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We propose an inverse seesaw model with large SU (2)L multiplet fields which realizes natural mass 
hierarchies among neutral fermions. Here, lighter neutral fermion mass matrices are induced via two 
suppression mechanisms; one is small vacuum expectation value of SU (2)L triplet required by rho 
parameter constraint and the other is generation of Majorana mass term of extra singlet fermions at 
one-loop level. To realize the loop masses, we impose Z2 symmetry which also guarantees stability of a 
dark matter candidate. Furthermore, we discuss anomalous magnetic moment and collider physics from 
interactions of large multiplet fields.
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1. Introductions

A model of inverse seesaw [1,2] or linear seesaw [2–4] is 
well-known as one of the elegant mechanisms to generate Ma-
jorana masses for active neutrinos, including both the left and 
right handed heavier neutral fermions. Thus, it is frequently dis-
cussed in a larger gauge theory such as SU (2)L × SU (2)R [5], 
(SU (2)L × SU (2)R ⊂)S O (10) [6], SO(10) with supersymmetry [7]
etc., as an unified theory. On the other hand, there are several 
issues which should be improved in these models. A represen-
tative issue is how to describe more natural hierarchies among 
neutral fermion mass matrices. For example we need to assume 
small Majorana mass for singlet fermion in realizing inverse see-
saw mechanism unless there is a way to justify the smallness. 
In addition, small Yukawa couplings are required to obtain Dirac 
mass term among SM neutrinos and singlet fermion to fit neutrino 
oscillation data with TeV scale heavy neutrinos. It could not be 
well explained by simple gauge extended scenarios of the standard 
model (SM).1

In this letter, we realize the inverse seesaw mechanism of nat-
ural hierarchies among neutral fermion mass terms by introducing 
extra fields with larger SU (2)L representations and applying radia-
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1 In ref. [8], small Majorana mass in inverse seesaw mechanism is induced by a 

small VEV generated by supersymmetry breaking renormalization group equation 
effect in a supersymmetric model.
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SCOAP3.
tively induced mass mechanism for Majorana mass term. In order 
purely to realize inverse seesaw, we impose a global U (1) lep-
ton number that forbids linear seesaw. A scalar field with larger 
SU (2)L representations restricts their vacuum expectation values 
(VEVs) to be or less than the order of 1 GeV by constraint from 
ρ-parameter [9–15]. In this model SU (2)L triplet scalar develops 
a VEV which provides Dirac mass among the SM neutrino and 
singlet fermion which are typically 1 GeV or less because of the 
restricted VEV. The Majorana mass term of singlet fermion is gen-
erated at one loop level providing an additional loop suppression 
factor [16] where we impose a Z2 symmetry to realize the mech-
anism. As a bonus of this additional symmetry, we have a dark 
matter (DM) candidate. Furthermore, we also explain anomalous 
magnetic moment of muon and discuss collider physics focusing 
on interactions of large multiplet fields.

This letter is organized as follows. In Sec. 2, we review our 
model and formulate the Yukawa sector and Higgs sector, remor-
malization group equations (RGEs), lepton flavor violations (LFVs), 
muon anomalous magnetic moment, and DM candidate. In Sec. 3, 
we show numerical analysis at a benchmark point including all 
the constraints and discuss collider physics. Finally we devote the 
summary of our results and the conclusion.

2. Model setup and constraints

In this section we introduce our model. First of all, we intro-
duce a global U (1)L symmetry to obtain a successful inverse see-
saw model, which will be spontaneously broken. Also we impose 
Z2 symmetry in order to realize natural hierarchies among neu-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Table 1
Charge assignments of the our lepton and scalar fields under SU (2)L × U (1)Y ×
U (1)L × Z2 with � �= 0, where the upper index a is the number of family that runs 
over 1-3, all of them are singlet under SU (3)C , and the quark sector is same as the 
SM one.

