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Using results on topological band theory of phases of matter and discrete symmetries, we study
topological properties of the band structure of physical systems involving spin 1

2 and 3
2 fermions.

We apply this approach to study partial breaking in four-dimensional (4D) N = 2 gauged
supergravity in the rigid limit, and we describe the fermionic gapless mode in terms of the chiral
anomaly. We also study the homologue of the usual spin–orbit coupling, �L.�S, that opens the
vanishing band gap for free s = 1

2 fermions; we show that it is precisely given by the central
extension of the N = 2 supercurrent algebra in 4D spacetime. We also comment on the rigid
limit of Andrianopoli et al. [Phys. Lett. B 744, 116 (2015)], and propose an interpretation of
energy bands in terms of a chiral gapless isospin 1

2 particle (iso-particle). Other features, such as
discrete T-symmetry in the Fayet–Iliopoulos coupling space, the effect of quantum fluctuations,
and the link with the Nielson–Ninomiya theorem, are also studied.
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1. Introduction

In the few years past there has been intensive interest in topological band theory in the Brillouin zone
and in three-dimensional (3D) effective Chern–Simons field theories in connection with the phases of
matter [1–9]. This interest has mainly concernd spin s = 1

2 topological matter and spin 1 topological
gauge theories in lower spacetime dimensions; this is because of their particular properties in dealing
with condensed matter systems like topological insulators and superconductors, and also for the role
they play in the quantum Hall effect as well as in the study of boundary states and anomalies [10–17].
By looking to extend some special features of these studies to systems with spacetime spins beyond 1

2
or 1, we fall into supergravity-like models where fermionic modes of higher spins such as relativistic
spin 3

2 are also known to play a basic role. In this paper we would like to explore some topological
aspects of the band theory of systems having spins less than or equal to 2, and to look for a physical
model where the topological properties obtained for spins s = 1

2 , 1 can be extended to higher spins.
A priori, physical systems with spins s ≤ 2 may exist in spacetime dimensions D = d + 1 ≥ 3

where spin 3
2 and 2 particle fields have non-trivial gauge degrees of freedom; to get started, it is then

natural to begin by fixing the full-spin content of the physical system we are interested in here, and
also to define the Hamiltonian model or the field equations describing the full dynamics. To find a
physical system with higher spins where such kinds of studies may be relevant, and also to identify
the appropriate approach to use as the starting point, we give here two motivations: the first concerns
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the choice of a particular system having fermions with different spins, say two types of fermionic
spins s = 1

2 and 3
2 , and the other regards the tools to use for approaching their band structure. First,

by studying the constructions of Refs. [17–19], one comes to the conclusion that several topological
condensed matter statements based on spin 1

2 fermions may be approached by starting with the Dirac
equation of (1 + d) relativistic theory. From this theory one may engineer effective Hamiltonians
breaking explicitly the SO(1, d) Lorentz symmetry by allowing non-linear dispersion relations due
to underlying lattice geometries and interactions. It follows from this description that quantities
like fermionic gapless/gapped modes, chiral ones, and edge states have interpretations in terms
of massless/massive states, quasi-particles with exotic statistics, and anomalies whose explanation
requires the use of topological notions such as manifold boundaries, left/right windings, the Berry
connection, and the Nielson–Ninomiya theorem.

To look to extend results on spin 1
2 topological matter to spin 3

2 gravitinos, we then have to go beyond
the Dirac equation, for instance by considering the Rarita–Schwinger equation of gravitinos, and try
to mimic the analysis done for spin 1

2 . Even though this is an interesting direction to take [20,21],
we will not follow this path here because of the complicated N = 2 supergravity interactions
that make the field equations difficult to manage. Instead, we will rather use related equations
given by extended supergravity Ward identities [22,23]. The use of these Ward identities has been
motivated by the question of what kind of physical systems the specific properties of the gravitino
band structure may serve. Recalling the role played by gravitinos in the spontaneous breaking of
local supersymmetry, we immediately come to the point that gapless and gapped gravitinos can be
applied to study the problem of partial supersymmetry breaking of N -extended vector-like theories.
Indeed, in the example of the effective N = 2 gauged supergravity in 4D spacetime, one has, in
addition to bosons (with s = 0, 1, 2) and spin 1

2 fermions, two gravitinos
(
ψ1
αμ,ψ2

αμ

)
forming an

isospin 1
2 particle; that is to say, a doublet under the SU(2) R-symmetry involving pairs of gapless

gravitino modes. The breaking N = 2 → N = 1 then requires a partial lifting of the degeneracies
of mode doublets, which, as in the case of condensed matter with spin 1

2 fermions, may be achieved
by turning on a spin–orbit-like coupling �L.�S [24]. The study of spin 3

2 matter therefore offers a good
opportunity to identify the iso-particle Hamiltonian including the homologue of �L.�S that induces
partial breaking of supersymmetry. This coupling will be denoted �ξ .�I, where �ξ plays the role of the
angular momentum �L and the isospin �I the role of the spin �S. In this regard, it interesting to recall that
spontaneous partial breaking in N = 2 supergravity may be done by the super-Higgs mechanism,
in which, in N = 1 supermultiplet language, a massive N = 1 gravitino multiplet can be created
by merging three multiplets: a massless N = 1 gravitino eating a massless N = 1 U(1) multiplet
and an N = 1 chiral multiplet [25]. But here, the partial breaking will be done by the isospin–orbit
coupling that opens the gap energy between the two gravitinos. In this study, we will show that the
�ξ .�I coupling is precisely given by the central anomaly of the N = 2 supercurrent algebra in 4D
spacetime [26,27].

The main purpose of this work is, then, to use results on topological band theory of fermionic
matter and chiral anomalies as well as discrete symmetries to study partial breaking in N = 2
gauged supergravity in four dimensions. The spacetime fields of our system are given by the field
content of the standard N = 2 supermultiplets; in particular, the field content of the gravity multiplet,
nV vector multiplets, and nH matter multiplets. To perform this study we will use N = 2 supergravity
Ward identities in the rigid limit as considered in Ref. [28], and also study the partial breakings by
using the topological approach along with the Nielson–Ninomiya theorem and the chiral anomaly.
We also study the effect of quantum harmonic fluctuations in the Fayet–Iliopoulos (FI) coupling
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space, and show that the result of Ref. [28] is not affected by quantum corrections provided that a
saturated condition holds.

The presentation is as follows: In Sect. 2, we describe some tools on partial breaking in the rigid
limit of N = 2 supergravity theory and present the basic equations to start with. We also give some
useful comments. In Sect. 3, we derive the free Hamiltonian of the iso-particles in N = 2 gauged
supergravity, work out the isospin–orbit coupling that opens the zero gap between the two gravitino
zero modes, and show how time reversing symmetry T and PT (combined T and parity P) can be
implemented. In Sect. 4 we study gapless and gapped gravitinos in N = 2 gauged supergravity,
and describe the properties of partial supersymmetry breakings and their interpretation from the
viewpoint of the Nielson–Ninomiya theorem and the chiral anomaly. We also discuss the effect of
quantum fluctuations on partial breaking of N = 2 supersymmetry. Section 5 is devoted to our
conclusions and comments.

