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1 Introduction

String-like objects appear in many quantum field theories, such as flux tubes in quantum

chromodynamics (QCD), vortices such as the Nielsen-Olesen strings in the 4d Abelian

Higgs model [2], and domain walls in 3d theories such as the Ising model. Their appear-

ance in QCD, as visible through the spectrum of mesons (and other hadrons), led to the

development of the Veneziano model [1] and ultimately to the development of string theory.

A straight string is a 2d object which breaks the ISO(D − 1, 1) symmetry of the

D-dimensional bulk into an ISO(1, 1) × SO(D − 2) symmetry group, leading to (D − 2)

massless modes of excitation, known as the Nambu-Goldstone Bosons, or NGBs. These
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massless excitations define the low-energy behavior of the string, and we can compute their

energy levels expanded in powers of 1/L, where L is the length of the string.

Naively, one might think that the actions computed for string-like objects in different

QFTs are dependent on the underlying theory. However, as reviewed by Aharony and

Komargodski [3], the first few terms in the expansion — up to and including order of 1/L5

— are universal, and only the higher order terms are dependent on the theory. This was

shown in 3 different formalisms:

1. The general case, in which there is no gauge fixing, and allowed terms in the action

must preserve both Lorentz symmetry and diffeomorphism.

2. The unitary (“static”) gauge in which the parameterization of the world-sheet of the

string (“diffeomorphism”) is fixed and the Lorentz group is broken manifestly. In this

formalism, the action can be expanded by the number of derivatives — corresponding

to the 1/L expansion of the energy levels — constrained by Lorentz symmetries. In

this formalism, it was shown that for D > 3 classical Lorentz invariance allows

a six-derivative term, but its presence modifies the form of the generators (while

higher-derivative allowed terms do not); and then quantum considerations show that

its value is actually fixed.

3. The orthogonal (“conformal”) gauge in which diffeomorphism is fixed up to conformal

transformations and Lorentz symmetry is maintained. In this formalism, the action

is constrained by conformal invariance.

This work aims at generalizing the results of Aharony and Komargodski to the case of

Supersymmetry (SUSY), specifically D = 4, N = 1 SUSY. In a supersymmetric theory,

a string may break D = 4, N = 1 SUSY either completely, or partially into D = 2,

N = (2, 0), as was shown by Hughes and Polchinski [4]. The breaking of SUSY generators

adds massless fermionic modes of excitation, known as Goldstinos. The action can then be

written as a functional of the NGBs and Goldstinos, and expanded as in the fully bosonic

case by the number of derivatives. For the two cases of complete and partial breaking

of SUSY, a complete classification of action terms has yet to be made. In the scope of

this work we will only explore the case of complete SUSY breaking, which is relevant in

particular for confining strings in supersymmetric Yang-Mills theory, and it is the main

goal of this work to classify action terms for this case. As a final step, we will calculate the

form of the energy level correction for a closed string on a circle, arising from the lowest

order new term we find, so that our results can be verified by lattice simulations at some

later point.

The outline of this paper is as follows. In the next section we review well established

results, as well as notations and definitions we will use, and eventually a graphical approach,

originally presented by Gliozzi and Meineri [9], to find invariant actions for bosonic effective

strings. In section 3 we extend this approach to include Goldstinos, and in section 4 we

use the extended approach to find invariant actions for SUSY breaking effective strings,

including a new term at order 1/L5. In section 5 we formulate prohibition rules which

show that our list of invariant actions is indeed exhaustive, and in section 6 we derive the
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energy corrections that follow from our new term. Finally we discuss our results and draw

some conclusions.

2 Review

2.1 Bosonic effective strings

Consider some gapped D-dimensional quantum field theory with a string-like field config-

uration, so that its width is much smaller than its length. Such a configuration could be

either open, closed, infinite or semi-infinite. We define this configuration by the space-time

coordinates of its worldsheet Xµ
(
σ0, σ1

)
, where σ0, σ1 are some parameterization of the

worldsheet and µ = 0, . . . , D − 1. The physics can’t depend on the parameterization. The

effective string action is the low energy action of the massless modes on the worldsheet

S = T

∫
d2σL

[
Xµ

(
σ0, σ1

)]
(2.1)

where T is the string tension. This general formalism is the first case referred to in the

introduction.

The static gauge is where we fix σ0 = X0 and σ1 = X1. When working in this gauge

we will denote these ξ0, ξ1 to avoid ambiguity. In this gauge the NGBs are given by the

transverse coordinates Xi for i = 2, . . . , D − 1. In this formalism effective string action is

S = T

∫
d2ξL

(
∂aX

i, ∂a∂bX
i, . . .

)
(2.2)

where a, b = 0, 1. There is no Xi dependence with no derivatives due to translational

invariance. For simplicity, we will work mainly in this formalism, and generalize our results

whenever possible. We will use letters from the beginning of the Latin alphabet such as

a, b, c, d, . . . to denote the worldsheet indices 0, 1, and letters from the middle of the Latin

alphabet such as i, j, k, . . . to denote the transverse indices 2, . . . , D − 1.

The gauge choice (2.2) breaks the space-time symmetry ISO(D − 1, 1) by choosing

a preferred direction in space. ISO(D − 1, 1) is the Poincaré group which is the group

that preserves the Minkowski metric which we define as ηµν = diag (−1, 1, . . . , 1). It is

generated by

Jµν = i (xµ∂ν − xν∂µ) (2.3)

Pµ = i∂µ . (2.4)

It is broken into ISO(1, 1)×SO(D−2), where ISO(1, 1) is the symmetry on the worldsheet,

which preserves the metric ηab, and is generated by Jab and Pa; and SO(D − 2) is the

symmetry of rotations around the string and is generated by Jij . The remaining generators

Pi and Jai are broken. By acting with Jai on the fields Xj we get

δXj = iεai
[
Jai, X

j
]

= −εaiδijξa − εaiXi∂aX
j (2.5)

which is a non-linear realization of these generators.

– 3 –
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When working in the static gauge, we will often work in light-cone coordinates

ξ± = ξ0 ± ξ1 . (2.6)

A well known result in String theory is that the action of a string is proportional to

the area of its worldsheet. This result can be expressed using the embedded metric on the

string

gab = ηµν∂aX
µ∂bX

ν (2.7)

which in static gauge can be expressed as

gab = ηab + ∂aX
i∂bX

i ≡ ηab + hab, (2.8)

and the Nambu-Goto (NG) action equal to the area of the worldsheet

SNG = −T
∫
d2σ
√
− det (gab). (2.9)

The NG action is highly non-linear. In the context of the effective string, we can work

with it by expanding in terms of derivatives ∂ around the flat string solution of the static

gauge. The determinant is given by

− det (gab) = − det (ηab + hab) = 1 + ηabhab − det (hab) =

= 1 + ∂aX
i∂aXi − 1

2
∂aX

i∂bXi∂bX
i∂aXi +

1

2

(
∂aX

i∂aXi
)2

(2.10)

and we get

SNG = −T
∫
d2σ

(
1+

1

2
∂aX

i∂aXi−1

4
∂aX

i∂bXi∂bX
i∂aXi+

1

8

(
∂aX

i∂aXi
)2

+O
(
∂6
))

.

(2.11)

This expansion is meaningful under the assumption of a long string of length scale

L. We can then define a small dimensionless parameter
(√
TL
)−1

and expand the energy

levels of the string in terms of this parameter. This expansion will take the form

En = TL+
a
(1)
n

L
+
a
(2)
n

TL3
+

a
(3)
n

T 2L5
+ . . . (2.12)

Where the term at order L−k corresponds to the terms in the action at order ∂k+1.

