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1 Introduction

It has been shown by Ji [1] that a numerical computation of parton distribution functions

(PDFs) in Euclidean space using lattice QCD may be possible. Shortly after the basic idea

was introduced several works [2–6] explored the properties of the methodology as well as

introduced alternative approaches [7–10]. We refer the reader to [11] for a detailed review

on the topic. However, in recent notes Rossi and Testa [12, 13] raised a serious question

about the validity of such approaches pointing out that the moments obtained from non-

local operators are divergent. As a result these approaches may be impractical if one

does not understand how to subtract non-perturbatively these unwanted effects. Despite

the rebuttal in [14], in [13] it is argued that power divergences present in the moments

of Ji’s quasi-PDFs are a major obstruction in extracting the full PDF from lattice QCD

calculations using this methodology.

In this work we will discuss potential power divergences in lattice QCD computa-

tions of Ioffe time parton distribution functions (PDFs) using the methodology introduced

in [15, 16]. Ioffe time PDFs are just the Fourier transforms of the longitudinal momentum

fraction x PDFs, where the Ioffe time ν is the Fourier dual of the momentum fraction x.

Ioffe time PDFs are directly related to the matrix elements computed in lattice QCD and

therefore analyzing their behavior at finite lattice spacing is simpler. Furthermore, in the

approach of [15, 16], the light cone limit is taken as z2 → 0 at fixed Ioffe time ν. On the

other hand, the moments of PDFs are related to the coefficients of the Taylor expansion

of an ultraviolet (UV) finite matrix element at zero Ioffe time and fixed z2. We use this

property to compute the first two moments of PDFs in the MS scheme and find agreement

with direct computations through local matrix elements of twist-2 operators. The issue

of power divergent mixing of high dimensional operators with lower dimensional ones (the

“infamous” trace operators) is a problem (actually an obstruction) if one wants to directly

extract from lattice QCD calculations the PDFs as Fourier Transforms of hadronic matrix

elements of the bi-local operator. On the contrary if, as it is done in the present paper,

lattice data at short-distance are used to fit the operator product expansion (OPE) of the
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Ioffe time function in order to extract moments of PDFs, no question about power diver-

gent mixing arises. A similar issue though in a different context was pointed out in [17].

In section 2, we remind the reader the details of the formalism, we discuss UV divergences

and the expansion in moments. In section 3 we perform the computation of moments.

section 4 contains our concluding remarks.

2 Ioffe time and pseudo parton distribution functions

Parton distribution functions can be computed from the hadronic matrix element of a

quark bilinear operator with the quark and anti-quark fields separated by a finite distance.

In the case of unpolarized, non-singlet parton densities the appropriate matrix element is

Mα(z, p) ≡ 〈p|ψ̄(z) γα Ê(z, 0;A)τ3ψ(0)|p〉 , (2.1)

where z is an arbitrary separation between the quark fields, p is an arbitrary momentum for

the hadron, Ê(z, 0;A) is the z → 0 straight Wilson line in the fundamental representation,

τ3 is the flavor Pauli matrix, and γα is a gamma matrix acting in spin space. Lorentz

invariance dictates that this matrix element can be decomposed as

Mα(z, p) =2pαMp(zp, z
2) + zαMz(zp, z

2) . (2.2)

It should be noted that the same matrix element is used to define the collinear PDFs

by taking z to be a separation along the light cone. In particular, with z = (0, z−, 0, 0) in

light cone coordinates and α = + we obtain

M+(z, p) =2p+Mp(zp, 0) , (2.3)

with the second term dropping out because z does not have a “+” component and noting

that z2 = 0 on the light cone. Given thatMp(zp, z
2) is Lorentz invariant, we can compute it

with any convenient choice of z and α, however, if z is not on the light cone, the limit z2 → 0

has to be taken to compute the PDF. This limit is non-trivial as there exists a logarithmic

singularity at z2 = 0. For that reason the PDFs are defined through factorization of this

short distance singularity which results in scale dependent PDFs [18–20]. Furthermore, it

is well known that in the limit of z2 = 0 only the twist-2 contribution survives. With the

above discussion it is easy to see that a non-perturbative computation of the collinear PDFs

should start with the computation of the invariant functionMp(zp, z
2) from which one can

obtain the twist-2 contribution in the limit z2 → 0. Before continuing further, it should be

noted that the Lorentz invariant quantity zp is called Ioffe time ν in the literature [21, 22].

