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The ANITA experiment has observed two air shower events with energy ∼ 500 PeV emerging from 
the Earth with exit angles of ∼ 30◦. We explain ANITA events as arising from neutrino-induced 
supersymmetric sphaleron transitions. These high-multiplicity configurations could contain a large 
number of long-lived supersymmetric fermions, which can traverse the Earth and decay in the 
atmosphere to initiate upward-pointing air showers at large angles above the horizon. We comment 
on the sensitivity of new generation LHC detectors, designed to searching for displaced decays of beyond 
standard model long-lived particles, to test our model.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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The SU (3)C ⊗ SU (2)L ⊗ U (1)Y standard model (SM) of elec-
troweak and strong interactions has recently endured intensive 
scrutiny at the Large Hadron Collider (LHC) using a dataset cor-
responding to an integrated luminosity of 63.9 fb−1 of 2018 pp
collisions at center-of-mass energy 

√
s = 13 TeV, and it has proven 

once again to be a remarkable structure that is consistent with 
all experimental results by tuning more or less 19 free parame-
ters. However, the Antarctic Impulsive Transient Antenna (ANITA) 
experiment, designed to observe ultrahigh-energy cosmic rays and 
neutrinos from outer space, has detected particles that seemed to 
be blasting up from Earth instead of zooming down from space, 
challenging SM explanations [1,2]. As a matter of fact, several 
beyond standard SM physics models have been proposed to ac-
commodate ANITA observations [3–10], but a convincing expla-
nation is yet to see the light of day. In this Letter, we entertain 
the possibility that ANITA events originate in a supersymmetric 
sphaleron transition produced in the scattering of extremely high-
energy (Eν � 1010.5 GeV) cosmic neutrinos with nucleons inside 
the Earth. Such a non-perturbative process yield a high-multiplicity 
final state containing several long-lived supersymmetric fermions, 
one of which would survive propagation through the Earth crust 
before decaying into SM particles to initiate an upward-pointing 
shower in the atmosphere, just below the ANITA balloon.

E-mail address: luis.anchordoqui@gmail.com (L.A. Anchordoqui).
https://doi.org/10.1016/j.physletb.2019.02.003
0370-2693/© 2019 Published by Elsevier B.V. This is an open access article under the CC
The advantages of our interpretation of ANITA events over pre-
vious supersymmetry (SUSY) models [8,9] go in two directions:

• The ratio BR(νN → SUSY) of the neutrino–nucleon cross sec-
tion into SUSY particles over the total νN cross section dom-
inates over the branching ratio of charged current (CC) νN
interactions. Furthermore, the particle content of the final state 
in sphaleron-induced transitions could contain a large multi-
plicity of SUSY fermions. All of this is in sharp contrast with 
the production of SUSY pairs in perturbation theory, for which 
BR(νN → SUSY) � 10−4 [11–15].

• The νN scattering process requires a center-of-mass energy √
s � 245 TeV, thus probing Eν � 1010.5 GeV. In this energy 

range a large flux of neutrinos is expected from the decay of 
cosmic strings [16]. Moreover, in our model all three neutrino 
flavors would contribute to the ANITA signal.

We begin our discussion by highlighting the main characteristics of 
ANITA events and after that we provide a phenomenological anal-
ysis of data.

After three balloon flights, the ANITA experiment has de-
tected two perplexing upgoing showers with energies of (600 ±
400) PeV [1] and (560+300

−200) PeV [2].1 The energy estimates are 

1 The trigger algorithm used for the second flight was not sensitive to this type 
of events [1].
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made under the assumption that the showers are initiated close 
to the event’s projected position on the ice. These estimates are 
lowered significantly if the showers are initiated far above the ice. 
For example, the energy of the second event is lowered by 30% 
if the shower is initiated four kilometers above the ice [2]. Note 
that even with the 30% energy reduction, the center-of-mass en-
ergy of the collisions initiating these showers is beyond 