For the NG action, there is a known exact result for the energy levels of closed strings with

no worldsheet momentum [10]

En = TL

√
1 +

8π

TL2

(
n− D − 2

24

)
. (2.13)
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2.2 Supersymmetry

Supersymmetry (SUSY) is an extension of the Poincaré algebra to include fermionic gen-

erators. The simplest (N = 1) super-Poincaré generators can be written in D = 4 as a

single Majorana spinor

Q =
(
Q1 Q2 Q2̇ −Q1̇

)T
(2.14)

with the following algebra {
Q,Q

}
= −2iγµPµ

[Q,P ] = 0 (2.15)

[Q, Jµν ] = iσµνQ

where γµ are the Dirac gamma matrices satisfying {γµ, γν} = 2ηµν , Q is obtained from Q

using the charge conjugation operator C = iγ0γ2 such that

Q = −QTC =
(
−Q2 Q1 Q1̇ Q2̇

)
(2.16)

and

σµν =
i

4
[γµ, γν ] . (2.17)

We will generally use letters from the beginning of the Greek alphabet to denote the

Majorana spinor indices such as in Qα, γ
µ
αβ where α, β, · · · = 1, 2, 3, 4. This symmetry

can be realized by introducing a new anti-commuting space-time set of coordinates θα,

such that

{∂α, θβ} = δαβ , ∂α =
∂

∂θα
. (2.18)

We will take this to be a Majorana spinor, such that

θ =
(
θ1 θ2 θ2̇ −θ1̇

)T
(2.19)

θ = −θTC =
(
−θ2 θ1 θ1̇ θ2̇

)
. (2.20)

Then we can express the super-Poincaré generators in the superspace {xµ, θα}

Jµν = i (Xµ∂ν −Xν∂µ) + θα (σµν)αβ ∂β (2.21)

Qα = −i∂α + γµαβθβ∂µ (2.22)

Pµ = i∂µ . (2.23)

2.3 Fermionic effective strings

Much like the breaking of commuting symmetry operators results in the introduction of

massless Nambu-Goldstone bosons, Akulov and Volkov showed [6] that the breaking of anti-

commuting generators introduces massless fermions, which were later termed Goldstinos.

In an N = 1, D = 4 bulk, a string may break either all, or half of the 4 SUSY generators.

Clearly the generators which square to translations transverse to the string must be broken.

In this work we will focus on the case were all generators are broken. As in the bosonic case,
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the coordinates which correspond to the broken generators become a field configuration

which we will denote with the massless Majorana spinor ψα, and the effective string action

is the action of the massless modes on the worldsheet

S = T

∫
d2σL

[
Xµ

(
σ0, σ1

)
, ψα

(
σ0, σ1

)]
. (2.24)

The generalization of the Nambu-Goto action (2.9) to the supersymmetric case is obtained

by replacing

∂aX
µ → Πµ

a ≡ ∂aXµ − iψγµ∂aψ (2.25)

to get the Akulov-Volkov action

SAV = −T
∫
d2σ
√
− det

(
ηµνΠµ

aΠν
b

)
. (2.26)

When expanding this, dimensional analysis shows that terms of the form ∂kXmψ2n con-

tribute at order L−k−n+1, so we will denote the free term iψγµ∂aψ ∼ O
(
∂2
)

and the rest

of the terms accordingly. The AV action can then be expanded as

SAV = −T
∫
d2σ

(
1 +

1

2
∂aX

i∂aXi − 1

2

(
∆22̇

+ + ∆11̇
−

)
+O

(
∂3
))

(2.27)

where

∆αα̇
a ≡ iψα̇∂aψα − iψα∂aψα̇ . (2.28)

This implies the equations of motion

∂−ψ1 +O
(
∂3
)

= ∂−ψ1̇ +O
(
∂3
)

= ∂+ψ2 +O
(
∂3
)

= ∂+ψ2̇ +O
(
∂3
)

= 0 . (2.29)

2.4 Classification of the action of bosonic strings

In their 2013 review of bosonic effective strings, Aharony and Komargodski (AK) classify

the action terms by their scale (which they refer to as weight). The scale of a term is

its dimension of length−1, such that ∂aX
µ has scale 0, ∂a∂bX

µ has scale 1, and so on.

Translational invariance guarantees that all terms in the action have non-negative scale.

For bosonic strings, ISO(1, 1)×SO(D−2) and parity invariance (that we assume) guarantee

that all terms have even scale. AK then show that there is a unique invariant action at

scale zero, which is the Nambu-Goto action (2.9). At scale 2, AK find a single term which

is invariant up to a term proportional to the EOM, with 6 derivatives and 4 fields

L6,4 = −32c4
(
∂2+X

i∂2−X
i
) (
∂+X

j∂−X
j
)

+ . . . , (2.30)

which can be shown to be forbidden quantum mechanically since it modifies the algebra

of Lorentz transformations [7], which can lead to anomalies (terms whose variation is

proportional to the EOM can be made invariant by changing the transformation rule, but

this can modify the algebra). The next allowed terms are of scale 4, and have at least 8

derivatives. The existence of 8 derivatives implies that those terms contribute to the 1/L

expansion of the energy levels at order of at least 1/L7, so that the coefficients up to and

including order of 1/L5 are universal. Aharony and Klinghoffer [8] calculated how the first

few terms of the NG action appear in the energy level expansion, as well as the effect of

the L6,4 term.

– 6 –
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2.5 Gliozzi-Meineri (GM) approach for classifying bosonic string action terms

In their 2013 Paper [9], Gliozzi and Meineri (GM) present a useful graphical approach

to finding invariant terms for the action of a bosonic string. They associate terms with

graphs, where the vertices are the fields Xi and their derivatives, and the edges represent

contractions over indices. Since we have 2 types of indices — worldsheet indices denoted

a, b, c, . . . and transverse indices denoted by i, j, k, . . . — we also have 2 types of edges.

Worldsheet indices will be represented by solid lines, and transverse indices will be rep-

resented by wavy lines. The term ∂aX
i will be represented by a circular node (slightly

changing GM notation) with 2 open edges

∂aX
i = . (2.31)

So that scale 0 terms can be represented as sums and products of ring graphs, so for

example ∂aX
i∂aXi, ∂aX

i∂aXj∂bX
j∂bXi and a ring with 2n ∂X’s will be represented and

denoted as

A2 , A4 , A2n

2n

(2.32)

correspondingly. General terms in the action are products of such rings. GM write the

broken infinitesimal Lorentz transformations in a covariant form

δX i = −εajδijξa − εajXj∂aX
i (2.33)

δ
(
∂bX

i
)

= −εajδijηab − εaj∂bXj∂aX
i − εajXj∂a∂bX

i . (2.34)

Eq. (2.34) can be expressed graphically as

δ = − − −

X

(2.35)

where the solid circles represent the transformation parameter εaj , the vertex X represents

Xj , and the vertex which is connected to 3 edges is simply ∂a∂bX
i. Using this transforma-

tion rule, one can transform the ring A2n which has 2n vertices of the form ∂aX
i (we will

refer to these as boson vertices) and express it graphically as

A2n

2n

→ −2n · 2n − 2n · 2n+2 − 2n ·

X

2n . (2.36)

We can cancel the first two terms in the variation by summing rings such that one

variation from the ring A2n will cancel the other from the ring A2n+2. This gives a recursion

relation for the coefficients of the rings

(2n+ 2) a2n+2 = −2na2n ⇒ a2n = (−1)n+1 1

n
a2 . (2.37)

– 7 –
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Summing this series we get

∞∑
n=1

a2nA2n = a2

∞∑
n=1

(−1)n+1 1

n
Tr
[(
∂aX

i∂bX
i
)n
ηbc
]

= a2Tr
[
log
(

(ηab+∂aX·∂bX) ηbc
)]

=

= a2 log [− det (ηab+hab)] = a2 log (−g) (2.38)

where g = det (gab). This summation cancels all variations which come out of those two

terms except for the variation

. (2.39)

We can now consider a sum of terms of the form bn [log (−g)]n. The nth order in this sum

contains products of n rings, and in fact every n ring term is contained in it. Looking at

the third term in the variation (2.36), we see that it has a “tumor” stemming from the

ring. Such a tumor can be handled using integration by parts of the derivative from which

the tumor stems. This will move the tumor around the ring, so that we get

2n ·

X

2n = − A2n

2n

· + total derivative . (2.40)

So for a product of n rings we can cancel this variation using the surviving A2 variation

from a product of n+ 1 rings. For this cancellation we require

bn+1 =
1

2 (n+ 1)
bn ⇒ bn =

1

2nn!
b0 (2.41)

and we get a unique invariant scale 0 Lagrangian

L0 = b0

∞∑
n=0

1

n!