2. Rigid limit of N = 2 Ward identity: the U(1) model

Following Ref. [28], partial breaking of rigid and local extended supersymmetries is highly con-
strained; it can occur in a certain class of supersymmetric field theories provided one evades some
no-go theorems [29–32]; see also Refs. [33–38]. In global 4D N = 2 theories, this was first noticed
in Refs. [26,39], and was explicitly realized in Refs. [40,41] for a model of a self-interacting N = 2
vector multiplet in the presence of N = 2 electric and magnetic FI terms. There, it was explicitly
shown that the presence of electric �ν and magnetic �m FI couplings is crucial to achieve partial break-
ing. The general conditions for N = 2 partial supersymmetry breaking have been recently elucidated
by L. Andrianopoli et al. in Ref. [28], where it was also shown that �ν and �m should be non-aligned
(�ν ∧ �m �= �0). Their starting point for deriving the general conditions for partial supersymmetry
breaking in the rigid limit1 was the reduced N = 2 gauged supergravity Ward identity,

VδA
B + CA

B =
nV∑
i=1

δBλ
iCδAλiC , (2.1)

where the spin 1
2 fermions λiA and λiB := εBAgij̄λ

j̄A refer to the chiral and antichiral projections of the
gauginos respectively. Here, the SO(1, 3) spacetime spin index of the λiA fermions has been omitted
for simplicity, while we have shown the other two indices, A and i. A = 1, 2 refers to the isospin 1

2
representation of the SU(2)R symmetry of the N = 2 supersymmetric algebra, since N = 2 gauginos
are iso-doublets under SU(2)R; this index is lowered and raised by the antisymmetric tensor εAB and
its inverse εBA. The index i = 1, . . . , nV designates the number of N = 2 vector multiplets in the
Coulomb branch of the N = 2 gauged supergravity theory. Notice also that the quantity

(
δBλ

iA
)

is
a convention notation for the N = 2 supersymmetric transformation of gauginos, which is given
by δsusyλ

iA = (δBλ
iA
)
εB, with the two fermions εA = (ε1, ε2

)
standing for the supersymmetric

transformation parameters. In Eq. (2.1), the right-hand side is restricted to the pure Coulomb branch
and so corresponds to the rigid limit of the following local identities:∑

i

αiδBλ
iCδAλiC = ṼδA

B −
∑

u

αuδBζ
uδAζu −

∑
μ,ν

α0δ
AψνC�

μνδBψ
C
μ . (2.2)

1 The rigid limit is implemented through a rescaling of the field contents of the theory and the spacetime
supercoordinates by using the dimensionless parameter μ = �

Mpl
. For explicit details, see Refs. [29,41].
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The left-hand side of Eq. (2.1) contains two basic terms, namely the rigid limit of the scalar potential
VδA

B and an extra traceless constant matrix,

CA
B = �ξ . (�τ)AB , Tr C = 0. (2.3)

This Hermitian traceless matrix can be interpreted as an anomalous central extension in the N = 2
supersymmetric current algebra [27,29,39]; it only affects the commutator of two supersymmetry
transformations of the gauge field [29,41] and contains data on hidden gravity and matter sectors.
Recall that the basic anticommutator of the N = 2 supercurrent algebra is{

J 0A (x) ,
∫

d3yJ̄ 0
B (y)

}
= δA

BσμT μ0 + CA
B , (2.4)

where J 0
αA (x), J̄ 0

α̇A (x), and T 0
μ (x) are the time components of the supersymmetric current densities

J ν
αA, J̄ ν

α̇A, and T ν
μ , respectively. The time component densities in the current superalgebra, Eq. (2.4),

are related to the QA
α , Q̄α̇B, and Pμ charges of the N = 2 supersymmetric QFT4 in the usual manner.

For example,

QαA =
∫

d3xJ 0
αA, Pμ =

∫
d3xT 0

μ , (2.5)

obeying QBQ̄A + Q̄AQB ∼ δA
Bσ

μPμ; the usual globally defined N = 2 supersymmetric algebra with
CA

B constrained to vanish.
By comparing Eq. (2.1) with the general form of the Ward identities, Eq. (2.2), we deduce that the

CA
B term captures the contribution of the fermion shifts to the Ward identity coming from the rigid

limit of the hidden gravity (δAψνC�
μνδBψ

C
μ ) and the matter (δBζ

uδAζu) branches. For the simple
example of an Abelian U(1) gauge multiplet (nV = 1), the anomaly iso-vector �ξ = Tr (�τC) has
been realized in terms of the electric �ν and the magnetic �m FI coupling constant iso-vectors of the
Coulomb branch of the effective N = 2 U(1) gauge theory as follows:2

�ξ = �ν ∧ �m, �m �= R
∗�ν, (2.6)

obeying the remarkable property �ξ .�ν = 0 and �ξ . �m = 0; see Eq. (2.13). Moreover, partial breaking
of supersymmetry takes place at [28,29]

V =
∣∣∣�ξ ∣∣∣ ≥ 0. (2.7)

This relation will be used later on when considering topological aspects of gapless fermions (Sect. 4.1)
as well as harmonic fluctuations (Sect. 4.2), but before that let us add comments regarding Eqs. (2.6)
and (2.7).

First, notice that in order to have a non-zero �ξ it is sufficient to take the following particular and
simple choice,

�ν =
⎛
⎜⎝ νx

0
0

⎞
⎟⎠, �m =

⎛
⎜⎝ 0

my

0

⎞
⎟⎠, �ξ =

⎛
⎜⎝ 0

0
ξz

⎞
⎟⎠, (2.8)

2 The exact expression found in Ref. [28] is �ξ = 2�ν ∧ �m. Here, the factor 2 = (
√

2)2 has been absorbed by
scaling the FI couplings.
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satisfying �ν. �m = 0 and �ν ∧ �m �= �0. This particular choice shows that a quadratic term of type

γ⊥
2

| �m| × |�ν|

like the one appearing in Eq. (2.17) becomes necessary for the contribution of the �ξ -direction normal
to the (�ν, �m) plane; that is to say:

�ξ = �0 ⇒ γ⊥ = 0. (2.9)

This implication is obviously not usually true since, for non-orthogonal �ν and �m, we have �ν. �m =
|�m|× |�ν| cos θ �= 0 as long as θ �= ±π

2 mod 2π . The trick θ = ±π
2 will help us to detect the effect of

�ξ , especially when studying quantum fluctuations around the N = 2 supersymmetric ground states

V = 0 and V =
∣∣∣�ξ ∣∣∣.