√
s of the 

LHC beam.
In principle, ANITA events could originate in the atmospheric 

decay of an upgoing τ -lepton produced through a CC interaction 
of a ντ inside the Earth [17]. However, the relatively steep arrival 
angles of these events (27.4◦ and 34.5◦ above the horizon) create 
a tension with the SM neutrino–nucleon interaction cross section. 
More concretely, the second event implies a propagating chord 
distance through the Earth = 2R⊕ cos θn ∼ 7.2 × 103 km, which 
corresponds to 1.9 × 104 km water equivalent (w.e.) and a total of 
18 SM interaction lengths at Eν ∼ 103 PeV [18]. Here, R⊕ is the 
radius of the Earth and θn the nadir angle of the event. The first 
event emerged at θn � 62.6◦ implying a chord through the Earth 
of 5.9 × 103 km, which corresponds to 1.5 × 104 kmw.e. for Earth’s 
density profile [1]. Because the energy deposited in a shower is 
roughly 80% of the incident neutrino energy, the cosmic neutrino 
energy range of interest is 200 � Eν/PeV � 1000. Taking the view 
that the event distribution is maximized at θn = 60◦ , in our cal-
culations we will consider an average chord distance in traversing 
the Earth of ∼ 6 × 103 km.

Next, in line with our stated plan, we study the structural 
properties of our model. In the mid-seventies ’t Hooft pointed 
out that the SM does not strictly conserve baryon and lepton 
number [19,20]. Rather, non-trivial fluctuations in SU (2) gauge 
fields generate an energy barrier interpolating between topologi-
cally distinct vacua. An index theorem describing the fermion level 
crossings in the presence of these fluctuations reveals that neither 
baryon nor lepton number is conserved during the transition, but 
only the combination B − L. Inclusion of the Higgs field in the 
calculation modifies the original instanton configuration [21]. An 
important aspect of this modification (called the “sphaleron”) is 
that it provides an explicit energy scale Esph ∼ MW /αW ∼ 9 TeV
for the height of the barrier, where MW is the mass of the charged 
vector bosons W ± and αW � 1/30. When the energy reach is 
much lower than Esph the tunneling rate through the barrier is 
exponentially suppressed �tunneling ∝ e−4π/αW ∼ e−164. However, 
the sphaleron barrier can be overcome through thermal transi-
tions at high temperatures, providing an important input to any 
calculation of cosmological baryogenesis [22–24]. Indeed, the rate 
over the barrier (thermal excitation) contains a Boltzmann factor 
�thermal ∝ T 4e−Esph/T , and hence the rate becomes large as the 
temperature approaches MW .

More speculatively, it has been suggested that the topological 
transition could take place in two particle collisions at very high 
energy [25–27]. The anomalous electroweak contribution to the 
partonic process can be written as

σ̂i(ŝ) = 5.3 × 103 e−(4π/αW ) F W (ε) mb , (1)

where the tunneling suppression exponent F W (ε) is usually re-
ferred to as the “holy-grail function” and ε ≡ √

ŝ/(4π MW /αW ) �√
ŝ/30 TeV [28–30]. Altogether, it is possible that at or above the 

sphaleron energy the cross section could be of O(mb) [31].
The argument for strong damping of the anomalous cross sec-

tion for 
√

ŝ � 30 TeV was convincingly demonstrated in [32,33], in 
the case that the classical field providing the saddle point interpo-
lation between initial and final scattering states is dominated by 
spherically symmetric configurations. This O (3) symmetry allows 
the non-vacuum boundary conditions to be fully included in ex-
tremizing the effective action. In [34] it was shown that a sufficient
condition for the O (3) dominance is that the interpolating field 
takes the form of a chain of “lumps” which are well-separated, 
so that each lump lies well into the exponentially damped region 
of its nearest neighbors. However, we are not aware of any reason 
that such lumped interpolating fields should dominate the effective 
action. It is thus of interest to explore the other extreme, in which 
non-spherically symmetric contributions dominate the effective ac-
tion (and let experiment rather than theory [35–37] be the ar-
biter). Thus far, the searches for instanton-induced processes in 
LHC data have shown no evidence for excesses of high-multiplicity 
final states above the predicted background [38–40].

