $D_{\chi^2}(B^0_s)$ and $\alpha_{\ell_1} (B^0_s)$ are analogous to the corresponding dimuon variables and are measured with respect to the primary interaction vertex (PV). The events contain multiple pp collisions from the same or nearby bunch crossings (pileup), with an average of 16 collisions per event. The PV is chosen as the one with the smallest angle between the vector from the collision point to the B^0_s candidate decay vertex and the B^0_s candidate momentum.

An extended unbinned maximum-likelihood fit to the $J/\psi K^+ K^-$ invariant mass, $M(J/\psi K^+ K^-)$, distribution yields 49277 ± 278 B^0_s signal candidates, where the signal and background components are modeled by a double-Gaussian and an exponential function, respectively, as shown in Fig. 1. In the fit, the common mean $(\mu_{B^0_s})$, the fraction of the second Gaussian function (f), and the widths $(\sigma_{1,2})$ of the two signal Gaussian functions (given in Fig. 1), as well as the parameter of the exponential function, are left free. Signal and lower and upper sideband mass regions are defined, respectively, by the intervals $[-2\sigma_{B^0_s} + 2\sigma_{B^0_s}]$, $[10\sigma_{B^0_s}, -4\sigma_{B^0_s}]$, and $[4\sigma_{B^0_s}, 10\sigma_{B^0_s}]$ around $\mu_{B^0_s}$, as indicated in Fig. 1. Here, $\sigma_{B^0_s} \approx 14$ MeV represents the standard deviation of the double-Gaussian function. In the signal region, the signal purity is about 85% and the number of multiple B^0_s candidates in a single event is negligible.

The pion candidate from the $X(5568)^+ \to B^0_s \pi^\pm$ decay is required to be a track used in the PV fit, with $p_T (\pi^\pm) > 0.5$ GeV, and satisfy track quality requirements [9]. The average number of $B^0_s \pi^\pm$ candidates per event in the B^0_s signal region is 1.8. Constraints on the angle between the candidate decay vertex and the B^0_s candidate decay vertex are applied.

The B^0_s candidates are obtained using a kinematic vertex fit to the two muon and two kaon tracks, with the dimuon candidate mass constrained to the nominal J/ψ meson mass [5] [the mass of the $K^+ K^-$ candidate is not constrained because the width of the $\phi(1020)$ resonance exceeds the mass resolution]. Additional requirements imposed on the B^0_s candidates include $p_T (B^0_s) > 10$ GeV, $P_{\chi^2}(B^0_s) > 1\%$, $D_{\chi^2}(B^0_s)/\sigma_{D_{\chi^2}(B^0_s)} > 3$, and $\cos \alpha_{\ell_1} (B^0_s) > 0.99$, where $D_{\chi^2}(B^0_s)$ and $\alpha_{\ell_1} (B^0_s)$ are analogous to the corresponding dimuon variables and are measured with respect to the primary interaction vertex (PV). The events contain multiple pp collisions from the same or nearby bunch crossings (pileup), with an average of 16 collisions per event. The PV is chosen as the one with the smallest angle between the vector from the collision point to the B^0_s candidate decay vertex and the B^0_s candidate momentum.

An extended unbinned maximum-likelihood fit to the $J/\psi K^+ K^-$ invariant mass, $M(J/\psi K^+ K^-)$, distribution yields 49277 ± 278 B^0_s signal candidates, where the signal and background components are modeled by a double-Gaussian and an exponential function, respectively, as shown in Fig. 1. In the fit, the common mean $(\mu_{B^0_s})$, the fraction of the second Gaussian function (f), and the widths $(\sigma_{1,2})$ of the two signal Gaussian functions (given in Fig. 1), as well as the parameter of the exponential function, are left free. Signal and lower and upper sideband mass regions are defined, respectively, by the intervals $[-2\sigma_{B^0_s} + 2\sigma_{B^0_s}]$, $[10\sigma_{B^0_s}, -4\sigma_{B^0_s}]$, and $[4\sigma_{B^0_s}, 10\sigma_{B^0_s}]$ around $\mu_{B^0_s}$, as indicated in Fig. 1. Here, $\sigma_{B^0_s} \approx 14$ MeV represents the standard deviation of the double-Gaussian function. In the signal region, the signal purity is about 85% and the number of multiple B^0_s candidates in a single event is negligible.

The pion candidate from the $X(5568)^+ \to B^0_s \pi^\pm$ decay is required to be a track used in the PV fit, with $p_T (\pi^\pm) > 0.5$ GeV, and satisfy track quality requirements [9]. The average number of $B^0_s \pi^\pm$ candidates per event in the B^0_s signal region is 1.8. Constraints on the angle between the candidate decay vertex and the B^0_s candidate decay vertex are applied.