Second, observe that by setting τ[kl] = 1
2εklnτ

n, ξ [lk] = εklmξn, and εklnε
klm = 2δm

n , it follows that
ξ [kl]τ[kl] = ξiτ

i, and then the central extension matrix in Eq. (2.3) can be also expressed as

CA
B = ξ [kl] (τ[kl]

)A
B , τ[kl] = 1

4i
[τk , τl] . (2.10)

This way of expressing CA
B is interesting since, supported by the dimensional argument, it gives an

idea of how to realize the factor ξ [kl] in terms of the electrical νk and magnetic ml couplings of FI.
Antisymmetry implies the natural factorization

ξ [kl] = νkml − νlmk , ξ [xy] = νxmy − νymx, (2.11)

which is nothing but the Andrianopoli et al. factorization of Eq. (2.6). We expect that this trick can
also help to find the extension of the N = 2 realization in Eq. (2.6) to higher supergravities, in
particular to N = 4 theory in the rigid limit where there is no matter branch; this generalization will
not be considered here. Notice that for the simple choice of Eq. (2.8) we have the diagonal matrix

CA
B =
(
νxmy 0

0 −νxmy

)
, (2.12)

showing that, in the rest frame, we have δA
BσμT μ0 = δA

BV , and then the N = 2 current algebra of
Eq. (2.4) splits into two N = 1 copies with right-hand energy densities given by V ± νxmy.

Third, a non-vanishing �ξ requires in general non-collinear �ν and �m vectors, so the unit vectors

�eν = �ν
|�ν| , �em = �m

| �m| generate a two-dimensional plane with a normal vector given by �eξ = �ξ∣∣∣�ξ ∣∣∣ . These

three vectors together form a 3D vector basis of R̃3 that we term the 3D iso-space:

�eν ; �em ; �eξ , �eξ = �eν ∧ �em. (2.13)

By the terminology “3D iso-space” we intend to use its similarity with the usual Euclidean space R3

of the classical mechanics of point-like particles to propose a physical interpretation of Eq. (2.6) by
using the notion of an isospin I = 1

2 particle; this will be done in Sect. 3.
Notice, moreover, the following features:

◦ The relation in Eq. (2.6) concerns an effective N = 2 U(1) gauge theory with one gauge
supermultiplet nV = 1. The general expression of �ξ , extending Eq. (2.6), as well as the general
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form of the scalar potential energy V associated with generic U(1)nV effective gauge theories
reduced to FI couplings, have been shown to be functions of the characteristic data of the special
geometry of the scalar manifold. They are given by the factorizations

V = 1

2
δabPaM SMN PbN , (2.14)

ξa = 1

2
εabcPbM CMN PcN , (2.15)

where PaM = (maI , νa
I

)t
are moment maps carrying quantum numbers of SU(2)R×SP (2nV , R),

CMN is the metric of SP (2nV , R), and SMN is a symmetric matrix of the form

SMN =
(

I + RI−1R −RI−1

−I−1R I−1

)
(2.16)

encoding data on the scalar manifold of the N = 2 theory; see Refs. [28,29] for more details.
For the example of an Abelian U(1) gauge model, ξa is as in Eq. (2.6) while the scalar potential
of Eq. (2.14) has the following remarkable quadratic shape:

V = α | �m|2 + β |�ν|2 + γ

2
| �m| × |�ν| , (2.17)

with 4αβ > γ 2 > 0 and α,β assumed positive for later use. Notice that here γ should be
viewed as the sum γ‖ + γ⊥, with γ‖ describing the coupling in the ( �m, �ν) plane and γ⊥ in the
normal �m ∧ �ν directions; see also Eqs. (3.9) and (3.10).

◦ By substituting Eq. (2.16) and Pa = (ma, νa) into Eq. (2.14) we learn that the real parameters
α, β, and γ in the above scalar potential indeed have a geometric interpretation in terms of
the effective prepotential F of the N = 2 special geometry. For example, the parameters γ

2 in
Eq. (2.17) depend on both the real R and imaginary I parts of the second derivative of F .

◦ The scalar potential in Eq. (2.17) has a particular dependence on | �m| and |�ν|; it can be presented
as a quadratic form V = PiGijPj, with Pi and metric Gij as follows:

V = (| �m| , |�ν|)
(
α

γ
2

γ
2 β

)(
| �m|
|�ν|

)
(2.18)

with det G = αβ − γ 2

4 . This form will diagonalized later on for explicit calculations.
◦ The above V might be viewed as a special potential; a more general expression would involve

more free parameters, such as

V = V0 + �aν
a + wama + Babν

amb+
Aabν

aνb + Cabmamb, (2.19)

where V0 is a number that depends on the vacuum expectation values (VEVs) of the scalar fields,
and the parameters of the effective N = 2 theory like masses and gauge coupling constants, �a

and wa are two iso-vectors scaling in same manner as the FI constants, and Aab, Bab, and Cab

are dimensionless real 3×3 matrices—Aab and Cab are symmetric, but Bab is a general matrix.
These moduli may also characterize the scalar manifold of the effective N = 2 supergravity
and likely external fields as suspected from Table 1; see also Eq. (3.25), where �w of the wama

is interpreted in terms of an external iso-magnetic field.
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Fig. 1. A classical quasi-particle with angular momentum �ξ = �ν ∧ �m in FI coupling space parameters.
The electric FI coupling �ν is viewed as a position vector �r and the magnetic coupling �m as the momentum
�p. In addition to (�ν, �m), the quasi-particle also carries an intrinsic isospin charge I = 1

2 as well as unit
U(1)elec ×U (1)mag charge due to the gauging of Abelian isometries of N = 2 gauged supergravity. This image
may be put in correspondence with an electron spinning around a nucleus.

Finally, notice that by giving these somehow explicit details on the nV = 1 theory, we intend to
use its simple properties to derive the iso-particle proposal and build the isospin–orbit coupling in
N = 2 supergravity mentioned in the introduction. We will also use these tools to study the isospin
1
2 particle as well as hidden discrete symmetries that capture data on the topological phases of the
right-hand side of the N = 2 supersymmetry current algebra in Eq. (2.4).

3. Isospin 1
2

particle proposal

The Andrianopoli et al. realization, Eq. (2.6), of the rigid anomaly iso-vector �ξ = �ν ∧ �m in effective
N = 2 supersymmetric gauge theory is interesting and is very suggestive; see Fig. 1 for an illustration.
This is because of the wedge product �ν ∧ �m that allows us to establish a correspondence between
properties of the partial supersymmetry breaking and the electronic band theory with�soc�L.�S spin–
orbit coupling turned on (�soc �= 0).

Indeed, the axial vector �ξ = �ν ∧ �m, which we refer to below as the Andrianopoli et al. orbital
vector, has the same form as the usual angular momentum vector,

�L = �r ∧ �p, (3.1)

of a 3D classical particle with coordinate position �r and momentum �p. By comparing the �ν ∧ �m
formula of Eq. (2.6) with the above �r ∧ �p, it follows that the FI electric coupling �ν may be put
in correspondence with the vector �r, and the magnetic �m with the vector �p. Hence, we have the
schematic picture shown in Table 1 linking the physics of classical particles (electrons) with the
physics of iso-particles of N = 2 gauged supergravity (gravitinos and gauginos).