[
1

2
log (−g)

]n
= b0
√
−g . (2.42)

Which is exactly the NG Lagrangian. GM extend this approach for higher scaling.

They obtain two scale 2 invariants

I1 =
√
−g∂2abXi∂

2
cdXjt

ijgacgbd (2.43)

I2 =
√
−g∂2abXi∂

2
cdXjt

ijgabgcd (2.44)

where

gab = ηab − ηachcdηdb + ηachcdη
dehefη

fb − . . . (2.45)

is the matrix inverse of gab, and

tij = δij − ∂aXi∂bX
jgab. (2.46)

However, looking at the invariants I1, I2 one may observe that I1− I2 =
√
−gR where R is

the 2D Ricci scalar. This is a total derivative so it does not contribute to the action. Also,

– 8 –
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the first terms of I2, up to eight derivatives, are proportional to the free EOM and hence

are vanishing at the six-derivative order. This shows there are no contributing invariants

at the six-derivative order. This approach does not find the term (2.30) since this term is

only invariant up to the EOM.

GM proceed to apply this method to find higher scale invariants which will be discussed

in section 4.

3 Extending the GM approach to include Goldstinos

To extend the GM approach to include Goldstinos, we need to look at the broken super-

symmetry transformations on the string. The broken generators are

Jai = i (Xa∂i −Xi∂a) + ψα (σai)
β
α ∂β (3.1)

Qα = −i∂α + γµαβψ
β∂µ (3.2)

so that the transformations can be written as

δXj = −εaiδijξa − εaiXi∂aX
j + iθ

α
γjαβψ

β + iθ
α
γaαβψ

β∂aX
j (3.3)

δψβ = iεaiψα (σai)
β
γ − ε

aiXi∂aψ
β + θ

α
C β
α + iθ

α
γaαγψ

γ∂aψ
β (3.4)

δψ
β

= δψδC β
δ = −iεaiψα (σai)

β
α − ε

aiXi∂aψ
δC β

δ + θ
β

+ iθ
α
γaαγψ

γ∂aψ
δC β

δ . (3.5)

We can write any fermionic effective string action using the following vertices

∂aX
i = (3.6)

∂aψ
α = ∂ (3.7)

ψ
α
γbαβ = γ (3.8)

ψ
α
γiαβ = γ (3.9)

and their derivatives. In the above we used springs to express spinor indices. The trans-

formation laws of these vertices can be written as

δ∂bX
j = −εaiδijηab−εai∂bXi∂aX

j−εaiXi∂a∂bX
j+iθ

α
γjαβ∂bψ

β+iθ
α
γaαβ∂bψ

β∂aX
j+iθ

α
γaαβψ

β∂a∂bX
j

(3.10)

δ∂bψ
β = iεai (σai)

β
γ ∂bψ

α−εai∂bXi∂aψβ−εaiXi∂a∂bψβ+iθ
α
γaαγ∂bψ

γ∂aψ
β+iθ

α
γaαγψ

γ∂a∂bψ
β (3.11)

δψ
β
γbβγ = −iεaiψαγbαβ (σai)βγ−ε

aiψ
α
γiαγδ

b
a−εaiXi∂aψβ

(
Cγb

)
βγ

+θ
α
γbαγ+iθ

α
γaαδψ

δ∂aψ
β
(
Cγb

)
βγ

(3.12)

δψ
β
γjβγ = −iεaiψαγjαβ (σai)

β
γ+ε

aiψ
α
γaαγδ

j
i−ε

aiXi∂aψ
β
(
Cγj

)
βγ

+θ
α
γjαγ+iθ

α
γaαδψ

δ∂aψ
β
(
Cγb

)
βγ

(3.13)

– 9 –
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or in graphical representation

δ =− −

+ i ∂ + i ∂ (3.14)

+ i

ψ

−

X

δ ∂ = i ∂ ∂ − ∂

+ i ∂

ψ

− ∂

X

(3.15)

+ σ-term

δ γ = − γ

+ i γ

∂ ψ

− γ

∂ X

(3.16)

+ σ-term

δ γ = + γ

i γ

∂ ψ

− γ

∂ X

(3.17)

+ σ-term

where the σ-terms are different terms which involves σai matrices, we used solid circles to

represent transformation parameters, such that

εai = (3.18)

θ
α
γaαβ = (3.19)

θ
α
γiαβ = (3.20)

and we introduced 3-legged vertices and single legged vertices to represent double deriva-

tives, the matrices Cγ and either X or ψ. We will refer to diagrams containing single

legged vertices as “tumor diagrams”.

4 Finding invariant terms in the unitary gauge

To find invariant terms, we will begin by eliminating the σ-terms and tumors from the

transformations. To eliminate σ-terms, we note that we must only look at fermion bilinears.

Noting that fermion bilinears with no derivatives will generate a Goldstino mass term which

we know is forbidden, we can construct the following bilinears at scale zero

iψ
α
γiαβ∂bψ

β = i γ ∂ ≡ (4.1)

iψ
α
γaαβ∂bψ

β = i γ ∂ ≡ . (4.2)
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These eliminate the σ-terms which appear both in the variations of the γ vertex and the

∂ vertex with opposite signs as can be seen from (3.11), (3.12) and (3.13). We also define

transformation terms

iθ
α
γiαβ∂bψ

β = i ∂ ≡ (4.3)

iθ
α
γaαβ∂bψ

β = i ∂ ≡ (4.4)

so that the transformations laws become

δ = +

+ − (4.5)

+X − tumor + ψ − tumor

δ = +

− − (4.6)

+X − tumor + ψ − tumor

δ = +

− − (4.7)

+X − tumor + ψ − tumor .

Note that the variations with a solid boson vertex are due to Lorentz transformations,

and the variations with a solid fermion vertex are due to SUSY transformations. As in

the bosonic case, we can dispose of tumors through integration by parts, at the price of

enlarging the number of disconnected pieces of a term by 1, where the added disconnected

piece for the X and ψ -tumors are

, (4.8)

correspondingly. We will use this fact to examine fully connected terms, ignoring tumors,

and then reinstate the tumors to sum up terms with multiple disconnected pieces.

4.1 Scale 0

Since the vertices defined above all have scale zero and two legs, we can build scale zero

invariants from them using rings, similarly to what we have seen in the bosonic case. As

in the bosonic case, we will start with a single ring, and for each (non-tumor) term in its

variation find a new ring which can cancel it, and then repeat this process with any new

rings we find, until all terms are canceled. We will consider a general ring which has n
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worldsheet edges (n ≥ 1), and cut all of them. The possible terms we could have between

worldsheet edges and their variations are

δ = − − +

+ + +transposed (4.9)

δ = + +

− − (4.10)

δ = − +

+ + +

+ + +

− −
(4.11)

δ = + +

+ −

+transposed (4.12)

we will separate these to variations which preserve n, and variations which take n→ n+ 1.

