A distribution approach to finite-size corrections in Bethe Ansatz solvable models

Granet, Etienne (Institut de Physique Théorique, CEA Saclay, Gif-sur-Yvette, 91191, France) (Laboratoire de physique théorique, Département de physique de l'ENS, École Normale Supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, Paris, 75005, France) ; Jacobsen, Jesper Lykke (Institut de Physique Théorique, CEA Saclay, Gif-sur-Yvette, 91191, France) (Laboratoire de physique théorique, Département de physique de l'ENS, École Normale Supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, Paris, 75005, France) (Sorbonne Universités, UPMC Univ. Paris 06, École Normale Supérieure, CNRS, Laboratoire de Physique Théorique (LPT ENS), Paris, 75005, France) ; Saleur, Hubert (Institut de Physique Théorique, CEA Saclay, Gif-sur-Yvette, 91191, France) (USC Physics Department, Los Angeles, CA, 90089, USA)

05 July 2018

Abstract: We present a new and efficient method for deriving finite-size effects in statistical physics models solvable by Bethe Ansatz. It is based on the study of the functional that maps a function to the sum of its evaluations over the Bethe roots. A simple and powerful constraint is derived when applying this functional to infinitely derivable test functions with compact support, that generalizes then to more general test functions.


Published in: Nuclear Physics B (2018)
Published by: Elsevier
DOI: 10.1016/j.nuclphysb.2018.06.001
License: CC-BY-3.0



Back to search

Fulltext:
Download fulltextPDF Download fulltextXML