In the left column of Table 1, the Euclidian R3 space is the usual 3D space with SO(3) isotropy
symmetry. In this real space live bosons and fermions; in particular, fermions with intrinsic properties
like spin 1

2 particles with symmetry

SU(2)spin ∼ SO(3). (3.2)

In the right column, the R̃3 is an iso-space with isotropy symmetry SO(3)R given by the R-symmetry
SU(2)R of the N = 2 supersymmetric algebra. This is a global symmetry group that will be imagined
here as a global isospin group SU(2)isospin characterizing the quasi-particle of Fig. 1. Thus, the
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Table 1. Comparison of classical particles and iso-particles.

Vectors in R3: electron ↔ Iso-vectors in R̃3: gravitinos

particle : iso-particle
(�r; �p) : (�ν; �m)
(�r + δ�r; �p + δ�p) : (�ν + δ�ν; �m + δ �m)
isotropy SO(3) : R-symmetry SU(2)
orbital moment �L = �r ∧ �p : orbital moment �ξ = �ν ∧ �m
Hamiltonian h (�r; �p) : Hamiltonian h (�ν; �m)
spin �S : isospin �I
gauge summetry U(1)em : gauge symmetry U(1)elec × U (1)mag

Table 2. Iso-space gravity and vector properties.

N = 2 multiplets Field content in spin Spin s Isospin I

graviton : 2 2 0
Gravity GN=2 gravitinos ψA : 2 × 3

2
3
2

1
3

graviphoton A1
μ : 1 1 0

vector A2
μ : 1 1 0

Vector V N=2 gauginos λA : 2 × 1
2

1
2

1
2

scalars : 2 × 0 0 0

homologue of the real space symmetry of Eq. (3.2) is given by

SU(2)isospin ∼ SU(2)R ∼ SO(3)R. (3.3)

Matter in the iso-space R̃3 is then given by quasi-particles carrying isospin charges under SU(2)R,
in particular the isospin I = 1

2 describing the two gravitinos and the nV pairs of gauginos of the
Coulomb branch of the N = 2 gauged supergravity. Recall that in this theory, the particle content
belongs to three N = 2 supermultiplets, namely the gravity GN=2, the vector V N=2, and the matter
HN=2. The properties of the first two are summarized in Table 2.

The field content includes the fermions (gravitinos and gauginos) with a non-trivial isospin charge.
It also contains two spin s = 1 gauge fields AM

μ (graviphoton A1
μ and Coulomb A2

μ) with

U(1)elec × U(1)mag (3.4)

gauge transformations given by Abelian isometries of the scalar manifold of the supergravity theory.
The fermionic fields �A = ψA, λA carry a unit U(1)elec × U(1)mag charge, and interact with the
gauge vector fields AM

μ through the minimal coupling Dμ�A, where the covariant derivative Dμ =
∂μ+ϑM AM

μ with the electric/magnetic couplingϑM ; see Refs. [31,32,40,41,44–46] for other features.
Moreover, in Table 1 we have an exotic variable τ playing the role of the real time t of the left

column of the table. This τ may be imagined in terms of an energy scale variable, and hence one is
left with running complings �ν = �ν (τ) and �m = �m (τ ) with

�m (τ ) ∼ d�ν (τ)
dτ

↔ �p (t) ∼ d�r (t)
dt

. (3.5)

In what follows, we assume that the classical correspondence in Table 1 is also valid at quantum
level, and study the energy band properties of the isospin 1

2 particles (gravitinos and gauginos) of
the N = 2 gauged supergravity.
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3.1. Deriving the free Hamiltonian of the iso-particle

Here, we use Table 1 to build the free Hamiltonian h = h (ν, m) of the iso-particle and study its
classical and quantum behaviors. We also comment on some interacting terms appearing in the scalar
potential, Eq. (2.19).

3.1.1. Classical description
Using the proposal in Table 1, the free Hamiltonian h of the classical iso-particle is given by the
scalar potential of the supergravity theory. It is just the energy density of the supergravity theory,

h = V (�ν, �m). (3.6)

Because this energy is quadratic in �m and �ν as shown by the rigid limit of Ref. [28], h then describes
the free dynamics of a classical iso-particle in the 6D phase space R̃3 × R̂3 parameterized by the FI
coupling parameters. By using Eqs. (2.17) and (2.18), we have

h = α | �m|2 + β |�ν|2 + γ‖
2

| �m| × |�ν| , (3.7)

where α, β, and the planar γ‖ are three real parameters that have an interpretation in the special
geometry of the scalar manifold of the N = 2 effective theory. Here, they will be given an inter-
pretation in terms of an effective mass μ and a frequency ω with relationships as in Eqs. (3.15)
and (3.20). Notice the following useful features:

◦ The above-described h has the form of a classical harmonic oscillator energy p2
x

2M + Mw2

2 x2, so
one can take advantage of this feature to learn more about the properties of the iso-particle of
the N = 2 gauged supergravity.

◦ The notation γ‖ in Eq. (3.7) is to distinguish it from another contribution γ⊥ to be turned on
later when switching on �ξ .�I. By using the two types of vector products, a general quadratic
term like | �m| × |�ν| has the typical form

γ

2
| �m| × |�ν| = �

2
�m.�ν + �′

2
‖�m ∧ �ν‖ , (3.8)

showing that γ2 may come from two sources: (1) from a scalar product like �2 �m.�ν, and/or (2) from
the norm of the wedge product of the two vectors as follows:

�

2
�m.�ν = γ‖

2
| �m| × |�ν| , γ‖ = � cos θ , (3.9)

�′

2
‖�m ∧ �ν‖ = γ⊥

2
| �m| × |�ν| , γ⊥ = �′ |sin θ | . (3.10)

◦ In order to fix a freedom in the signs of α, β, and γ‖, we assume that the discriminant of the Gij

metric of Eq. (3.7) is positive definite,

det Gij = αβ−γ
2‖

4
> 0. (3.11)

As this discriminant is not sensitive to
(
α,β, γ‖

)→ (−α, −β, −γ‖
)
, we restrict α and β to both

be positive; this constraint is also needed for h to be bounded from below, which is an important
condition for the quantization of coupling fluctuation.
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◦ The omission of the zero value in det G is because for αβ−γ 2‖
4 = 0, the Hamiltonian in Eq. (3.7)

reduces to

hη = Z2
η with Z2± = (| �m| √α ± |�ν|√β)2, (3.12)

ruling out the harmonic oscillations needed for quantum fluctuations; see Eq. (3.20). Nev-
ertheless, the saturated limit also captures some interesting data; it will be discussed in
Sect. 4.2.