A convenient choice is z = (0, 0, 0, z3) in Cartesian coordinates, α in the temporal direction

i.e. α = 0, and the hadron momentum p = (p0, 0, 0, p). In this case the zα-part drops out

〈p|ψ̄(z) γ0 Ê(z, 0;A)τ3ψ(0)|p〉 = 2p0Mp(ν, z
2
3) , (2.4)

isolating the function Mp(ν, z
2) we seek to compute.1 Considering a time local matrix

element as above also allows for its computation in Euclidean space using lattice QCD. As

1For simplicity we work with the metric [-, +, +, +] resulting in z2 = z23 for z = (0, 0, 0, z3).
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it is well known [23], in this case the matrix element computed in Euclidean space is the

same as the Minkowski space counterpart. Therefore, one can analyze the properties of the

above matrix element using the Minkowski metric. Unfortunately, taking z to be space-like,

UV singularities arise from the gauge link self energy and end points [19, 20, 24, 25]. It has

been shown, that these UV singularities can be factorized in a multiplicative factor and can

be renormalized away. A particularly practical proposal for removing these singularities is

to consider the ratio

M(ν, z2) =
〈p|ψ̄(z) γ0 Ê(z, 0;A)τ3ψ(0)|p〉

〈p = 0|ψ̄(z) γ0 Ê(z, 0;A)τ3ψ(0)|p = 0〉
=
Mp(ν, z

2)

Mp(0, z2)
, (2.5)

which exactly cancels all these UV singularities leaving behind a finite reduced function for

which the regulator can be removed and therefore, when computed in lattice QCD it can

be extrapolated to the continuum limit at fixed ν and z2. This approach was discussed and

tested in [16, 26], where it was indeed shown that these UV singularities are absent from

the numerical data for M(ν, z2). Furthermore, with the UV singularities canceled in the

ratio the only remaining singularity at z2 = 0 is that associated with collinear divergences

and therefore the OPE can be used on M(ν, z2) resulting in a factorization into a PDF and

a perturbatively computable coefficient function. Therefore we can write

M(ν, z2) =

∫ 1

0
dα C(α, z2µ2, αs(µ))Q(αν, µ) +

∞∑
k=1

Bk(ν)(z2)k , (2.6)

where µ is the factorization scale in a particular scheme such as MS, αs(µ
2) is the strong

coupling constant and Q(ν, µ) is the Ioffe time PDF in that scheme. Furthermore, there are

additional polynomial corrections to the leading order expression that vanish in the limit

of z2 = 0. These corrections are not the same for M(ν, z2) andMp(ν, z
2). As it was shown

in [16, 26], the polynomial corrections for the case of the reduced function are smaller due

to cancellation of certain polynomial terms in the numerator and the denominator. In

particular, since the reduced function by construction satisfies M(0, z2) = 1, one can see

that Bk(0) = 0 and ∫ 1

0
dα C(α, z2µ2, αs(µ)) = 1 . (2.7)

In the following subsections we proceed with further discussion of UV divergences and

consider the expansion in moments of the reduced function M(ν, z2) from where the MS

moments of PDFs can be extracted.

2.1 Comment on UV divergences

The matrix element Mp(ν, z
2) has UV divergences that need to be renormalized before

any discussion of the collinear PDFs begins. However, as we said before, these divergences

can be renormalized multiplicatively. Given that there exist many ways to treat these

divergences one may want to look at the most general case scenario. Let’s assume we

adopt a particular regularization scheme (a lattice with lattice spacing a) and a particular

renormalization scheme (e.g. RI-MOM [27]). In this case, the renormalized matrix element
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at a scale µUV (in the case of multiplicative renormalization) would be related to the bare

matrix (denoted by the subscript a) element by

〈p|ψ̄(z) γ0 Ê(z, 0;A)τ3ψ(0)|p〉a = Z(aµUV )〈p|ψ̄(z) γ0 Ê(z, 0;A)τ3ψ(0)|p〉µUV . (2.8)

The renormalized matrix element can then be extrapolated to the continuum limit as all UV

divergences have been removed. It should be noted that the renormalized matrix element

depends now on a new scale, the renormalization scale, which takes the place of the lattice

spacing. This scale is different from the factorization scale at which the PDFs are defined

as one renormalizes UV divergences while the other factorizes collinear divergences present

in the PDFs.