The variations which preserve n are

δn =− + + transposed

(4.13)

δn = − (4.14)

δn = − +

+ (4.15)

δn = + transposed (4.16)

we can cancel most of these by looking at the combination vertex

≡ − − (4.17)

− − +

and the ring An which is just n combination vertices connected to a ring. The combination

vertex leaves only the variations

δn = − − + transposed . (4.18)
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Now, looking at the variations that take n→ n+ 1 we have

δn+1 = − + +

+transposed (4.19)

δn+1 = − (4.20)

δn+1 = + +

+ − +

− (4.21)

δn+1 = + +

− +transposed (4.22)

these include almost all combinations of terms from (4.17) and transformations from (4.18),

which means we can cancel most of the n → n + 1 transformations of rings with n terms

using n preserving transformations of rings with n+1 terms, exactly as we did in the boson

case, taking

(2n+ 2) an+1 = −2nan ⇒ an = (−1)n+1 1

n
a1 (4.23)

as the coefficient of the ring An. Note that as in the boson case there is no need to cancel

the n preserving transformations for A1 since it is a total derivative. This leaves us with 2

yet to be canceled terms:

• A single combination not represented in the n→ n+1 transformations

• A single n→ n+ 1 transformation which cannot be expressed as such a combination

To fix the first problem, we take note that the only term that can produce this transforma-

tion is . No other term can cancel it. To avoid this problem we will

exclude it completely, by adding a canceling term into the definition of the combination

vertex

= − −
− − + +α .

(4.24)

One can check that in order to cancel the transformation from the

inAn with that transformation from the combinations of

and in An+1, taking into account their respectable coefficients, we should

take α = 1. We now need to also include the variations of which are

δ = + +

− − .

(4.25)
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The first 3 transformations here are automatically dropped since all terms including

were excluded. We are left with the last transformation, but this

is exactly the last transformation we could not cancel before, and it is now canceled! This

means we have constructed an invariant using An rings in exactly the same way we have

in the boson case, with the switch

→ (4.26)

switching back from the diagrammatic notation, this means

∂aX
i∂bX

i → ∂aX
i∂bX

i − iψγa∂bψ − iψγb∂aψ − iψγi∂aψ∂bXi − iψγi∂bψ∂aXi+

−
(
ψγi∂aψ

)
ψγi∂bψ − ηcd

(
ψγc∂aψ

)
ψγd∂bψ (4.27)

(where the spinor indices are contracted between adjacent ψ
′
s and ψ’s), or alternatively

∂aX
µ∂bXµ = ηab + ∂aX

i∂bX
i →

→ ηab + ∂aX
i∂bX

i − iψγa∂bψ − iψγb∂aψ − iψγi∂aψ∂bXi − iψγi∂bψ∂aXi +

−
(
ψγi∂aψ

)
ψγi∂bψ − ηcd

(
ψγc∂aψ

)
ψγd∂bψ = (4.28)

= ∂aX
µ∂bXµ − ∂aXµiψγµ∂bψ − iψγµ∂aψ∂bXµ −

(
ψγµ∂aψ

)
ψγµ∂bψ =

=
(
∂aX

µ − iψγµ∂aψ
) (
∂bXµ − iψγµ∂bψ

)
and we get the invariant scale zero action

S0 = −c0
∫
d2ξ
√
− det

[(
∂aXµ − iψγµ∂aψ

) (
∂bXµ − iψγµ∂bψ

)]
= −c0

∫
d2ξ
√
−g (4.29)

which is exactly the Akulov-Volkov action with

g = det gab (4.30)

gab =
(
∂aX

µ − iψγµ∂aψ
) (
∂bXµ − iψγµ∂bψ

)
= ηab + hab (4.31)

hab = ∂aX
i∂bX

i − iψγa∂bψ − iψγb∂aψ − iψγi∂aψ∂bXi − iψγi∂bψ∂aXi+

−
(
ψγi∂aψ

)
ψγi∂bψ − ηcd

(
ψγc∂aψ

)
ψγd∂bψ (4.32)

and we have gab the matrix inverse of gab

gab = ηab − ηachcdηdb + ηachcdη
dehefη

fb − . . . (4.33)

We can see that this method is exhaustive since up to the overall c0 it fixes the coefficients

of all possible terms.

4.2 Scale 1

In order to find a scale one invariant action, we first list all possible independent scale one

vertices, which are

∂a∂bX
i, ψγi∂a∂bψ, ψγ

c∂a∂bψ, ∂aψ∂bψ . (4.34)

Since we can only include one such vertex in our action, all 3-legged vertices are excluded,

and the only one we can use is ∂aψ∂bψ in ring topology, where all other terms are scale

zero. However this vertex is antisymmetric in the indices (a, b), while the rest of the ring

is symmetric, and so the scale 1 action is dropped.
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4.3 Scale 2

There are several ways to construct scale two invariants: either with two scale one vertices,

or with a single scale two vertex. The scale one vertices are listed in (4.34). and we can

either use 3-leeged vertices in “Θ” or “dumbbell” topologies as shown below, or two copies

of the 2-legged vertex ∂aψ∂bψ in a ring topology.

Θ topology Dumbbell topology .

The possible independent scale two vertices are

∂a∂b∂cX
i, ∂aψ∂b∂cψ, ψγ

i∂a∂b∂cψ, ψγ
d∂a∂b∂cψ . (4.35)

Excluding the 3-legged vertex ∂aψ∂b∂cψ we are left with three 4-legged vertices which can

be used in an “8” topology.

4.3.1 Ring topology

A ring topology invariant can be obtained by placing two ∂aψ∂bψ vertices in a ring. We

will first give this vertex a diagrammatic representation

i∂aψ∂bψ = . (4.36)

The variation for this vertex is

δ = + +

− − (4.37)

+ tumors .

Looking back at our calculation for the scale zero term, we see immediately that

this vertex has no n preserving variations, and that its n → n + 1 variations fit right

into our cancellation scheme for vertices, without allowing for the excluded

. Looking at the ring Bk`, (k + ` = n− 2 ≥ 0) which is

Bk`

k

`

= ∂aψ∂bψ
(
hk
)b
c
∂cψ∂dψ

(
h`
)d
a

(4.38)

where
(
hk
)b
c

is the matrix hbc = ηbahac taken to the kth power, we see that its variation can

be canceled by the variations of Bk+1,` and Bk,`+1. Taking the sum so that the variations
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cancel we have

∞∑
k,`=0

(−1)k+` ∂aψ∂bψ
(
hk
)b
c
∂cψ∂dψ

(
h`
)d
a

=

= ∂aψ∂bψ

∞∑
k=0

(
(−h)k

)b
c
∂cψ∂dψ

∞∑
`=0

(
(−h)`

)d
a

= (4.39)

= ∂aψ∂bψ
(

(1 + h)−1
)b
c
∂cψ∂dψ

(
(1 + h)−1

)d
a

=

= ∂aψ∂bψg
bc∂cψ∂dψg

da .

Taking tumors into account means that this term must be multiplied by the scale zero

invariant
√
−g, and we get the scale two ring invariant

Lring2 = c2
√
−g∂aψ∂bψ∂cψ∂dψgbcgda (4.40)

we can generalize this in a similar manner to what Gliozzi and Meineri did to obtain high

scaling invariants. To do so, we define seed graphs, which are minimal connected graphs in

the sense that they cannot be reduced to a non-trivial graph by erasing scale zero chains

and connecting their edges together, and have no fermion vertices which can be reduced

to boson vertices with the same scale and leg structure. The scale two ring topology seed

graph is

. (4.41)

Given a seed graph, for each worldsheet edge ηab, if the vertices connected to it have

a variation structure like the one in (4.37), we can replace ηab → gab to eliminate the

non-tumor variations, and multiply by
√
−g to eliminate tumors.

4.3.2 Θ and dumbbell topologies

These invariants are created using two 3-legged scale one vertices, which are ∂a∂bX
i,

iψγi∂a∂bψ, iψγc∂a∂bψ. We will use the following graphical representations for them

, , (4.42)

and their variations

δ = + − − +

− + + + tumors (4.43)
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δ = + − − +

− + + + + tumors

(4.44)

δ = + − − +

− − + + + tumors .