With these features in mind, we are now in a position to deal with the Hamiltonian of Eq. (3.7).
To do so, we perform a linear change of variables, (| �m| , |�ν|) → (∣∣ �m′∣∣ , ∣∣�ν′∣∣), in order to put h into
the following normal form:

h0 = 1

2μ

3∑
a=1

(
m′

a

)2 + κ

2

3∑
a=1

(
ν′

a

)2 , (3.13)

where now 1
2μ �m′2 stands for “kinetic energy” and κ

2 �ν′2 for the “potential energy.” The new
∣∣ �m′∣∣, ∣∣�ν′∣∣

are related to the old | �m|, |�ν| by

∣∣ �m′∣∣ = a |�ν| + b | �m| ,
∣∣�ν′∣∣ = c |�ν| + d | �m| , (3.14)

with ad − bc = 1, which diagonalizes the metric in Eq. (2.18). The resulting positive mass μ
and κ = μω2 (oscillation frequency) are functions of the α, β, and γ‖ parameters; their explicit
expressions are

1

μ
= α + β +

√
(α − β)2 + γ 2‖ , κ = α + β −

√
(α − β)2 + γ 2‖ . (3.15)

Notice that, using the condition γ 2‖ < 4αβ and the positivity of α and β, we have (α − β)2 + γ 2‖ <
(α + β)2 and then κ > 0. Notice also the following properties:

◦ The saturated value (γ 2‖ )max = 4αβ; then, (det Gij)max = 0 and (κ)min → 2 (α + β)ω2
min = 0.

◦ Classically, the Hamiltonian in Eq. (3.13) is positive and bounded from below,

h ≥ h0, h0 = 0. (3.16)

This vanishing lower value h0 = 0 is important in the study of N = 2 gauged supergravity in
the rigid limit, since 〈Vclass〉 = h0 = 0 corresponds to an exact N = 2 rigid supersymmetric
phase. This property requires �m = �ν = �0.

◦ By restricting �m and �ν to the particular choice in Eq. (2.8), the free Eq. (3.13) reduces to the
Hamiltonian of a one-dimensional harmonic oscillator,

h(1D) = 1

2μ

(
m′

y

)2 + κ

2

(
ν′

x

)2 . (3.17)

In what follows, we use this simple expression to study harmonic fluctuations of the FI couplings
around the supersymmetric vacuum m′

y = ν′
x = 0.
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3.1.2. Quantum effect
The free iso-particle studied above is classical. However, like spin s = 1

2 fermions in real 3D space
the iso-particle also has intrinsic degrees of freedom, namely an isospin I = 1

2 , as shown in Table 2,
and a unit electric/magnetic charge ϑ given by Eq. (3.4).

Assuming the classical correspondence of Eq. (1) to also hold at the quantum level in the iso-space
R̂3, it follows that the fluctuations of the FI couplings may also be governed by

∣∣� �m′∣∣× ∣∣��ν′∣∣ � �

in same manner as for the usual Heisenberg uncertainty |�x| × |�px| � �, which is expressed in
terms of the usual phase space coordinates (�r, �p). If one accepts this assumption, then we cannot
have exactly m′

y = ν′
x = 0 since

∣∣�ν′
x

∣∣× ∣∣∣�m′
y

∣∣∣ � �, and so one expects N = 2 supersymmetry in
rigid limit to be broken by quantum effects since the ground state energy is now positive definite,〈

h(1D)
quant

〉
> 0. (3.18)

In what follows, we restrict our study to exhibiting this quantum behavior and to checking the
breaking N = 2 → N = 0. We will return to study this feature in Sect. 4.2 when the isospin–orbit
coupling is switched on. There, we will also give details of the condition for the partial breaking
N = 2 → N = 1.

The quantum effect due to fluctuations of �m and �ν around the supersymmetric ground state h0 = 〈V〉
is induced by quantum isotropic oscillations with discrete energy ε̂‖

(nx ,ny ,nz)
= ε

‖
nx + ε

‖
ny + ε

‖
nz and

fundamental oscillation frequency

ω‖ =
√
κ

μ
. (3.19)

By using Eq. (3.15), we have

ω2‖ = 4αβ − γ 2‖ . (3.20)

Observe that, because of the minus sign, thisω‖ vanishes for those parameters α, β, and γ‖ satisfying
the degenerate condition γ 2‖ = 4αβ, which has been ruled out by the constraint in Eq. (3.11). To
illustrate the quantum effect for ω‖ > 0, we consider the particular choice of Eq. (2.8) bringing
Eq. (3.13) to a one-dimensional quantum oscillator with Hamiltonian operator

H (1D)
‖ = �ω‖

2

⎡
⎣( m̂y√

μω‖

)2

+
(
ν̂x
√
μω‖
)2

⎤
⎦. (3.21)

This has a diagonal form �ω‖
2

(
Y 2 + X 2

)
, which by setting A = X +iY√

2
reads as usual like

H (1D)
‖ = �ω‖

(
A†A + 1

2

)
, (3.22)

with AA† − A†A = I . The energy spectrum ε̂
‖
(nx ,ny ,nz)

reduces to

ε‖n = �ω‖
(

n + 1

2

)
≥ ε0, (3.23)
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with the frequency ω‖ given by Eq. (3.20). The lowest energy value is given by ε‖0 = �ω‖
2 ; it is

non-zero for a non-vanishing frequency ω‖. Hence, the exact N = 2 supersymmetry living at the
classical vacuum 〈Vclass〉 = 0 gets completely broken by the quantum effect

〈
Vquant

〉 = �ω.‖
2

> 0 (3.24)

We end this subsection by giving two brief comments on interactions. The first interacting potential
energy has a linear expression in �m,

h

(
R̂3
)

int = −q �m. �A, (3.25)

and concerns the electric U(1)elec gauge charge. This is a subgroup of the electric/magnetic U(1)elec×
U (1)mag local symmetry of the N = 2 gauged supergravity induced by gauging two Abelian
isometries in the scalar manifold of the supergravity theory. The second interacting potential energy

is given by the isospin–orbit coupling h

(
R̂3
)

ioc = �ξ .�I that we are particularly interested in here; it will
be considered in detail in the next subsection.

Regarding Eq. (3.25), it is derived by taking the following two steps: First, start from the interaction

energy h
(
R3)

int = −e�p.�A of an electrically charged particle with momentum �p moving in the presence
of an external magnetic field �Bext = �∇ ∧ �A. Then, use the correspondence in Eq. (1) allowing us
to imagine −e�p in terms of the FI magnetic vector −q �m and �A as an iso-vector �A. The obtained
Eq. (3.25) describes just the term wama in Eq. (2.19), from which we learn that �w = −q �A.