In addition, one may define the renormalization group invariant matrix elements (RGI)

through the continuum UV invariant scaling functions σ(µUV ) (see for example [28]) by

〈p|ψ̄(z) γ0 Ê(z, 0;A)τ3ψ(0)|p〉RGI = σ(µUV )〈p|ψ̄(z) γ0 Ê(z, 0;A)τ3ψ(0)|p〉µUV , (2.9)

where σ(µUV ) is regulator independent, but scheme dependent, and the RGI matrix element

is scheme and regulator independent. This RGI matrix elements are the objects that need

to be analyzed in order to obtain the collinear PDFs. One may obtain them in a variety

of methods (e.g. using the RI-MOM scheme [29]), and one can discuss their properties

without the need for referring to the lattice regulator anymore. Therefore, the ratio

M(ν, z2) =
Mp(ν, z

2)

Mp(0, z2)
=
MRGI

p (ν, z2)

MRGI
p (0, z2)

, (2.10)

is regulator and RG independent and does not have any knowledge of a lattice cut-off that

may have been used in order to compute it. Here MRGI
p is defined by

〈p|ψ̄(z) γ0 Ê(z, 0;A)τ3ψ(0)|p〉RGI = 2p0MRGI
p (ν, z2) . (2.11)

With this discussion it is clear that the expansion of M(ν, z2) into leading twist parton

distribution functions and subleading higher twist contributions that are suppressed by

powers of z2 cannot fail due to lattice artifacts as it can be performed without the use of

a lattice regulator.

In the limit of small space-like z2, the matrix elements of the numerator and the

denominator of the ratio that defines M(ν, z2) can be expanded using OPE in terms of

local non-perturbative, renormalized matrix elements and Wilson coefficients. The Wilson

coefficients can in principle be computed in perturbation theory in a scheme of our choice.

The matrix elements can be computed in any regularization and renormalization scheme

we desire provided that is matched to the perturbative scheme used to compute the Wilson

coeficients. If we ignore higher twist effects, then the small z2 expansion of our matrix

element would read as

M(ν, z2) = 1 +
1

2p0

∞∑
k=1

ik
1

k!
zα1 · · · zαk

ck(z
2µ2)〈p|O0α1···αk

(k) |p〉µ +O(z2) (2.12)
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where 〈p|O0α1···αk

(k) |p〉µ are the familiar spin averaged twist-2 matrix elements, and µ is the

factorization scale. The above equation is valid if a factorization scheme without power

divergences is chosen. Such a scheme is MS. Note that the factor of 1/(2p0) is inherited

from the denominator matrix element that defines M(ν, z2), which is also expanded in

powers of z. However, because the denominator is a zero momentum matrix element, it

does not contain a tower of twist-2 matrix elements which all vanish at zero momentum

with the exception of the vector current matrix element which is equal to one in the

isovector case that we are considering here. Furthermore, the higher twist effects in the

denominator are considered small and are reabsorbed in the O(z2) terms that are omitted.

In the previous section we argued that the coefficients Bk(ν) in the higher twist expansion

are such that Bk(0) = 0. It is precisely the reabsorption of the denominator polynomial in

the z2 term that cancels which brings about Bk(0) = 0. Therefore, we can explicitly see

how part of the higher twist effects is canceled in the M(ν, z2).

In conclusion the ratio M(ν, z2) is a regularization and renormalization scheme inde-

pendent quantity that can be expanded using OPE in the limit of small z2. Part of the

polynomial corrections to the leading contribution is canceled by the polynomial terms in z2

arising from the small z2 expansion of the denominator. The above discussion can also be

done using a cut-off scheme as a regulator. In this case power divergences will arise in both

the computation of the Wilson coefficients and the computation of the matrix elements.

However, divergences in the Wilson coefficients will cancel those of the matrix elements as

M(ν, z2) is regulator independent. This fact was pointed out in an other context in [30].

3 Computation of moments

In this section we discuss the computation of moments of PDFs from M(ν, z2) which can

be computed on the lattice and has a well defined continuum limit. Having established

that the expansion in moments is well defined in any scheme, we chose to work in the

MS scheme in this section. First one can further simplify the expression in eq. (2.12) by

replacing the matrix elements with moments in MS an(µ). These moments are defined by

〈p|O0α1···αk

(k) |p〉µ = 2[p0pα1 · · · pαk − traces]sym ak+1(µ) , (3.1)

where [· · · ]sym stands for symmetrization of indices. Inserting this in eq. (2.12) we obtain

M(ν, z2) = 1 +

∞∑
k=1

ik
1

k!
νkck(z

2µ2)ak+1(µ) +O(z2) , (3.2)

where the product p3z3 has been replaced by the Ioffe time ν. This formula for the moments

is derived by the traditional definition

an(µ) =

∫ 1

−1
dxxn−1 q(x, µ) , (3.3)

where q(x, µ) is the parton distribution function. Recalling the definition of Ioffe time

PDFs,

Q(ν, µ) =

∫ 1

−1
dx q(x, µ)eixν , (3.4)
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we can derive that

(−i)n ∂
nQ(ν, µ)