La
L ea

R ψa χa
R H2 H3 H4 ϕ

SU (2)L 2 1 4 1 2 3 4 1
U (1)Y − 1

2 −1 − 1
2 0 1

2 0 1
2 0

U (1)L � � � � 0 0 0 −2�

Z2 + + + − + + − +

tral fermions and assure a stable DM candidate, as we will discuss 
below. As for the fermion sector, we introduce three families of 
vector fermions ψ with (4, −1/2, �,+), and right-handed fermions 
χR with (1, 0, �, −), where each of content in parentheses repre-
sents the charge assignment of (SU (2)L , U (1)Y , U (1)L, Z2) symme-
try. As for the scalar sector, we add a triplet scalar field H3 with 
(3, 0,0,+), a quartet inert scalar field H4 with (4, 1/2,0,−), and a 
singlet scalar field ϕ with (1, 0,−2�,+), where SM-like Higgs field 
is denoted as H2. Here we write vacuum expectation values (VEVs) 
of H2,3 and ϕ by 〈H2,3〉 ≡ v2,3/

√
2 and 〈ϕ〉 ≡ vϕ/

√
2 which in-

duces the spontaneously electroweak and U (1)L symmetry break-
ing. All the field contents and their assignments are summarized 
in Table 1, where the quark sector is exactly the same as the SM. 
The renormalizable Yukawa Lagrangian under these symmetries is 
given by

−L� = y�aa L̄a
L H2ea

R + yDab [L̄a
L H3ψ

b
R ] + gab[ψ̄a

L H∗
4χ

b
R ]

+ Maaψ̄
a
L ψa

R + yϕaa

2
ϕ(χ̄ c

R)aχa
R + h.c., (1)

where we implicitly symbolize the gauge invariant contracts of 
SU (2)L index as bracket [· · · ] hereafter, indices (a, b) = 1-3 are the 
number of families, and (y�, MD , yϕ ) are assumed to be diagonal 
matrix with real parameters without loss of generality. Then, the 
mass eigenvalues of charged-lepton are defined by m� = y�v/

√
2 =

Diag(me, mν, mτ ). Note here that we do not have [(ψ̄c
R )a H4χ

b
R ] op-

erator thanks to the global U (1)L symmetry, and thus the neutrino 
mass matrix can dominantly be induced via inverse seesaw.

Scalar potential and VEVs: The scalar potential in our model is given 
by

V = − μ2
H |H2|2 + λH

2
|H2|4 + M2

3 H†
3 H3 + M2

4 H†
4 H4 − μ2

ϕϕ∗ϕ

+ λϕ

2
(ϕ∗ϕ)2 + λHϕ(H† H)(ϕ∗ϕ)

+ μ32(H†
2 H3 H2 + h.c.) +

∑
i

λi
H4 H2

[H†
4 H2 H†

4 H2 + h.c.]i

+ (other trivial terms), (2)

where sum for (H†
4 H2)

2 term is for independent contraction pat-
terns of SU (2)L index. Non-zero VEVs of scalar fields are obtained 
by solving the conditions

∂V

∂v2
= ∂V

∂v3
= ∂V

∂vϕ
= 0, (3)

where we assume VEV of H4 to be zero. Taking condition v3 	 v2

as we see below, the VEVs are approximately given by

v2 

√

μ2
H

λH
, v3 
 μ32 v2

2

M2
3

, vϕ 

√

μ2
ϕ

λϕ
, (4)

where we ignored contributions from trivial terms in the potential 
like (H† H)ϕ∗ϕ assuming their couplings are small. The SM Higgs 
VEV is identified as v2 ∼ 246 GeV.
ρ parameter: The electroweak ρ parameter deviates from unity 
due to the nonzero value of v3 at the tree level as

ρ = v2
2 + 4v2

3

v2
2

, (5)

where the experimental bound is ρexp = 1.0004+0.0003
−0.0004 at 2σ

C.L. [17]. It suggests that

v3 � 3.25 GeV, (6)

where 
√

v2
2 + v2

3 ≈246 GeV.

Exotic particles: The scalars and fermions with large SU (2)L mul-
tiplet provide exotic charged particles. Here we write components 
of multiplets as

H3 = (δ+, δ0, δ′ −)T
R , (7)

H4 = (φ++
4 , φ+

4 , φ0
4 , φ′ −

4 )T , (8)

ψL(R) = (ψ+,ψ0,ψ ′ −,ψ−−)T
L(R). (9)

The mass of component in H4 and ψ are given by ∼ M4 and 
∼ M respectively, where charged particles in the same multiplet 
have degenerate mass at tree level which will be shifted at loop 
level [18]. Components of H3 have also degenerated mass of ∼ M3

since VEV v3 is small and masses are not much shifted. We also 
have extra singlet scalar ϕ which is written by

ϕ = 1√
2
(vϕ + φ̃ + iaϕ), (10)

where aϕ is identified as light Goldstone boson associated with 
global lepton number symmetry breaking. CP-even component φ̃
can mix with the SM Higgs and mass term becomes

L ⊃ 1

4

(
H̃
φ̃

)T (
λH v2 λHϕ v vϕ

λHϕ v vϕ λϕ v2
ϕ

)(
H̃
φ̃

)
, (11)

where H̃ is neutral CP-even component in Higgs doublet H2. This 
squared mass matrix can be diagonalized by an orthogonal matrix 
and the mass eigenvalues are given by

m2
h,φ = λH v2 + λϕ v2

ϕ

4
± 1

4

√(
λH v2 − λϕ v2

ϕ

)2 + 4λ2
Hϕ v2 v2

ϕ.