The B^0_s candidates are obtained using a kinematic vertex fit to the two muon and two kaon tracks, with the dimuon candidate mass constrained to the nominal J/ψ meson mass [5] [the mass of the $K^+ K^-$ candidate is not constrained because the width of the $\phi(1020)$ resonance exceeds the mass resolution]. Additional requirements imposed on the B^0_s candidates include $p_T (B^0_s) > 10$ GeV, $P_{\chi^2}(B^0_s) > 1\%$, $D_{\chi^2}(B^0_s)/\sigma_{D_{\chi^2}(B^0_s)} > 3$, and $\cos \alpha_{\ell_1} (B^0_s) > 0.99$, where $D_{\chi^2}(B^0_s)$ and $\alpha_{\ell_1} (B^0_s)$ are analogous to the corresponding dimuon variables and are measured with respect to the primary interaction vertex (PV). The events contain multiple pp collisions from the same or nearby bunch crossings (pileup), with an average of 16 collisions per event. The PV is chosen as the one with the smallest angle between the vector from the collision point to the B^0_s candidate decay vertex and the B^0_s candidate momentum.

An extended unbinned maximum-likelihood fit to the $J/\psi K^+ K^-$ invariant mass, $M(J/\psi K^+ K^-)$, distribution yields 49277 ± 278 B^0_s signal candidates, where the signal and background components are modeled by a double-Gaussian and an exponential function, respectively, as shown in Fig. 1. In the fit, the common mean $(\mu_{B^0_s})$, the fraction of the second Gaussian function (f), and the widths $(\sigma_{1,2})$ of the two signal Gaussian functions (given in Fig. 1), as well as the parameter of the exponential function, are left free. Signal and lower and upper sideband mass regions are defined, respectively, by the intervals $[-2\sigma_{B^0_s} + 2\sigma_{B^0_s}]$, $[10\sigma_{B^0_s}, -4\sigma_{B^0_s}]$, and $[4\sigma_{B^0_s}, 10\sigma_{B^0_s}]$ around $\mu_{B^0_s}$, as indicated in Fig. 1. Here, $\sigma_{B^0_s} \approx 14$ MeV represents the standard deviation of the double-Gaussian function. In the signal region, the signal purity is about 85% and the number of multiple B^0_s candidates in a single event is negligible.

The pion candidate from the $X(5568)^+ \to B^0_s \pi^\pm$ decay is required to be a track used in the PV fit, with $p_T (\pi^\pm) > 0.5$ GeV, and satisfy track quality requirements [9]. The average number of $B^0_s \pi^\pm$ candidates per event in the B^0_s signal region is 1.8. Constraints on the angle between the candidate decay vertex and the B^0_s candidate decay vertex are applied.
Final-state photon radiation is included in EVTGEN using the same rate as observed in data. The simulation includes pileup effects at the TeV scale, where m_B represents a polynomial function of m_X. The poly-α is used. The procedure is repeated requiring $p_T(B^0_\pi) > 25 \text{ GeV}$, $p_T(\pi^\pm) > 1 \text{ GeV}$, and $p_T(K^\pm) > 1 \text{ GeV}$. Figure 2(b) shows the resulting $M^A(B^0_\pi^{\pm})$ distributions for events in the lower and higher sideband and signal regions. Only the latter two distributions have a clear excess around 5.75–5.84 GeV. This excess is consistent with the decays $B_1(5721)^\pm \rightarrow B^0\pi^\pm$, $B_2(5747)^\pm \rightarrow B^0\pi^\pm$, and $B_2(5747)^\pm \rightarrow B^0\pi^\pm$, where the decay $B^0 \rightarrow J/\psi K^+\pi^-$ is misreconstructed as $B^0 \rightarrow J/\psi K^+K^-$ (the photon from the B^0 decay is not reconstructed). The peaks in the $M^A(B^0_\pi^{\pm})$ distribution corresponding to the decays $B_{1,2}^{(s)} \rightarrow B^0\pi^\pm$ are shifted by $m_B - m_{B^{\mp}}$ with respect to the nominal masses of the $B_{1,2}^{(s)}$ states [5].