(4.45)

Where in the last vertex it’s important to note that we use an isosceles triangle, so

that the two derivative legs behave differently than the γa leg. Looking at the first line

in every variation, we see the exact same structure we saw for the ring topology, so these

variations can be eliminated by replacing ηab → gab on seed graphs in which worldsheet

legs of scale one vertices are connected together. The seed graphs we can construct using

these vertices are

• Θ topology

, , ,

, , (4.46)

• Dumbbell topology

, , ,

, , ,

, , , (4.47)

Most of these seed graphs can be easily eliminated as candidates for invariants, since they
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have variations which cannot be canceled, such as

, .

In fact, it is easy to check that each of these graphs with either a single scale-0 boson not

connected to the γ leg of a scale-2 fermion, or a scale-2 fermion not connected by its γ leg

to a scale-0 boson, will have such a variation. This leaves us with the following seed graphs

, , (4.48)

, .

However, these seed graphs are not independent, since both graphs in each line of (4.48)

appear in the same cancellation flow. We can define a new scale-2 fermion-boson vertex

(4.49)

and include such vertices as fermion vertices in our definition for seed graphs, leaving us

with exactly 2 seed graphs we can create an invariant out of

, . (4.50)

These are in fact exactly the same seed graphs GM used to create scale-2 invariants in the

bosonic case. To make the invariants in our case, we need to eliminate all the variations.

The variations on the derivative edges are eliminated by the exchange of the embedded

metric. To eliminate the variations on the transverse edge, we look at all the legal chains

between the scale one vertex and the first transverse edge. Those legal chains have to be

made out of terms, which must be directed into the scale one vertex, since

back-to-back fermions connected by a worldsheet vertex are forbidden. So we have the

following chains

, , ( )n , ( )n n ≥ 0 .

(4.51)

We can take a sum of these so that all variations which appear between the scale one

vertex and the first transverse edge are canceled, by defining the scale one combination

vertex

= − −
∞∑

n=0

(−1)
n

 ( )
n − ( )

n

=

=∂a∂bX
i−iψγi∂a∂bψ−

(
∂cX

i−iψγi∂cψ
)(
δcd+iψγc∂dψ

)−1
iψγd∂a∂bψ≡Ci

ab. (4.52)
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Replacing the scale one boson vertices with these combination vertices, we get that

there are still variations on the transverse edge. To eliminate these we sum up all the ways

the two combination vertices can connect. This is either directly through the transverse

edge, or the transverse edge can be terminated on both ends either by a boson vertex or

a fermion vertex, and these connect through a scale zero chain with worldsheet edges on

each side. This is equivalent to making a similar replacement to the one GM do for the

boson case

δij → tij = δij −
(
∂aX

i − iψγi∂aψ
)
gab
(
∂bX

j − iψγj∂bψ
)
. (4.53)

Thus eliminating the rest of the variations. To conclude, scale two invariants are obtained

by looking at scale two seed graphs and performing the following moves

1. Replacing ηab → gab on worldsheet edges

2. Replacing the scale one vertices →

3. Replacing δij → tij on transverse edges

Where in these topologies we get the invariants

I1 =
√
−gCiabtijC

j
cdg

acgbd (4.54)

I2 =
√
−gCiabtijC

j
cdg

abgcd . (4.55)

Here, as in the bosonic case, I2 is proportional to the EOM up to O
(
∂6
)
. We have not

checked if I1 − I2 is a total derivative to any order, but at least up to O
(
∂6
)

it is. Thus,

there are no new corrections to the fermionic string energy levels up to this order.

4.3.3 8 topology

Creating an 8 topology invariant requires using a single 4-legged scale two vertex, which

can be either ∂a∂b∂cX
i, ψγi∂a∂b∂cψ or ψγd∂a∂b∂cψ. The available seed graphs are

, (4.56)

where the third, with the vertex ψγi∂a∂b∂cψ, is included in the chain obtained from

∂a∂b∂cX
i. Both graphs have variations which cannot be canceled

, (4.57)

so an 8 topology invariant is excluded.
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4.4 Higher scaling

The number of invariants proliferates rapidly as the scaling increases, since the number of

different vertices available and the number of different topologies both increase. We can

generalize the vertices we have introduce into three types of higher scaling vertices

• ∂nXi at scaling n− 1 and with n+ 1 legs

• ψγa/i∂nψ at scaling n− 1 and with n+ 1 legs

• ∂mψ∂nψ at scaling m+ n− 1 and with m+ n legs

From their transformation laws, it is easy to see that the first two types are highly related.

In fact, for any bosonic invariant that we can create using just the first type of vertices,

we can generate a corresponding supersymmetric invariant by replacing the high scaling

bosonic vertices with the appropriate combination vertices like we did in the last section

∂na1···anX
i → ∂na1···anX

i−iψγi∂na1···anψ−
(
∂cX

i−iψγi∂cψ
) (
δcd+iψγ

c∂dψ
)−1

iψγd∂na1···anψ ≡ C
i
a1···an .

(4.58)

GM formulate the generation of higher scaling bosonic invariants by looking at the

variation of the scaling n− 1 vertex (n > 1)

δ
(
∂na1···anX

i
)

= −εbj
(
∂bX

i∂na1···anX
j +

∑
k

∂akX
j∂nba1···ak−1ak+1···anX

i +

+
∑
k,l

∂2akalX
j∂n−1ba1···ak−1ak+1···al−1al+1······anX

i + . . .

 . (4.59)

Where the first two terms add a scale zero vertex on each on the legs, and are canceled

by the moves ηab → gab, δij → tij as we have seen in the previous section. The third term

has a scale n− 2 vertex connected to a scale 1 vertex so it can only be canceled by terms

containing such vertices, the fourth has a scale n− 3 vertex connected to a scale 3 vertex

and so on. We can cancel these terms by defining a sort of covariant derivative. GM define

this for the scale 2 term

∂3abcX
i → ∇3

abcX
i = ∂3abcX

i −
(
∂2abX

j∂dX
j∂2ecX

igde + cyclic permutations of abc
)

(4.60)

so that

δ
(
∇3
abcX

i
)

= −εbj
(
∂bX

i∂na1···anX
j +

∑
k

∂akX
j∂nba1···ak−1ak+1···anX

i

)
(4.61)

which can be generalized to the n-th derivative with

∇na1···anX
i = ∂na1···anX

i−
(
∂n−1a1···an−1

Xj∂bX
j∂2canX

igbc+cyclic permutations of a1 . . . an

)
+

−
(
∂n−2a1···an−2

Xj∂bX
j∂3can−1anX

igbc+cyclic permutations of a1 . . . an

)
+. . .

(4.62)
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We can generalize this for the supersymmetric case by noting that

δ∂na1···anX
i = −εbj

(
∂bX

i∂na1···anX
j +

∑
k

∂akX
j∂nba1···ak−1ak+1···anX

i

+
∑
k,l

∂2akalX
j∂n−1ba1···ak−1ak+1···al−1al+1······anX

i + . . .


+ iθ

(
γi∂na1···anψ + γb

∑
k

∂akψ∂
n
ba1···ak−1ak+1···anX

i + (4.63)

+γb
∑
k,l

∂2akalψ∂
n−1
ba1···ak−1ak+1···al−1al+1······anX

i + . . .


where the first two terms of the θ variation are canceled by the move ∂na1···anX

i → Cia1···an ,

and the following terms can be canceled by generalizing the above covariant derivative to

the supersymmetric case such that

∇na1···anX
i = ∂na1···anX

i−
(
∂n−1a1···an−1

Xj∂bX
j∂2canX

igbc+cyclic permutations of a1 . . . an

)
+

−
(
∂n−2a1···an−2

Xj∂bX
j∂3can−1anX

igbc+cyclic permutations of a1 . . . an

)
+. . .