Of particular interest here would be an enhancement of the νN
cross section over the perturbative SM estimates, say by an order 
of magnitude, for Eν � 1010.5 GeV. To get an estimate of this cross 
section we first note that for the simple sphaleron configuration 
s-wave unitarity is violated for 

√
ŝ > 4π MW /αW ∼ 36 TeV [31]. 

If for 
√

ŝ > 36 TeV we saturate unitarity in each partial wave, 
then this yields a geometric parton cross section π R2, where R
is some average size of the classical configuration. As a fiducial 
value we take the core size of the Manton–Klinkhamer sphaleron, 
R ∼ 10−2 fm. In this simplistic model, the νN cross section is 
found to be

σ black disk
νN (Eν) = π R2

1∫
xmin

∑
partons

f (x) dx , (2)

where xmin = ŝmin/s = (36)2/2mN Eν � 0.065, where mN is the 
mass of an isoscalar nucleon, N ≡ (n + p)/2, in the renormalization 
group-improved parton model. In the region 0.065 < x < 3 (0.065)

the parton distribution function for the up and down quarks is well 
approximated by f � 0.5/x, so the expression for the cross section 
becomes

σ black disk
νN (Eν) � π R2 (0.5) (ln 3) (2/2) � 1.5 × 10−30 cm2 , (3)

where the last factor of 2/2 takes into account the (mostly) 2 
contributing quarks (u, d) in this range of x, and the condition 
that only the left-handed ones contribute to the scattering. This 
is about 80 times the SM cross section. Of course this calculation 
is very approximate and the cross section can easily be smaller 
by a factor of 10 (e.g., if R is 1/3 of the fiducial value used). The 
sphaleron production cross section derived “professionally” [41] is 
consistent with our back-of-the-envelope estimate, and shows an 
enhancement of the νN cross section over the perturbative SM 
estimates by about an order of magnitude in the energy range 
Eν � 1010.5 GeV. Previous estimates pointed to even larger cross 
section enhancements above perturbative SM prediction [42,43]. In 
our calculations we will adopt the estimate of [41].

A point worth noting at this juncture is that the energy for the 
height of the barrier in SUSY models is also about 10 TeV [44], 
and consequently the expected production rate of supersymmet-
ric sphaleron configurations is comparable to the SM one [45]. 
Most importantly, the decay BR increases if the final state con-
tains a large number of SUSY fermions [45]. To develop our pro-
gram in the simplest way, we will work within a construct with 
gauge mediated SUSY breaking, in which the gravitino ψ3/2 is the 
lightest supersymmetric particle (LSP) and the next-to-lightest su-
persymmetric (NLSP) is a long-lived bino B̃ [46]. Note that for 
MB̃ ∼ 700 GeV [47], NLSPs could be copiously produced through 
instanton-induced processes at 

√
ŝ � 50 TeV (see Fig. 3 in [45]), 

and could propagate inside the Earth without suffering catas-
trophic energy losses from electromagnetic interactions. The bino 
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decays into a gravitino and a gauge boson (i.e., photon or Z -boson) 
with Planck-suppressed partial widths,

�(B̃ → ψ3/2γ ) = cos2 θW

48π M2
Pl

M5
B̃

m2
3/2

(1 − x2
3/2)

3(1 + 3x2
3/2), (4)

�(B̃ → ψ3/2 Z)

=
sin2 θWβB̃→ψ3/2 Z

48π M2
Pl

M5
B̃

m2
3/2

[
(1 − x2

3/2)
2(1 + 3x2

3/2) − x2
Z

×
{

3 + x3
3/2(−12 + x3/2) + x4

Z − x2
Z (3 − x2

3/2)
}]

, (5)

where MPl ∼ 1019 GeV, sin2 θW ≈ 0.23, x3/2 ≡ m3/2/MB̃ , and xZ ≡
M Z /MB̃ , and where