3.2. Isospin–orbit coupling

The proposal in Table 1 has been useful for the physical interpretation of the rigid Ward identity in
terms of an iso-particle Hamiltonian with phase space coordinates (�ν, �m), thanks to theAndrianoploli
et al. formula �ξ = �ν ∧ �m giving the orbital momentum of this iso-particle, and thanks also to the
structure of the scalar potential V , which turns out to be nothing but the free Hamiltonian h of
Eq. (3.13). In this subsection, we derive the isospin–orbit coupling

hioc = �ξ .�I, (3.26)

where �I stands for the isospin vector and �ξ = �ν ∧ �m. For that purpose, recall that in Eq. (2.1) the
rigid Canomaly matrix appears in the form of a Hermitian traceless 2×2 matrix,

C =
(

ξz ξx − iξy

ξx + iξy −ξz

)
= �ξ .�τ , (3.27)

that reads in terms of the �τ Pauli matrices and the Andrianopoli et al. orbital vector as follows:

C = (�ν ∧ �m) .�τ . (3.28)

This factorized form of C teaches us that it can be imagined as describing the coupling of two things,
namely the orbital isovector �ξ = �ν ∧ �m and the isospin vector

�I = �τ
2

. (3.29)

In what follows, we give two other different, but equivalent, ways to introduce �ξ .�I. The first relies
on comparing hioc = �ξ .�I with the usual spin–orbit coupling hsoc = �L.�S of a particle with spin
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�S = �σ
2 moving in real space R3 with coordinate vector �r. The second way extends the approach of

the previous section for deriving the free Hamiltonian (3.13) by including the isospin effect.
By comparing the effect of the spin–orbit coupling �L.�S in electronic systems and the effect of

�ξ .�I in the partial breaking of N = 2 supersymmetry, and by following Refs. [28,29], we learn that
when the central extension matrix is turned off, i.e. C = 0, then N = 2 supersymmetry is preserved
(two gapless gravitinos). However, it can be partially broken when it is turned on, i.e. C �= 0. This
property can be viewed in terms of a non-zero gap energy Eg between the two fermionic iso-doublets,
including the two charges QL, QR of N = 2 supersymmetry with the expression

Eg ∝
∣∣∣�ξ ∣∣∣ . (3.30)

This is exactly what happens for the case of two states of spin 1
2 fermions in electronic condensed

matter systems when the spin–orbit coupling �L.�S is taken into account. This �L.�S coupling is known to
open the zero gap between the two states of free electrons. From this link with electronic properties,
we deduce a correspondence between the central matrix C of the N = 2 supercurrent algebra and
the Hamiltonian hsoc = �L.�S. This link reads explicitly like

�ξ .�I ↔ �L.�S, (3.31)

where the isospin �I plays the role of the spin �S, and the Andrianopoli et al. vector �ξ the role of the
angular momentum �L. Adding the isospin–orbit coupling term to the free Hamiltonian in Eq. (3.13)
we get H = V + �ξ .�I, which reads explicitly as

H = 1

2μ
�m′2 + κ

2
�ν′2 + �ξ .�I. (3.32)

In matrix form, we have

H =
(

V + ξz ξx − iξy

ξx + iξy V − ξz

)
, (3.33)

with eigenvalues E± = V ±
√
ξ2

x + ξ2
y + ξ2

z and eigenstates

|η±〉 ∼
(
ξz ±
√
ξ2

x + ξ2
y + ξ2

z

ξx + iξy

)
. (3.34)

The second way to introduce Eq. (3.26) is a purely algebraic approach. The key idea relies on
thinking of the free energy density term of the two Iz = ±1

2 isospin states as

hA
B = VδA

B . (3.35)

For each of the Iz = ±1
2 states we have used Eq. (3.13) to derive its free Hamiltonian, but this

result is just the diagonal term of a general Hamiltonian matrix H . The extension of VδA
B to more

interactions is then naturally given by the Ward identity, Eq. (2.1),

H A
B = VδA

B + CA
B , (3.36)

which is nothing but the right-hand side of the N = 2 supersymmetric current algebra in Eq. (2.4),
including the central matrix.
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3.3. Discrete symmetries

From the rigid Ward identity of Andrianopoli et al., Eq. (2.1), we also learn that exact N = 2
supersymmetry requires �ξ = �0: no isospin–orbit coupling in our modeling. But this vanishing value
is just the fixed point of the Z2 discrete symmetry acting on the anomaly iso-vector as follows:

Z2 : �ξ → −�ξ . (3.37)

To figure out the meaning of this discrete transformation we use Eq. (2.6), from which we learn
that the minus sign can be generated in two ways, either by the change (�ν, �m) → (−�ν, �m) or by
(�ν, �m) → (�ν, −�m). To derive the physical interpretation of these two kinds of Z2 discrete symmetries,
we use the analogy between the FI couplings (�ν, �m) and the classical phase coordinates (�r, �p).
Promoting this correspondence to dynamical (running) couplings, say

�r (t)
�p (t) ↔ �ν (τ)

�m (τ ) , (3.38)

it follows that the transformation in Eq. (3.37) corresponds, for example, to the usual time-reversing
symmetry T which maps the position �r (t) and momentum �p (t) respectively to �r (−t) and −�p (−t).
On the side of the FI couplings, we then have the following action of the T analog of iso-time τ ,

T :
�ν (τ)
�m (τ ) → �ν (−τ)

−�m (−τ) . (3.39)

Notice that the usual space parity P which maps the (�r, �p) phase coordinates to (−�r, −�p) allows us,
by using the (�r, �p) ↔ (�ν, �m) correspondence, to write

P :
�ν (τ)
�m (τ ) → −�ν (τ)

−�m (τ ) , (3.40)

but this discrete P transformation leaves �ξ = �ν ∧ �m invariant and so is not relevant for partial
breaking. However, the combined PT transformation, which acts like

PT :
�ν (τ)
�m (τ ) → −�ν (−τ)

+�m (−τ) , (3.41)

does affect the sign of �ξ . This combination can also be used to think about the Z2 transformation of
Eq. (3.37). Actually, it corresponds to the second possibility of realizing �ξ → −�ξ from Eq. (2.6).
Therefore, exact N = 2 supersymmetry, which corresponds to �ξ = �0, lives at the fixed point of the
T reversing time transformation of Eq. (3.37), or at the combined PT given by Eq. (3.41), or both.

4. Topological aspects and quantum effect

In this section we first study the topological behavior of gapless iso-particles of exact N = 2
supersymmetry, as well as the gapless chiral ones that remain after partial breaking. We then study
the effect of quantum fluctuations on partial supersymmetry breaking.

4.1. Chiral anomaly

Setting H A
B = ∑i δBλ

iCδAλiC , we can turn the rigid Ward identities of Eq. (2.1) into the matrix
equation

H A
B = VδA

B + CA
B , (4.1)
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Fig. 2. On the left, the discriminant �ξ (V ) as a function of V and parameter
∣∣∣�ξ ∣∣∣. For �ξ �= �0 there are two

zeros, at V = ±
∥∥∥�ξ∥∥∥; one is visible in the rigid limit. At each zero, say V =

∥∥∥�ξ∥∥∥, is a chiral gapless mode

corresponding to a partially broken N = 2 supersymmetric state. In the limit �ξ → �0, the two chiral gapless

modes at V = ±
∥∥∥�ξ∥∥∥ collide at the origin and form a gapless iso-doublet. On the right, �V (ξ) as a function

of �ξ . For non-zero V the chiral gapless mode lives at each �ξ± = ±V �n, merging for V = 0.

which is nothing but the Hamiltonian matrix of Eq. (3.32). Multiplying both sides of this 2×2
matrix relation by ηA = (η1, η2)

T, describing the two states of the iso-particle, we end up with the

eigenvalue equation H .η = Eη whose two eigenvalues are given by E± = V ±
∣∣∣�ξ ∣∣∣; the eigenstates

η̂± associated with these E± are linear combinations of η1 and η2, and read like η̂± = A±η1 + B±η2

with amplitudes A± and B± as follows:

A± =
ξz ±
∣∣∣�ξ ∣∣∣√

2
(
ξz −
∣∣∣�ξ ∣∣∣)

, B± = ξx + iξy√
2
(
ξz −
∣∣∣�ξ ∣∣∣)

. (4.2)

The determinant det H = � that captures data on the singular points in the
(
V ,
∣∣∣�ξ ∣∣∣) plane is given

by the product of the eigenvalues E±, and reads as

� =
(
V +
∣∣∣�ξ ∣∣∣) (V −

∣∣∣�ξ ∣∣∣). (4.3)

It is a function of two real quantities, namely V and
∣∣∣�ξ ∣∣∣, but here we will treat it as a parametric

function of one variable like �ζ (x). The choice of the variable x depends on the property we are
interested in exhibiting; see Fig. 2. From the viewpoint of the scalar potential energy, the variable is

given by x = V , while ζ =
∣∣∣�ξ ∣∣∣ is seen as a free parameter.