−
(
iψγb∂

2
canψ∂

n−2
a1···an−2

Xigbc+cyclic permutations of a1 . . . an

)
+ (4.64)

−
(
iψγb∂

3
can−1anψ∂

n−3
a1···an−3

Xigbc+cyclic permutations of a1 . . . an

)
+. . .

and similarly for derivatives acting on fermions where

δ
(
iψγi∂na1···anψ

)
= −iεbj

(
ψγi∂bψ∂

n
a1···anX

j +
∑
k

∂akX
jψγi∂nba1···ak−1ak+1···anψ +

+
∑
k,l

∂2akalX
jψγi∂n−1ba1···ak−1ak+1···al−1al+1······anψ + . . .

+

+ iθ

(
γi∂na1···anψ + γb

∑
k

∂akψiψγ
i∂nba1···ak−1ak+1···anψ +

+γb
∑
k,l

∂2akalψiψγ
i∂n−1ba1···ak−1ak+1···al−1al+1······anψ + . . .

 (4.65)

and a similar expression when replacing the transverse index i with a worldsheet index c.

We get

∇na1···anψ = ∂na1···anψ−
(
∂n−1ba1···an−2

ψ∂cX
i∂2an−1anX

igbc+cyclic permutations of a1 . . . an

)
+

−
(
∂n−2ba1···an−3

ψ∂cX
i∂3an−2an−1anX

igbc+cyclic permutations of a1 . . . an

)
+. . .

−
(
∂n−1ba1···an−2

ψiψγc∂
2
an−1anψg

bc+cyclic permutations of a1 . . . an

)
+ (4.66)

−
(
∂n−2ba1···an−3

ψiψγc∂
3
an−2an−1anψg

bc+cyclic permutations of a1 . . . an

)
+. . .
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So we can get invariants by taking any bosonic seed graph, and acting on it with the

following moves

1. Replacing ηab → gab on worldsheet edges,

2. Replacing the bosonic vertices with combination vertices for n ≥ 2, ∂na1···anX
i →

Di
a1···an ,

3. Replacing δij → tij on transverse edges,

where Di
a1···an is a combination vertex with higher derivatives replaced with covariant

derivatives

Di
a1···an = ∇na1···anX

i − iψγi∇na1···anψ −
(
∂cX

i − iψγi∂cψ
) (
δcd + iψγc∂dψ

)−1
iψγd∇na1···anψ.

(4.67)

GM generate two scale 4 invariants

I3 =
√
−gtijtkl∂2abXi∂2cdX

j∂2efX
k∂2ghX

lghagbcgdegfg (4.68)

I4 =
√
−g∇3

abcX
i∇3

efgX
jtijgaegbfgcg (4.69)

which we can use to generate the supersymmetric invariants

I3 =
√
−gtijtklDi

abD
j
cdD

k
efD

l
ghg

hagbcgdegfg (4.70)

I4 =
√
−gDi

abcD
j
efgt

ijgaegbfgcg . (4.71)

We are left with the term ∂mψ∂nψ, which is the only vertex which gives us non-

trivial supersymmetric invariants. First we note that it is antisymmetric, which means any

invariant we generate must have an even number of these vertices. Second, we note that

we can use the above argument for the variation of ∂nψ to show that given a seed graph

which contains such vertices, the above moves are sufficient to generate an invariant, along

with replacing ∂mψ∂nψ → ∇mψ∇nψ. We will define a seed graph at scaling higher than

zero as a graph containing only boson and ∂mψ∂nψ vertices, which does not contain scale

zero vertices. The procedure for generating invariants at scale n will then be

1. Draw all seed graphs at this scale

2. Perform the above moves to generate an invariant

We can then generate two non-trivial scale 4 invariants

I5 =
√
−g∂aψ∂2bcψ∂dψ∂2efψgadgbegcf (4.72)

I6 =
√
−g∂aψ∂bψ∂2cdψ∂2efψgadgbegcf (4.73)

as well as many higher scaling invariants. As in the scale zero case, this method is exhaus-

tive since up to the overall multiplicative constant it fixes the coefficients of all possible

terms.
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5 Exhaustiveness of the seed terms

To show that our list of invariants is exhaustive, we will formulate prohibition rules on the

form the seed terms are allowed to take. To do so, we first define the lowering and raising

variations under symmetry generators Q and J, such that

δQLf = L<f−1 + L>f+1 (5.1)

δJLd = L<d−1 + L>d,d+1 (5.2)

where f is the number of fermions and d is the number of derivatives in the term.

In the case of supercharges the lowering part L<f−1 is obtained by removal of one bare

fermion (fermion without any derivatives acting on it); in the Lorentz transformation case

to obtain the lowering part L<d−1 we need to erase one ∂X term from the initial Ld. Let’s

call the bare fermion ψ and ∂X — the lowering factor. If and only if a seed term contains

at least one lowering factor, its lowering variation isn’t zero.

5.1 First prohibition rule

Claim. If the seed term has two or more lowering factors it cannot be made invariant.

Note that we cannot add any terms with a higher number of fermions or derivatives

to cancel the lowering variation. Hence, the lowering variation should be either zero or a

total derivative.

Proof. Let’s start from the reverse. Assume we have the term with two lowering factors.

Now, let’s try to make its lowering variation a total derivative. For simplicity of notations

let’s assume that the two lowering factors are two bare fermions (the other two cases: one

bare ψ and one ∂X or two ∂X, are equivalent to this one).

Consider the most general form of the term with two bare fermions, where we have

explicitly emphasized two derivatives we’re going to use to make the lowering variation a

total derivative

Lψψ = ψαψβ∂af∂bgh, (5.3)

where f , g and h are any combinations of the fields and their derivatives. Consider its

lowering variations under Qαand Qβ

δ<QαLψψ = ψβ∂af∂bgh,

δ<
Qβ
Lψψ = ψα∂af∂bgh. (5.4)

Let’s make the first variation δ<QαLψψ a total derivative ∂a
(
ψβf∂bgh

)
. To do so we

need to add to the initial term Lψψ other terms

Lαa = ψα(∂aψ
βf∂bgh+ ψβf∂2abgh+ ψβf∂bg∂ah). (5.5)

Generalizing this, we can make the variation δ<QαLψψ or δ<
Qβ
Lψψ a total derivative with

respect to ∂a or ∂b by adding one of the four terms Lα(β)a(b) to Lψψ, such that

δ<Qα
(
Lψψ + Lαa(b)

)
= ∂a(b)N

α
a(b), δ<

Qβ

(
Lψψ + Lβa(b)

)
= ∂a(b)N

β
a(b) (5.6)

where Nα
a = ψβf∂bgh is Lψψwithout ψα and ∂a.
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It is crucial that we satisfy both of the variations simultaneously. Naively, one would

add to Lψψ one of the combinations Lαa +Lβa or Lαa +Lβb or Lαb +Lβa or Lαb +Lβb . However,

there is a problem that δ<QαL
β
a(b) 6= 0 and δ<

Qβ
Lαa(b) 6= 0. Let us consider the combination

Lψψ + Lαa + Lβa . When we act on this term with δ<Qα we get

δ<Qα(Lψψ + Lαa + Lβa) = ∂aN
α
a + δ<QαL

β
a 6= ∂aF. (5.7)

But we can notice that ψβδ<
Qβ
Lαa = ψαδ<QαL

β
a . So we can subtract it from the action

and verify that the variation indeed gives a total derivative

δ<Qα(Lψψ + Lαa + Lβa − ψαδ<QαL
β
a) = ∂aN

α
a + δ<QαL

β
a − δ<QαL

β
a = ∂aN

α
a , (5.8)

δ<
Qβ

(Lψψ + Lαa + Lβa − ψβδ<QβL
α
a ) = ∂aN

β
a + δ<

Qβ
Lαa − δ<QβL

α
a = ∂aN

β
a . (5.9)

So, both of the variations δ<Qα and δ<
Qβ

of Lψψ+Lαa+Lβa−ψαδ<QαL
β
a are total derivatives.