∂νn

∣∣∣∣
ν=0

=

∫ 1

−1
dxxn q(x, µ) = an+1(µ) (3.5)

where an(µ), is the n-th moment of the parton distribution function. From this expression

and eq. (2.6) we obtain that if one expands in a Taylor series with respect to ν the reduced

function M(ν, z2), the coefficients of this Taylor series expansion are the moments of the

PDFs up to a multiplicative constant and up to O(z2) higher twist effects. In other words

from eq. (3.2) one can introduce mn as,

mn ≡ (−i)n∂
nM(ν, z2)

∂νn

∣∣∣∣
ν=0

= cn(z2µ2)an+1(µ) +O(z2) . (3.6)

Furthermore, eq. (3.5) implies that the Wilson coefficients are

cn(z2µ2) =

∫ 1

0
dα C(α, z2µ2, αs(µ))αn . (3.7)

Since C(α, z2µ2, αs(µ)) is known analytically [20, 25, 31] to first order in αs in MS, we can

easily compute the Wilson coefficients cn(z2µ2) in MS, by simple integration of eq. (3.7).

The leading order MS expression for C(α, z2µ2, αs(µ)) is

C(α, z2µ2, αs(µ)) = δ(1− α)− αs
2π
CF

[
B(α) ln

(
z2µ2

e2γE+1

4

)
+D(α)

]
, (3.8)

where B(a) is the Altarelli-Parisi kernel

B(α) =

[
1 + α2

1− α

]
+

(3.9)

and D(α) is given by

D(α) =

[
4

ln(1− α)

1− α
− 2(1− α)

]
+

. (3.10)

In the above equations [· · · ]+ denotes the “plus prescription”. Integrating eq. (3.7) one

obtains

cn(z2µ2) = 1− αs
2π
CF

[
γn ln

(
z2µ2

e2γE+1

4

)
+ dn

]
, (3.11)

where

γn =

∫ 1

0
dαB(α)αn =

3

2
− 1

1 + n
− 1

2 + n
− 2

n∑
k=1

1

k
, (3.12)

which are the well known leading order moments of the Altarelli-Parisi kernel, and

dn =

∫ 1

0
dαD(α)αn = 2

( n∑
k=1

1

k

)2

+
2π2 + n(n+ 3)(3 + π2)

6(n+ 1)(n+ 2)
− ψ(1)(n+ 1)

 . (3.13)
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Figure 1. Left: the first and second derivative of M(ν, z2) with respect to ν at ν = 0 rescaled

by i as defined in eq. (3.6). Right: the two lowest moments of the isovector unpolarized PDFs

at µ = 3 GeV versus z2. The shaded error bands are the QCDSF results for the same pion mass

(≈ 600 MeV) obtained from [32] at the same scale µ = 3 GeV. At low z2 the perturbative matching

seems to work well as indicated by the independence of the moment on z2.

Here ψ(1)(z) is the polygamma function defined as ψ(1)(z) = d2 ln Γ(z)/dz2 with Γ(z)

being the Γ-function. With the Wilson coefficients computed we can now obtain the MS

moments up to O(α2
s, z

2) directly from the reduced function M(ν, z2) as

an+1(µ) = (−i)n 1

cn(z2µ2)

∂nM(ν, z2)

∂νn

∣∣∣∣
ν=0

+O(z2, α2
s) . (3.14)

Note that in order to do so one needs a precise computation of M(ν, z2) in the small ν

region at fixed z2. This is the region in which lattice computations can easily achieve

high precision.

To illustrate this procedure we take as an example a recent quenched QCD calcu-

lation [16] which can be compared with the results from [32] where the moments were

obtained through direct computations of the matrix elements of twist-2 operators. In [16],

the reduced isovector Ioffe time pseudo-PDF was computed at a fixed coupling β = 6.0

in quenched QCD using the Wilson gauge action and clover improved valence fermions.

The lattice spacing in this computation is 0.093 fm. The same quenched theory was also

used in [32] to study the moments of PDFs from direct computations of the corresponding

twist-2 nucleon matrix elements, however in this case unimproved Wilson fermions were

used for the valence quarks. The two calculations have very different systematics and most

importantly different discretization errors due to the use of two different valence fermion

actions that differ by O(a) effects. Nonetheless, it is instructive to check if the moments

computed from the reduced Ioffe time PDF agree within these expected systematic effects

with the direct computation. For our comparison the pion mass is set in both cases to

mπ ≈ 600 MeV.