βB̃→ψ3/2 Z ≡
[

1 − 2(x2
3/2 + x2

Z ) + (x2
3/2 − x2

Z )2
]1/2

, (6)

for MB̃ > m3/2 + M Z , and βB̃→ψ3/2 Z = 0 otherwise [48]. For MB̃ >

m3/2 + M Z , the total decay width is well approximated by

τ−1
B̃

� �(B̃ → ψ3/2γ ) + �(B̃ → ψ3/2 Z), (7)

and the NLSP lifetime is estimated to be

τB̃ ∼ 5 × 1014
m2

3/2

M5
B̃

s , (8)

when masses are given in GeV [49].
Before proceeding, we pause to discuss existing limits from 

searches of long-lived neutral particles at the Tevatron and at the 
LHC. The CDF Collaboration searched for long-lived particles which 
decay to Z -bosons by looking for Z → e+e− decays with displaced 
vertices and excluded proper decay lengths cτ < 20 cm for masses 
< 110 GeV [50]. Searches by D0 Collaboration exclude long-lived 
neutral particles of comparable lifetimes and masses [51,52]. The 
CMS Collaboration has searched for long-lived neutralinos decay-
ing into a photon and an invisible particle, excluding cτ < 50 cm
for masses < 220 GeV [53]. The ATLAS Collaboration searched for 
high-mass long-lived particles that decay within the inner detector 
to give displaced dilepton vertices excluding cτ < 100 cm [54]. AT-
LAS has also searched for very low mass (< 10 GeV) long-lived 
particles by considering pairs of highly collimated leptons [55], 
with sensitivity to cτ � 20 cm. The most restrictive constraints on 
the lifetime of a long-lived particle come from a search by the AT-
LAS Collaboration for final states with displaced dimuon vertices 
in collisions at 

√
s = 13 TeV [56]. Proper decay lengths cτ < 14 m

are excluded for SUSY models in which the lightest neutralino is 
the NLSP, with a relatively long lifetime due to its weak coupling 
to the LSP-gravitino. The lifetime limits are determined for very 
light gravitino mass and a neutralino mass of 700 GeV. Altogether, 
we can remain consistent with LHC bounds requiring τB̃ ∼ 44 ns
for MB̃ ∼ 700 GeV. Substituting the bino lifetime in (8) we obtain 
m3/2 ∼ 122 keV.

SUSY models with a gravitino LSP are also constrained by a 
variety of cosmological observations. Of relevance to our analy-
sis: (i) if τB̃ ∼ 44 ns, NLSP decay does not perturb light element 
abundances which are synthesized during Big Bang nucleosynthe-
sis [57,58]; (ii) if m3/2 ∼ 122 keV, the relic density of gravitinos 
can be accommodated to match observations with choice of pa-
rameters [59,60].

It takes a proper time of order 4.5M−1
W until the sphaleron 

radiation shows free-field behavior [61]. For neutrino-induced 
sphaleron transitions, this radiation will be emitted in a cone with 
half-opening angle δφ ∼ O(1/γ ), where γ is the Lorentz factor. 
Taking fiducial values Eν ∼ 1010.5 GeV and 
√

ŝ ∼ 50 TeV, one can 
have an order of magnitude estimate γ ∼ 6 × 105. All in all, the 
bino decay length in the lab frame is γ cτ ∼ 8 × 103 km. This 
means that for emerging angles θn ∼ 60◦ , a long-lived bino could 
survive the trip through the Earth. Note also that the boosted bino 
would have an energy E B̃ ∼ 420 PeV, and after decay roughly half 
of its energy will be deposited in the air shower. These order of 
magnitude estimates are in good agreement with the energy and 
opening angle distributions shown in Fig. 4 of [41].