However, this term by itself is a total derivative. Also, Lψψ +Lαa +Lβb and Lψψ +Lαb +Lβa
don’t work since ψβδ<

Qβ
Lαa 6= ψαδ<QαL

β
b . This concludes the proof.

This prohibition rule applied to two bare ψ’s illuminates the fact that Goldstinos

cannot have a mass term.

5.2 Second prohibition rule

Claim. Any seed term which contains a factor of ψα∂aψα ∼ ψσbi∂aψ cannot generate an

invariant chain.

Proof. The most general form of such terms is

Lψ∂ψ = ψα∂aψα∂bhf (5.10)

where f should not contain bare ψα. Applying Qαto this term we find in the leading order

δ<QαLψ∂ψ = ∂aψα∂bhf . (5.11)

We can not make this variation a total derivative with respect to ∂a. Because then

we should add ψαψα(∂2abhf + ∂ah∂bf ) which is identically zero. We can try to make this

variation a total derivative with respect to ∂b, ∂b (∂aψαhf) by adding

ψα∂aψα∂bhf + ψα∂
2
abψαhf + ψα∂aψαh∂bf . (5.12)

This expression can be rewritten after integration by parts of the middle term and

then switching the order of fermions as:

∂aψα∂bψαhf . (5.13)

This term is either zero, if a = b, or is proportional to the EOM (2.29), if a 6= b, since

for any value of α = 1, 1̇, 2, 2̇ one of the terms ∂aψα or ∂aψα will be proportional to the

EOM. This concludes the proof.
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5.3 Exhausting seeds up to scale 2

We first write all possible irreducible terms up to scale 2 with up to 3 indices

Scale −1: ψ̄ψ, ψ̄γµψ, ψ̄σ
µνψ (5.14)

Scale 0: ψ̄∂aψ, ψ̄γµ∂aψ, ψ̄σ
µν∂aψ, ∂aX

i (5.15)

Scale 1: ∂aψ̄∂bψ, ∂aψ̄γ
µ∂bψ, ∂aψ̄σ

µν∂bψ, ∂abX
i (5.16)

Scale 2: ∂aψ̄∂bcψ . (5.17)

Where we have ignored terms which can be eliminated using integration by parts. For

example, on scale 1 we can write the term ψ̄∂a∂bψ, but when we consider ψ∂a∂bψF for any

F , we can integrate by parts to get −∂aψ̄∂bψF − ψ̄∂bψ∂aF , so it is enough to consider the

scale 1 term ∂aψ̄∂bψ and scale 0 term ψ∂bψ.

Any possible term can be obtained by multiplying some combination of irreducible

terms. Note that we are uninterested in purely bosonic terms, since they were consid-

ered in previous papers and it was shown that the first allowed term appears at higher

orders, and that all seeds containing a scale −1 irreducible term are eliminated by the first

prohibition rule.

Moreover, the second prohibition rule tells us that terms ψ̄σai∂bψ ∼ ψα∂ψα are pro-

hibited. So we should use only ψ̄σab∂cψ or ψ̄σij∂cψ instead of ψ̄σµν∂cψ. Then immediately

we can forget about ψ̄σij∂cψ because to contract transverse indices i and j we will need to

go higher orders. Finally, we ignore terms which are proportional to the EOM and can be

eliminated by field redefinitions

γa∂aψ = 0 ∂2ψ = 0 (5.18)

∂2Xi = 0 (5.19)

and for the fermions these can be written in light-cone coordinates as

∂−ψ1 = ∂−ψ̄1 = ∂+ψ2 = ∂+ψ̄2 = 0 . (5.20)

Scale 0 terms can be obtained by multiplying irreducible scale 0 terms or scale −1 and

scale 1. However, as discussed above such terms with fermions are subjected to prohibition

rules or proportional to the EOM. Scale 1 terms can be obtained by contracting the indices

of a scale 1 irreducible term either with itself, or with the indices of scale 0 terms. This

gives the following terms

(ψ̄∂aψ)(∂bψ̄γa∂bψ), (ψ̄γa∂bψ)(∂aψ̄∂bψ), (ψ̄γa∂bψ)(∂cψ̄σab∂cψ),

(ψ̄σab∂cψ)(∂aψ̄γc∂bψ), (ψ̄σab∂cψ)(∂aψ̄γc∂bψ) . (5.21)

All of which are proportional to the EOM, as can be seen by writing them in light-cone

coordinates.
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Scale two terms can be obtained from contraction of scale 2 irreducible with scale 0

irreducible or as contraction of two scale 1 irreducible terms. We get

1× 1 : (∂aψ̄∂bψ)(∂aψ̄∂bψ), (∂aψ̄∂bψ)(∂cψ̄σ
ab∂cψ), (∂aψ̄γb∂cψ)(∂aψ̄γb∂cψ),

(∂aψ̄γb∂aψ)(∂cψ̄γb∂cψ), (∂aψ̄γb∂cψ)(∂bψ̄γc∂aψ), (∂aψ̄γi∂bψ)∂abXi,

(∂cψ̄σab∂cψ)(∂dψ̄σab∂dψ), (∂cψ̄σ
ab∂dψ)(∂aψ̄σ

cd∂bψ), (∂aψ̄σbc∂dψ)(∂aψ̄σ
bc∂dψ),

(∂aψ̄σbc∂dψ)(∂bψ̄σ
cd∂aψ) (5.22)

2× 0 : (∂aψ̄∂abψ)(ψ̄∂bψ), (∂aψ̄∂bcψ)(ψ̄σab∂cψ) . (5.23)

After some manipulation we see that among all of these terms only two are independent

(∂aψ̄∂bψ)(∂aψ̄∂bψ), (5.24)

(∂aψ̄γi∂bψ)∂abXi . (5.25)

However using integration by parts, one can see that (5.25) is proportional to the

EOM, leaving us with (5.24) as the only non-purely bosonic seed up to scale 2. This is the

term we found in (4.40) above.

6 Energy correction of the ∂ψ∂ψ∂ψ∂ψ term

The most interesting lowest scale result we have arrived at in the analysis of the previous

sections is the term

Lring2 = c2
√
−g∂aψ∂bψ∂cψ∂dψgbcgda . (6.1)

In order to make this result testable we would like to see how it affects the energy levels

of the Akulov-Volkov string at large L. To do so we will consider this term in the static

gauge, and in the lowest order in derivative expansion

Lring2 = c2∂aψ∂bψ∂cψ∂dψη
bcηda +O

(
∂5
)

=

= 4c2∂+ψ1̇∂−ψ2̇∂+ψ1∂−ψ2 +O
(
∂5
)
. (6.2)

We will treat this as a perturbation for the free part of the AV action

LAV,free =
T

2

(
iψ2̇∂+ψ2 + iψ2∂+ψ2̇ + iψ1̇∂−ψ1 + iψ1∂−ψ1̇

)
(6.3)

L = LAV,free + Lring2 . (6.4)

Since the leading order perturbation is purely fermionic, the boson field is completely free

and we can ignore it for this derivation. We define the conjugate momenta

Π =
δL

δ (∂0ψ)
=


δL

δ(∂0ψ1)
δL

δ(∂0ψ2)
δL

δ(∂0ψ2̇)
δL

δ(−∂0ψ1̇)


T

=


−1

2Tiψ1̇ − 2c2∂+ψ1̇∂−ψ2̇∂−ψ2

−1
2Tiψ2̇ + 2c2∂+ψ1̇∂−ψ2̇∂+ψ1

1
2Tiψ2 + 2c2∂+ψ1̇∂+ψ1∂−ψ2

−1
2Tiψ1 + 2c2∂−ψ2̇∂+ψ1∂−ψ2

 (6.5)
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so that the Hamiltonian is