A possible X(5568) signal contribution in the $M^A(B^0_\pi^{\pm})$ spectrum is modeled by a relativistic S-wave Breit–Wigner (BW) function, with mass and width parameters fixed to m_X and Γ_X, respectively. The BW is convolved with a triple-Gaussian resolution function whose parameters are obtained from the simulated data (standard deviation of the triple-Gaussian function is about 2.2 MeV in the region of interest). The background shape is approximated by a function of the form $(x - x_0)^\alpha \text{Pol}_n(x)$, where $x = M^A(B^0_\pi^{\pm})$, $x_0 = m_{\pi^\pm} + m_{\pi^\pm}$, with m_{π^\pm} the π^\pm mass [5], and $\text{Pol}_n(x)$ represents a polynomial function of order n. For the default shape $n = 3$ is used. The polynomial coefficients, as well as the exponent α and the signal and background yields, are obtained from the unbinned extended maximum-likelihood fit shown in Fig. 3(a). The fit returns a signal yield of $N_X = -85 \pm 160$ events. The procedure is repeated requiring $p_T(B^0_\pi) > 15 \text{ GeV}$, and the fit results displayed in Fig. 3(b) give $N_X = -103 \pm 122$ events.
Several cross-checks are performed and in all cases the signal yield is consistent with zero. They include repeating the fit with the following variations: the background model parameters are fixed to the values obtained from the fit with the $X(5568)$ signal region excluded; the background model is fixed to the shape obtained from simulated B^0 mesons combined with pion candidates from the same simulated event; different kinematic requirements and reconstruction quality criteria are imposed on the $B^0\pi^\pm$, B^0_s, and π^\pm candidates; collision events with multiple reconstructed candidates are removed from the data sample, and alternative background functions and fit regions are used.

An upper limit on ρ_X, defined in Eq. (1), is computed using the asymptotic CLs [20,21] method developed in Ref. [22]. The limit takes into account the following sources of systematic uncertainty: the uncertainty in the mass and the width of the BW measured by the D0 Collaboration [1]; the uncertainty in $N(B^0_s)$; the pion tracking efficiency uncertainty of 3.9% [9]; the uncertainty in ϵ_{rel} due to the finite number of simulated events; the description of the background by alternative approximation functions, including the shape obtained from simulation; and modifications of the signal function due to variations of the resolution function and the efficiency with respect to $M^2(B^0_s\pi^\pm)$ (both negligible). The measured upper limit is $\rho_X < 1.1\%$ at 95% confidence level (CL) for the baseline selection criteria $[p_T(B^0_s) > 10 \text{ GeV}]$ and $\rho_X < 1.0\%$ at 95% CL for the analysis requiring $[p_T(B^0_s) > 15 \text{ GeV}]$.

Using simulations of a spin-1 state decaying to $s^0\pi$ and where the mass is shifted by $m_{B^0_s} - m_{B^0_s}$, the upper limits were verified to differ negligibly between either the spin-1 or spin-0 assumption.

Upper limits are also obtained for different values of mass and natural width (Γ) of a possible $B^0_s\pi^\pm$ resonance, as shown in Fig. 4. For these limits, no systematic uncertainties related to the mass and width of the exotic state are assigned. On the other hand, an additional systematic uncertainty in the relative efficiency of up to 6% is estimated for the extrapolation to high-mass resonances from the low-mass simulation. The limits are obtained for values of Γ from 10 to 50 MeV in 10 MeV steps, while the mass takes values from $m_{B^0_s} + m_{\pi^\pm} + \Gamma$ up to 5.9 GeV. In order to consider a possible exotic state with higher mass decaying to the $B^0_s\pi^\pm$ final state [23,24]. No significant excess is found throughout the region considered.

In summary, a search for the $X(5568)$ state is performed by the CMS Collaboration using pp collision data collected at $\sqrt{s} = 8$ TeV and corresponding to an integrated luminosity of 19.7 fb$^{-1}$. With about 50,000 B^0_s signal candidates, no significant structure in the $B^0_s\pi^\pm$ invariant mass spectrum is found around the mass reported by the D0 Collaboration (nor for masses up to 5.9 GeV). The absence of a peak is
supported by direct comparison with the events in the B_s^0 sidebands, and by fits to the $B_s^0\pi^{\pm}$ invariant mass distribution with a resonant component included, using different kinematic selection requirements, as well as variants of the background modeling, fit regions, and quality criteria.

Upper limits on the relative production rates of the $X(5568)$ and B_s^0 states, multiplied by the unknown branching fraction of the $X(5568)^{\pm} \to B_s^0\pi^{\pm}$ decay, are computed to be

$$\rho_X < 1.1\% \quad \text{at} \quad 95\% \text{CL} \quad \text{for} \quad p_T(B_s^0) > 10 \text{ GeV} \quad \text{and} \quad \rho_X < 1.0\% \quad \text{at} \quad 95\% \text{CL} \quad \text{for} \quad p_T(B_s^0) > 15 \text{ GeV}.$$

The upper limits on ρ_X presented in this Letter are a factor of 2 more stringent than the previous best limits, and do not confirm the existence of the $X(5568)$ state. These limits are also valid for a spin-1 state decaying into $B_s^{0}\pi^{\pm}$. Additionally, upper limits are set for different values of mass and natural width of a hypothetical exotic resonance decaying into $B_s^{0}\pi^{\pm}$.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); RNE (Romania); UPEI (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSC (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, Contract No. 675440 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), Contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Russian Ministry of Education and Science, Contracts No. 3.2989.2017 and No. 14.A12.31.0006; the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, Contract No. C-1845; and the Weston Havens Foundation (USA).