From the viewpoint of the �ξ vector we have the reverse picture: x =
∣∣∣�ξ ∣∣∣ is the variable while ζ = V

stands for a free parameter. In the first image, det H has two zeros at V± = ±
∣∣∣�ξ ∣∣∣, one positive, V+,

that is visible in the global supersymmetry sector, and a hidden negative, V−. In the second picture,

the discriminant det H has zeros at
∣∣∣�ξ+∣∣∣ = +V for positive V and

∣∣∣�ξ−∣∣∣ = −V for negative V . Let

us express these two zeros in R̃3 as �ξ± = ±V�n with unit vector �n = �ξ∣∣∣�ξ ∣∣∣ . The effective gap energy

Eg = E+ − E− between the two E± energy density bands is given by

Eg = 2
∣∣∣�ξ ∣∣∣ ; (4.4)

it vanishes for
∣∣∣�ξ ∣∣∣ = 0 and then for �ξ = �0. Because of the property

∣∣∣�ξ ∣∣∣ ≥ 0, the zeros of det H are of

two kinds: simple for
∣∣∣�ξ ∣∣∣ > 0 and double for

∣∣∣�ξ ∣∣∣ = 0. At each simple zero lives a gapless fermionic
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mode (gravitino and gaugino) and a gapped one. For
∣∣∣�ξ+∣∣∣ = +V , with positive energy density V ,

we have the conducting band, and for
∣∣∣�ξ−∣∣∣ = −V with negative V we have the valence band. Notice

that det H = V2 − �ξ2 is conserved under3 the discrete change

Z2 : V → −V ⇒ �ξ+ → �ξ− = −�ξ+. (4.5)

Its two zeros V± = ±
∣∣∣�ξ ∣∣∣ are not fixed points of Z2 except for the origin; they are interchanged as

shown by Eq. (4.5)—for instance, properties at �ξ− may be deduced from those at �ξ+.
Now let us approach det H from the viewpoint of the iso-space vector �ξ and consider the two-

spheres S2+υ and S2−υ , with a surface normal to �n, surrounding respectively the zeros

�ξ± = ±V�n. (4.6)

The two-sphere S2+υ is described by the vector �p = �ξ−�ξ+, and S2−υ by �q = �ξ−�ξ−. These two-spheres
should not be confused with the unit two-sphere

S
2
�n : n2

x + n2
y + n2

z = 1 (4.7)

associated with the unit vectors of Eq. (2.13), but all three of S2+υ , S2−υ , S2
�n live in the iso-space R̃3

and are related to each other by continuous mappings like

π+ : S
2+υ → S

2
�n, π− : S

2−υ → S
2
�n. (4.8)

Focusing, for instance, on S2+υ , the continuity of π+ shows that it has a winding w(S2+υ) describing
the net number of times S2+υ wraps the unit sphere S2

�n; the integer number w(S2+υ) just reflects the
mathematical property π2

(
S2
) ∼= Z. A similar thing can be said about S2−υ thanks to the Z2 parity

of Eq. (4.5), under which the gauge curvature F of the underlying Berry connection A is odd; see
Eq. (4.11) below.

Moreover, each gapless state at the two zeros �ξ± = ±V�n is anomalous in the sense that it has
one gapless chiral mode and then violates the Nielson–Ninomiya theorem [17,42,43]. Recall that in
theories that are free from chiral anomalies the usual Nielson–Ninomiya theorem [17,42] states that
the sum of winding numbers w

(
S2

i

)
around two-spheres S2

i surrounding the �ξ∗i zeros where gapless
modes live vanishes identically. Here, this statement reads explicitly as∑

i

w
(
S2

i

) =
∑

i

∫
S

2
i

Tr (F)
2π

= 0, (4.9)

where F is a gauge curvature whose explicit expression will be given below. For positive V , Eq. (4.3)
has one zero given by an outgoing �ξ+ = +V�n with positive sense in the normal �n direction; then, a
two-sphere S2+υ surrounding the point �ξ+ = (ξ+x, ξ+y, ξ+z

)
has a positive winding number

w
(
S2+
) =
∫

S
2+υ

Tr (F)
2π

= 1. (4.10)

Here, the curvature F is given by the following rank-2 antisymmetric tensor,

Fab = 1

2
�n.
(
∂�n
∂ξa ∧ ∂�n

∂ξb

)
. (4.11)

3 From the charged particle’s viewpoint, this mapping from valence- to conducting-like bands and vice versa
may be imagined as a CT transformation combining time reversing T and charge conjugation C .
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Table 3. Properties of zero modes of H .

Zeros of det H Multiplicity of zeros Winding number Conserved SUSY charges∣∣∣�ξ+∣∣∣ = +V 1 +1 Q̃+∣∣∣�ξ−∣∣∣ = −V 1 −1 Q̃−∣∣∣�ξ±∣∣∣ = 0 2 0
(

Q̃+

Q̃−

)

The Nielson–Ninomiya theorem is then violated due to the existence of one gapless chiral moving
mode, and so the partially broken theory has a chiral anomaly: only one of the two supersymmetric

charges
(

Q̂L, Q̂R

)
, say the right, Q̂R, is preserved; the left, Q̃L, is broken. For the incoming �ξ− = −V�n

we have the negative winding number

w
(
S2−
) =
∫

S
2−υ

Tr (F)
2π

= −1. (4.12)

This negative value follows from the mapping �n → −�n, due to Eq. (4.5) and using Eq. (4.11). For the
special case where the VEV of the scalar potential vanishes, V = 0, the discriminant of the matrix

in Eq. (4.3) reduces to det H = −
∣∣∣�ξ ∣∣∣2 and its zero,

∣∣∣�ξ ∣∣∣ = 0, has a multiplicity 2. In this case, the
Nielson–Ninomiya theorem reads as

w
(
S2+
)+ w

(
S2−
) = 1 − 1 = 0. (4.13)

At the fixed point of the transformation in Eq. (4.5), the two zeros collide at
∣∣∣�ξ±∣∣∣ = 0. Then, the

two effective gravitino zero modes with opposite chiralities form a massless doublet (a massless
iso-particle) and N = 2 supersymmetry gets restored.