Given an isotropic ν + ν̄ flux, the number of binos that emerge 
from the Earth is proportional to an “effective solid angle” �eff ≡∫

dθndφ cos θn P (θn, φ, X), where P (θn, φ; X) is the probability for 
a neutrino with incident nadir angle θn and azimuthal angle φ

to emerge as a detectable B̃ [62,63]. P (θ, φ, X) is a rather com-
plicated function of various unkown (model dependent) parame-
ters X . However, we can provide a rough estimate of the event 
rates if we adopt the exposure calculations of [8], which sug-
gest a total ANITA exposure for sub-EeV emergent cosmic rays 
of 2.7 km2 sr yr, for the two flights together. It is noteworthy 
that this exposure is orders of magnitude larger than the expo-
sure for τ -neutrinos reported by the ANITA Collaboration [64]. 
This is because τ -neutrinos which do not arrive at very large 
nadir angles are mostly blocked by the Earth. Observation of 
2 events at ANITA would require an integrated neutrino flux 
�ν(Eν > 1010.5 GeV) ∼ 10−17.7 (cm2 s sr)−1. Interestingly, at Eν ∼
1010.5 GeV, the ANITA experiment sets the most restrictive up-
per limit on the energy weighted cosmic neutrino flux; namely, 
Eν�ν(Eν) � 10−17.5 (cm2 s sr)−1 at 90% CL [65,66]. Note that 
neutrino-induced sphaleron transitions with non-negligible (miss-
ing) energy carried away by long-lived SUSY fermions would re-
lax limits on the neutrino flux at extreme energies. We end with 
two comments on the neutrino flux. On the one hand, the re-
quired flux level to accommodate ANITA events may be excep-
tionally high by astronomical standards [67]. On the other hand, 
for some model parameters, such a flux of extremely high-energy 
(Eν � 1010.5 GeV) neutrinos is consistent with predictions from 
decay of cosmic strings [16]. The decay of cosmic strings also pro-
duces extremely high-energy photons and electrons that interact 
with the cosmic microwave background and extra galactic back-
ground light, producing an electromagnetic cascade, whose energy 
density is constrained by measurements of the diffuse γ -ray back-
ground [68]. A point worth noting at this juncture is that the fluxes 
of γ -rays and neutrinos expected from the decay of cosmic strings 
are consistent with existing observations [69]. Moreover, experi-
ments are being designed to search for the neutrino signals of 
cosmic strings; e.g., the Lunar Orbital Radio Detector (LORD) that 
will fly aboard the Luna-Resurs Orbiter space mission [70].

In summary, we have provided an interpretation of ANITA 
events in terms of neutrino-induced supersymmetric sphaleron 
transitions. These high-multiplicity B + L violating transitions may 
contain a large number of long-lived SUSY fermions, which can 
traverse the Earth and decay in the atmosphere to initiate an 
upward-pointing shower just below the ANITA balloon. As a proof 
of concept, we have framed our discussion in the context of a 
gauge-mediated breaking scheme, but this model spans only a 
small region of the SUSY parameter space that can accommodate 
ANITA events. Indeed, our interpretation of these perplexing events 
can be encapsulated in the product of three factors:

• the differential flux of incident neutrinos,
• the ratio of the νN cross section into SUSY particles over the 

total νN cross section,
• the lifetime of the SUSY fermion.
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Note these three factors are actually generic to a broad class of 
models in which the messenger of ANITA events does not live 
inside the Earth neither originate at cosmological distances. New 
generation LHC experiments dedicated to searching for long-lived 
particles (such as the ForwArd Search ExpeRiment (FASER) [71,72], 
the MAssive Timing Hodoscope for Ultra Stable neutraL pArticles 
(MATHUSLA) [73,74], and the Compact Detector for Exotics at LHCb 
(CODEX-b) [75]) will provide an important test both of the last two 
factors and of the ideas discussed in this Letter. In addition, the 
first factor will be tested by the future Probe Of Extreme Multi-
Messenger Astrophysics (POEMMA) [76] and the Giant Radio Array 
for Neutrino Detection (GRAND) [77], which may directly observe 
neutrino-induced sphaleron transitions raining down on the Earth 
atmosphere.
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