PHYSICAL REVIEW LETTERS 120, 202005 (2018)

202005-9

(CMS Collaboration)
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

Hanyang University, Seoul, Korea

Korea University, Seoul, Korea

Seoul National University, Seoul, Korea

University of Seoul, Seoul, Korea

Sungkyunkwan University, Suwon, Korea

Vilnius University, Vilnius, Lithuania

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

University Autónoma de San Luis Potosí, San Luis Potosí, Mexico

University of Auckland, Auckland, New Zealand

University of Canterbury, Christchurch, New Zealand

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia

Moscow Institute of Physics and Technology, Moscow, Russia

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia

P.N. Lebedev Physical Institute, Moscow, Russia

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

Novosibirsk State University (NSU), Novosibirsk, Russia

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Instituto Autónoma de Madrid, Madrid, Spain

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

ETH Zurich—Institute for Particle Physics and Astrophysics (IPPA), Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Istanbul, Turkey

Istanbul Technical University, Istanbul, Turkey

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

Baylor University, Waco, Texas, USA
University of Alabama, Tuscaloosa, Alabama, USA
Brown University, Providence, Rhode Island, USA
University of California, Davis, Davis, California, USA
University of California, Los Angeles, California, USA
University of California, Riverside, Riverside, California, USA
University of California, San Diego, La Jolla, California, USA
University of California, Santa Barbara, Santa Barbara, California, USA
California Institute of Technology, Pasadena, California, USA
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
University of Colorado Boulder, Boulder, Colorado, USA
Cornell University, Ithaca, New York, USA
Fermi National Accelerator Laboratory, Batavia, Illinois, USA
University of Florida, Gainesville, Florida, USA
Florida International University, Miami, Florida, USA
Florida State University, Tallahassee, Florida, USA
Florida Institute of Technology, Melbourne, Florida, USA
University of Illinois at Chicago (UIC), Chicago, Illinois, USA
The University of Iowa, Iowa City, Iowa, USA
Johns Hopkins University, Baltimore, Maryland, USA
The University of Kansas, Lawrence, USA
Kansas State University, Manhattan, USA
Lawrence Livermore National Laboratory, Livermore, California, USA
University of Maryland, College Park, Maryland, USA
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
University of Minnesota, Minneapolis, Minnesota, USA
University of Mississippi, Oxford, Mississippi, USA
University of Nebraska-Lincoln, Lincoln, Nebraska, USA
State University of New York at Buffalo, Buffalo, New York, USA
Northeastern University, Boston, Massachusetts, USA
Northwestern University, Evanston, Illinois, USA
University of Notre Dame, Notre Dame, Indiana, USA
The Ohio State University, Columbus, Ohio, USA
Princeton University, Princeton, New Jersey, USA
University of Puerto Rico, Mayaguez, Puerto Rico
Purdue University, West Lafayette, Indiana, USA
Purdue University Northwest, Hammond, Indiana, USA
Rice University, Houston, Texas, USA
University of Rochester, Rochester, New York, USA
The Rockefeller University, New York, New York, USA
Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
University of Tennessee, Knoxville, Tennessee, USA
Texas A&M University, College Station, Maryland, USA
Texas Tech University, Lubbock, Texas, USA
Vanderbilt University, Nashville, Tennessee, USA
University of Virginia, Charlottesville, Virginia, USA
Wayne State University, Detroit, Michigan, USA
University of Wisconsin—Madison, Madison, Wisconsin, USA

*Deceased.
†Also at University of Technology, Vienna, Austria.
‡Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
§Also at Universidade Estadual de Campinas, Campinas, Brazil.
¶Also at Universidade Federal de Pelotas, Pelotas, Brazil.
‖Also at Université Libre de Bruxelles, Bruxelles, Belgium.
¶Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
‖Also at Joint Institute for Nuclear Research, Dubna, Russia.
§Also at Ain Shams University, Cairo, Egypt.
¶Also at Cairo University, Cairo, Egypt.
Also at Sinop University, Sinop, Turkey.
Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
Also at Texas A&M University at Qatar, Doha, Qatar.
Also at Kyungpook National University, Daegu, Korea.