(12)

The corresponding mass eigenstates h and φ are obtained as(
h
φ

)
=

(
cosα sinα

− sinα cosα

)(
H̃
φ̃

)
, tan 2α = 2λHϕ v vϕ

λH v2 − λϕ v2
ϕ

,

(13)

where α is the mixing angle and h is the SM-like Higgs boson with 
mh 
 125 GeV.

2.1. Neutral fermion masses

Neutral sector: After the spontaneous symmetry breaking, neutral 
fermion mass matrix in basis of �0

L ≡ (νL, ψc
R , ψL)

T is given by

MN =
⎡
⎣ 0 mT

D 0
mD 0 M∗

0 M∗ μ∗
L

⎤
⎦ , (14)

where mD ≡ yD v3/
√

2, M† = M∗ . In our model μL is given at one-
loop level in Fig. 1, and is explicitly computed by
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Fig. 1. Feynman diagram to generate the masses of μL .

μLi j = 2giα Mχa gT
α j

(4π)2(M2
χa

− m2
R)(M2

χa
− m2

I )

×
[

M2
χa

m2
R ln

(
M2

χa

m2
R

)
− M2

χa
m2

I ln

(
M2

χa

m2
I

)

+m2
I m2

R ln

(
m2

R

m2
I

)]
, (15)

where Mχ ≡ yϕ vϕ/
√

2, mR/I is the mass of φ0
4R/4I which comes 

from real/imaginary part of φ0
4 . It implies a tiny mass scale of μL

is expected due to the one-loop effect. Furthermore, the mass scale 
of mD is of the order 1 GeV since it is proportional to v3, while M
can be of the order 1 TeV because of bare mass. Thus we achieve 
natural hierarchies among the neutral fermion mass matrices;

μL << mD < M. (16)

The neutral fermions are diagonalized by a unitary matrix as fol-
lows [19]:

V (O MN O T )V T ≈ V

[
−2(m∗

D M∗−1μ∗
L M∗−1m†

D)3×3 03×6

0T
6×3 M ′

6×6

]
V T

≈ Diag

(
Dν1,2,3 , M∗ − μ∗

L

2
, M∗ + μ∗

L

2

)
, (17)

M ′ ≡
[

0 M∗
M∗ μ∗

L

]
, (18)

U = V O ≈
[

U 3×3
MNS 03×6

0T
6×3 �6×6

][
13×3 −θ3×6

θ T
6×3 16×6

]
,

(19)

θ3×6 ≈ [−m∗
D M∗−1μ

†
L M∗−1,m∗

D M∗−1], (20)

�6×6 ≈ 1√
2

⎡
⎣ i

(
1 + μL M∗−1

4

)
−i

(
1 − μL M∗−1

4

)
1 − M∗−1μ

†
L

4 1 + μ∗
L M∗−1

4

⎤
⎦ ,

(21)

where �L = U T NL , NL being mass eigenstates with nine compo-
nents, and M ± μL/2 ≈ Diag(M ± μL/2).

Active neutrino sector: Here let us focus on the active neutrino sec-

tor; mν ≡ −2m∗
D M∗−1μ∗

L M∗−1m†
D = U †

MNS DνU∗
MNS (UMNS ≡ U 3×3

MNS) 
from the above definition. Here since we define μ ≡ M∗−1μ∗

L M∗−1, 
where μ is symmetric matrix. Then one rewrites μ ≡ R RT , where 
R is triangular matrix and R is uniquely given by each the compo-
nent of μ; mν = −(

√
2m∗

D R)(
√

2RT mT
D) ≡ −rrT . Applying Casas-

Ibarra parametrization [20], one finds the following relation:

yD = i
U †

MNS

√
DνOR−1

v3
�

√
4π, R−1 =

⎡
⎢⎣

1
a 0 0

− d
ab

1
b 0

−be+df
abc

f
bc

1
c

⎤
⎥⎦ ,

(22)

F
c
o

a

e

w
c

2

B
r
S
r

�

T
a

w
b
t
o
b
c
μ
v
T
u

L
l

B

w

ig. 2. The running of g2 in terms of a reference energy of μ, where the black line 
orresponds to mth =10 TeV, the red line corresponds to mth =1.0 TeV, and the blue 
ne does mth =0.1 TeV.