On the left panel of figure 1, we plot the left hand side of eq. (3.6). These are the

derivatives of M(ν, z2), rescaled by powers of i, at ν = 0. The derivatives of M(ν, z2) are

estimated numerically from its real and imaginary parts, using finite difference derivatives

– 7 –
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with O(ν4) errors, which are of the order of a few percent. The real part contains only even

powers in ν while the imaginary only odd. This is taken into account in order to simplify

the numerical derivative estimator.

In the right panel of figure 1, we plot the lowest two moments of the unpolarized

isovector PDF computed using eq. (3.14) at scale µ = 3 GeV. These moments are plotted

as function of z2 used in their extraction. At this scale the perturbative corrections are

of order 10%. At lower scales these corrections become larger as expected and thus the

1-loop matching is expected to break down. Unfortunately, the available data for M(ν, z2)

do not have sufficient precision to extract higher moments. As we can see at small z2,

where the perturbative expansion is expected to work better, the resulting moment is

independent of z2 indicating that the matching formula works well in this region of z2.

At higher values of z2, as expected the perturbative matching breaks down and thus the

moment depends on the z2 used in the computation. Furthermore, the small variation of

the derivatives of M(ν, z2) and the extracted moments over a wide range of z2 indicates

that polynomial corrections are indeed small. The resulting moments if extrapolated to

z2 = 0, using a constant extrapolation at low z2, are comparable with the results obtained

by QCDSF within the errors of both computations. It should be noted that the QCDSF

results where computed at scale µ =
√

2 GeV, and for that reason we performed 2-loop

running [33] of their results to the scale µ = 3 GeV where our moments were evaluated. In

addition, the QCDSF computation was performed with unimproved Wilson fermions and

therefore has O(a) errors. The remaining O(10%) difference between our results and those

of QCDSF is expected within the systematic errors associated with perturbative matching,

discretization errors, and the systematics of non-perturbative renomalization performed for

the local twist-2 matrix elements.

Clearly, higher order perturbative matching is needed in order to be able to better

estimate the systematic error of the perturbative correction. In addition computations at

smaller lattice spacings are required in order to control the lattice spacing errors that should

be enhanced for the shortest distance points. Finally, computations at larger volumes will

provide a finer grid of ν values allowing for a more robust extraction of the derivatives

of M(ν, z2). This coupled with better statistics may allow us to extract higher moments

as well. Detailed comparison between moments obtained from local and non-local matrix

elements would require a control of all the above systematics as well as computations on

the same ensembles. This is beyond the scope of the current work and will be done in

the future.

4 Conclusion

In this work we show that because the ratio M(ν, z2) introduced in [16] is free of UV

divergences and has a well defined continuum limit, it can be expanded into moments of

parton distribution functions using OPE without any complications arising from power

divergences due to the lattice regulator used to compute it non-perturbatively. In particu-

lar, if one expands this matrix element in lattice regularized twist-2 operators, which have

power divergences due to breaking of the rotational symmetry on the lattice, the accompa-
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nying Wilson coefficients will also have power divergences which exactly cancel the power

divergences of the matrix elements. Therefore, the re-summed OPE expansion of the re-

duced Ioffe time PDF is finite (as expected) due to cancellation of these power divergences

order by order in the OPE expansion. Furthermore, using the relation between moments

of PDFs and the derivatives of M(ν, z2) with respect to the Ioffe time ν at ν = 0, it is

shown that the moments of PDFs can be computed numerically from M(ν, z2). The first

two moments are found to be in agreement with those computed on the lattice by direct

computations of matrix elements in the quenched approximation, within the statistical and

systematic errors of the two calculations. Given that lattice calculations are much easier

in the region of small Ioffe time ν, the methodology we presented here, which focuses on

the small ν region, can lead to reliable non-perturbative computation of higher moments

of PDFs. At this point we also wish to stress once again an important point. Namely, the

issue of power divergent mixing of high dimensional operators with lower dimensional ones

is a problem if one wants to directly extract from lattice QCD simulations the PDFs as

Fourier transforms of hadronic matrix elements of the bilocal matrix element [34]. How-

ever, with the method employed in this study, where lattice data at short-distance are used

to fit the OPE of the Ioffe time function in order to extract moments of PDFs, no issues

with power divergent mixing arise.

In the future, our calculations with dynamical quarks will improve on the systematics

of the extraction of moments by addressing the sources of systematic errors that arise from

the perturbative matching, the lattice spacing effects, as well as the numerical estimation

of the derivatives of M(ν, z2). In addition, computations on larger volumes will allow for

better probing of the small Ioffe time ν. Such computations are currently being pursued

and will be presented in future publications.
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[32] M. Göckeler et al., Polarized and unpolarized nucleon structure functions from lattice QCD,

Phys. Rev. D 53 (1996) 2317 [hep-lat/9508004] [INSPIRE].
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