These results are summarized in Table 3.

4.2. Quantum fluctuation

Here, we study quantum fluctuations in the FI couplings around the partial breaking vacuum 〈V〉 =∣∣∣�ξ ∣∣∣ and comment on their effect by using the special choice in Eq. (2.8). For that purpose we use∣∣� �m′∣∣× ∣∣��ν′∣∣ ∼ � to promote the matrix equation in Eq. (4.1) into an effective quantum eigenvalue
matrix equation H |η〉 = E |η〉 that we split into two eigenvalue equations:

H+ |η+〉 = E+ |η+〉,
H− |η−〉 = E− |η−〉. (4.14)

In these relations we have H± = V̂ ± ξ̂ , where the hatted V̂ and ξ̂ refer to the quantized operators
associated with V and

∣∣∣�ξ ∣∣∣ expressed in terms of the phase space vectors �m and �ν. For the particular FI

coupling choice in Eq. (2.8) we have
∣∣∣�m′

y

∣∣∣× ∣∣�ν′
x

∣∣ ∼ �, and find, after repeating the steps between
Eqs. (3.7) and (3.22), the two quantum 1D Hamiltonians

H (1D)
± = �ω±

(
A†A + 1

2

)
(4.15)
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describing two oscillators with different frequencies ω±. Their energies are given by ε±n =
�ω±
(
n + 1

2

)
, with

ω2± = 4αβ − (γ‖ ± γ⊥
)2 (4.16)

with the remarkable minus sign. Notice that imposing the constraint in Eq. (3.11) on both |η±〉
eigenstates, we have

αβ−
(
γ‖ − γ⊥

)2
4

≥ 0, αβ−
(
γ‖ + γ⊥

)2
4

≥ 0, (4.17)

leading to

0 ≤ (γ‖ − γ⊥
)2 ≤ 4αβ, 0 ≤ (γ‖ + γ⊥

)2 ≤ 4αβ, (4.18)

and then to

−αβ ≤ γ‖γ⊥ ≤ αβ. (4.19)

For the case where one of the bounds of the constraints in Eq. (4.18) is saturated, for example if the
upper bound of the squared deviation (γ‖ − γ⊥)2 ≤ 4αβ is saturated, we can fix one of the four
parameters in terms of the three others like(

γ‖ − γ⊥
)2 = 4αβ ⇒ γ⊥ = γ‖ ± 2

√
αβ. (4.20)

By substituting back into Eq. (4.16), we end up with two energy spectrums. First, ε−n = �ωsat−
(
n + 1

2

)
with

ωsat− = 4αβ − (γ‖ − γ⊥
)2 = 0, (4.21)

describing gapless iso-particles (gravitinos/gauginos) with E− = 0, which corresponds to the ground

state 〈V〉 =
∣∣∣�ξ ∣∣∣ where partial breaking takes place, and second, ε+n = �ωsat+

(
n + 1

2

)
with

(
ωsat+
)2 = 4αβ − (γ‖ + γ⊥

)2 = −4γ‖γ⊥ > 0, (4.22)

describing a gapped iso-particle. Thus, along with the gapless modes (ωsat− = 0), we have gapped
states with harmonics nωsat+ . The ε+n energies are bounded as

ε+n ≥ ε+0 = 1

2
�ωsat+ > 0, (4.23)

with the ground state energy ε+0 corresponding to the classical E+ = 2
∣∣∣�ξ ∣∣∣, which is also the gap

energy between the two polarizations of the iso-particle.
As a conclusion of this subsection, quantum fluctuations in the FI coupling space with γ⊥ =

γ‖ ± 2
√
αβ do not destroy the partial breaking supersymmetry of the Andrianopoli et al. rigid limit;

this property holds for the saturated condition of Eq. (4.20), otherwise quantum corrections also
break the residual N = 1 supersymmetry.
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5. Conclusion

In this paper we have used results on topological band theory of usual s = 1
2 matter to study partial

breaking of N = 2 gauged supergravity in the rigid limit. By using supergravity Ward identities
and results from Refs. [28] and [17–19,31], we have derived a set of interesting conclusions on the
band structure of gravitinos and gauginos in N = 2 theory. Some of these conclusions have been
obtained from the proposal in Table 1 and its quantum extension, and we rephrase them below:

(1) The interpretation of the Andrianopoli realization �ξ = �ν ∧ �m as an angular momentum vector
of a quasi-particle with phase space coordinates (�ν, �m) allowed us to think of the two gravitinos
and the two gauginos in terms of classical isospin 1

2 particles (iso-particles) charged under
U(1)elec × U (1)mag gauge symmetry. As a consequence of this observation, the scalar potential
V has been interpreted as the Hamiltonian, Eqs. (3.6) and (refhp), of a free iso-particle, and the
central extension of the N = 2 supercurrent algebra in Eq. (2.4) as describing the isospin–orbit
coupling �ξ .�I. This isospin–orbit interaction is the homologue of the usual spin–orbit coupling
�L.�S in electronic systems of condensed matter. The proposal in Table 1 also allowed us to derive
two discrete symmetries, T and TP, capturing data on partial breaking of N = 2 supersymmetry;
see Sect. 3.3 for details. Exact N = 2 lives at the fixed point of these symmetries. In summary,
we can say that the classical properties of the iso-particle are given by the N = 2 supersymmetric
current algebra in Eq. (2.3).

(2) By using the Nielson–Ninomiya theorem, we have studied the topological properties of the
fermionic gapless states given by zeros of the discriminant in Eq. (4.3). The two bands of the
rigid Ward operator H are gapped except at isolated points in the phase space of the electric
and magnetic coupling constants, where supersymmetry is partially broken and where there is
a gapless chiral state with a chiral anomaly violating the Nielson–Ninomiya theorem. From the

study of the properties of H , it follows that the gap energy is given by Eg = 2
∣∣∣�ξ ∣∣∣ and vanishes

for
∣∣∣�ξ ∣∣∣ = 0; that is, for a vanishing central extension in the N = 2 supercurrent algebra. The

zero modes of H and their properties like windings and conserved supersymmetric charges
are as reported in Table 3. At the particular point V = 0, the discriminant det H reduces to

−
∣∣∣�ξ ∣∣∣2 and has an SU(2) singularity at the origin �ξ = �0. There, the Nielson–Ninomiya theorem∑
i w
(
S2

i

) = 0 is trivially satisfied, as shown in Table 3, and N = 2 supersymmetry is exact
with compensating chiral anomalies.

(3) We have used the proposal in Table 1 to study the effect of quantum corrections induced by
fluctuations of FI coupling constants (running couplings). We have found that the quantum
effect in the iso-space of FI couplings may break supersymmetry completely except for the
saturated bounds in Eq. (4.21), where half of the oscillating modes disappear.

Finally, we would like to add that this approach might be helpful to explore the picture in higher
supergravities, in particular for N = 4; progress in this direction will be reported in a future
publication.
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