H =

2πR∫
0

dσ
(
Π∂0ψ − L

)
=

=

2πR∫
0

dσ
(
Π∂1ψ

)
− 1

4
c2

2πR∫
0

dσ
(
∂1ψ1̇∂1ψ2̇∂1ψ1∂1ψ2 +O

(
∂5
))

=

= Hfree +H4 (6.6)

where we use L = 2πR and have plugged in the equations of motion (2.29). We look at

the Fourier expansion of the fields on a closed string in the NS sector at τ = 0 (for the R

sector take n ∈ Z instead of r ∈ Z + 1
2)

ψ1 (σ) =

√
2

πRT

∑
r∈Z+ 1

2

b1re
ir σ
R , Π1 (σ) = −i

√
T

2πR

∑
r∈Z+ 1

2

b1re
ir σ
R (6.7)

ψ2 (σ) =

√
2

πRT

∑
r∈Z+ 1

2

b2re
ir σ
R , Π2 (σ) = −i

√
T

2πR

∑
r∈Z+ 1

2

b2re
ir σ
R (6.8)

ψ1̇ (σ) =

√
2

πRT

∑
r∈Z+ 1

2

b1̇re
ir σ
R , Π1 (σ) = −i

√
T

2πR

∑
r∈Z+ 1

2

b1̇re
ir σ
R (6.9)

ψ2̇ (σ) =

√
2

πRT

∑
r∈Z+ 1

2

b2̇re
ir σ
R , Π2 (σ) = −i

√
T

2πR

∑
r∈Z+ 1

2

b2̇re
ir σ
R (6.10)

where σ ∈ [0, 2πR] and
{
bsr, b

s′
r′

}
= δr+r′δss′ , s = 1, 2, 1̇, 2̇. Note that σ is really periodic

only under σ → σ + 4πR in the NS-NS sector since

ψ (σ) = −ψ (σ + 2πR) . (6.11)

The commutator is{
ψs (σ) ,Πs′

(
σ′
)}

= −iδss′
[
2δ

(
σ − σ′

4πR

)
− δ

(
σ − σ′

2πR

)]
(6.12)

where δ (x) is non-zero for all x ∈ Z. Plugging this into the free (fermion) Hamiltonian

we get

Hfree =
2

R

∑
s=1,2,1̇,2̇

 ∑
r∈N+ 1

2

r
(
bs−rb

s
r − bsrbs−r

) . (6.13)

This Hamiltonian is Weyl ordered, meaning that products of fermionic operators appear

in the form
1

k!

∑
(p1,...pk)∈perms(k)

(−1)s(p1,...pk) brp1 · · · brpk (6.14)
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where s (p1, . . . pk) is the parity of the permutation (p1, . . . pk). We now take the normal

ordering to get

Hfree =
4

R

∑
s=1,2,1̇,2̇

 ∑
r∈N+ 1

2

rbs−rb
s
r −

1

48

 (6.15)

where we used zeta function regularization to take sums of the form

∞∑
r= 1

2

rk =
∞∑
n=1

(
2n+ 1

2

)k
= −2k − 1

2k
ζ (−k) =


1
24 k = 1

0 k = 2, 4

− 7
8∗120 k = 3 .

(6.16)

The perturbation Hamiltonian is

H4 =
c2
4

2πR∫
0

dσ∂1ψ1̇∂1ψ2̇∂1ψ2∂1ψ1 =

=
c2

π2T 2R6

2πR∫
0

dσ
∑

r1,r2,r3,r4

b1̇r1r1e
ir1

σ
R b2̇r2r2e

ir2
σ
R b2r3r3e

ir3
σ
R b1r4r4e

ir4
σ
R =

=
c2

π2T 2R6

∑
r1,r2,r3,r4

r1r2r3r4b
1̇
r1b

2̇
r2b

2
r3b

1
r4

2πR∫
0

dσe−2πi(r1+r3+r2+r4)
σ

2πR =

=
2c2

πT 2R5

∑
n∈Z

∑
r,r′

r (r + n) r′
(
r′ − n

)
b1̇−rb

1
r+nb

2̇
−r′b

2
r′−n . (6.17)

This clearly annihilates the ground state. The simplest of its eigenstates with non-zero

eigenvalues are

|ψ〉 =
1√
2

(∣∣∣111
2

, 121
2

〉
±
∣∣∣11̇1

2

, 12̇1
2

〉)
(6.18)

since

H4 |ψ〉 =
2c2

πT 2R5

∑
n∈Z

∑
r,r′

r (r+n) r′
(
r′−n

)
b1̇−rb

1
r+nb

2̇
−r′b

2
r′−n

1√
2

(∣∣∣111
2

, 121
2

〉
±
∣∣∣11̇1

2

, 12̇1
2

〉)
=

=
2c2

πT 2R5

∑
n∈Z

∑
r,r′

r (r+n) r′
(
r′−n

)
b1̇−rb

1
r+nb

2̇
−r′b

2
r′−n

1√
2

(
b1− 1

2

b2− 1
2

±b1̇− 1
2

b2̇− 1
2

)
|0〉 =

=
c2

8πT 2R5

1√
2

(
b1̇− 1

2

b11
2

b2̇− 1
2

b21
2

b1− 1
2

b2− 1
2

±b1̇1
2

b1− 1
2

b2̇1
2

b2− 1
2

b1̇− 1
2

b2̇− 1
2

)
|0〉 =

=
c2

8πT 2R5

1√
2

(
b1̇− 1

2

b2̇− 1
2

±b1− 1
2

b2− 1
2

)
|0〉 = ± c2

8πT 2R5
|ψ〉

which gives rise to the energy correction

∆ENS = ± c2
8πT 2R5

. (6.19)
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Where other eigenstates will give rise to more complicated energy corrections at this order in

1/R. We can repeat this analysis for the Ramond sector with |ψ〉 = 1√
2

(∣∣111, 121〉± ∣∣∣11̇1, 12̇1〉)
to get

Hfree =
4

R

∑
s=1,2,1̇,2̇

(∑
n∈N

nbs−nb
s
n +

1

24

)
(6.20)

∆ER = ± 2c2
πT 2R5

. (6.21)

7 Discussion and conclusions

In this work we present a general method to generate invariant actions for effective strings

which break D = 4, N = 1 SUSY. We have shown that this method recreates known

results, as well as producing new ones. Our method does not generate terms which are

only invariant up to the equations of motion, which may be related to anomalies as in the

bosonic case, but seems to be exhaustive otherwise. We can summarize our method as tak-

ing a seed term — a minimal term of Goldstone bosons and Goldstinos which is invariant

under the non-broken ISO(1, 1)×SO(D−2), and performing 4 simple moves: (a) replacing

the Minkowski metric ηab with the worldsheet metric gab as defined in (4.33), (b) replac-

ing n ≥ 2 scaling boson vertices with the combination vertex Cia1···an as defined in (4.58),

(c) replacing n ≥ 3 derivatives with covariant derivatives as defined in (4.63), (4.66) and

(d) replacing the Euclidean transverse metric δij with the transverse metric tij as defined

in (4.53). This method clearly shows that every known bosonic invariant has a super-

symmetric counterpart, as well as the existence of new supersymmetric invariants with no

bosonic counterparts, the simplest of which we have termed Lring2 and for which we have

calculated its energy corrections. As directions for future research, we can consider repeat-

ing this analysis for the case in which only half of the SUSY generators are broken, such

that the worldsheet theory has N = (0, 2) supersymmetry, analyzing Lring2 in the conformal

gauge and verifying it does not contribute to the conformal anomaly and that no other

terms are possible also in that approach, and generalizing this work to other dimensions

and N > 1.
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