= √
μ11, d = μ12

a
, b =

√
μ22 − d2, (23)

= μ13

a
, f = μ32 − de

b
, c =

√
μ33 − e2 − f 2, (24)

here O is an arbitrary three by three orthogonal matrix with 
omplex values; OOT =OTO = 1.

.2. Constraints from running of gauge coupling and LFV

eta function of SU (2)L gauge coupling g2: Here we discuss the 
unning of gauge coupling of g2. The new contribution to g2 for a 
U (2)L quartet fermion(boson) ψ(H4), and a triplet boson H3, are 

espectively given by

bψ
g2 = 10

3
, �bH3

g2 = 2

3
, �bH4

g2 = 5

3
. (25)

hen one finds the energy evolution of the gauge coupling g2

s [13,21]

1

g2
g2(μ)

= 1

g2(min)
− bS M

g2

(4π)2
ln

[
μ2

m2
in

]

− θ(μ − mth)
N fψ �bψ

g2 + �bH3
g2 + �bH4

g2

(4π)2
ln

[
μ2

m2
th

]
, (26)

here N fψ = 3 is the number of ψ , μ is a reference energy, 
S M
g2

= −19/6, and we assume to be min(= mZ ) < mth , being mth
hreshold masses of exotic fermions and bosons. The resulting flow 
f g2(μ) is then given by the Fig. 2. This figure shows that the 
lack line is relevant up to the mass scale μ = O(1011) TeV in 
ase of mth =10 TeV, the red one is relevant up to the mass scale 
 = O(109) TeV in case of mth =1 TeV, and the blue one is rele-

ant up to the mass scale μ = O(107) PeV in case of mth =0.1 TeV. 
hus our theory is valid up to the typical energy scale of grand 
nified theory (GUT) ∼ 1015 GeV.

epton flavor violations (LFVs): LFVs arise from the term f at one-
oop level, and its form can be given by [22,23]

R(�i → � jγ ) = 48π3αemCij

G2
Fm2

�i

(
|aRij |2 + |aLij |2

)
, (27)

here
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aRij = m�i

(4π)2

⎡
⎣ 9∑

α=1

Y D jα Y †
Dαi

3
F (ψ0

α, δ−)

−
3∑

β=1

yD jβ y†
Dβi

[2F (δ−,ψ−−
β ) + F (ψ−−

β , δ−)

+1

3
F (δ0,ψ−

β )]
]

, (28)

aL = aR(m�i → m� j ), Y Diα ≡ ∑3
j=1 yDij U

T
j+3,α , and

F (a,b) ≡ 1

2m2
a

1∫
0

dx
x(1 − x)2

x + (1 − x)rab
, rab ≡ m2

b

m2
a
. (29)

New contributions to the muon anomalous magnetic moment (muon
g − 2 : �aμ): In the model �aμ arises from the same terms of 
LFVs and can be formulated by the following expression: Also an-
other source via additional gauge sector can also be induced by

�aμ ≈ −mμ[aLμμ + aRμμ ] = −2mμaLμμ, (30)

where we use the allowed range �aμ = (26.1 ± 16.0) × 10−10 [24]
(at 2σ C.L.) in our numerical analysis below.

2.3. Dark matter

Here we briefly discuss the feature of our DM candidate, which 
is assumed to be the lightest Z2 odd Majorana fermion X ≡ χR ; 
MχR1 ≡ M X . The relevant interactions are given by

L ⊃ M X

2vϕ
cosαφ X̄c X + M X

2vϕ
sinαh X̄c X + i

M X

2vϕ
aϕ X̄cγ5 X, (31)

where M X is DM mass given by M X ≡ M1 = yϕ11 vϕ/
√

2. Also we 
have interactions among φ and SM particles whose couplings are 
obtained by putting − sinα to SM Higgs couplings. Then dominant 
DM annihilation processes are

X X → φ/h → f̄ S M f̄ S M/Z Z/W +W −, (32)

X X → aϕaϕ/aϕφ(h) (33)

where the first modes are s-channel via ϕ-H mixing and the sec-
ond ones are t and u channels with physical GB final state. In 
Fig. 3, we show the relic density of X as a function of its mass fix-
ing mφ = 400 GeV, vϕ = 2000 GeV and sinα = 0.1, which is esti-
mated by micrOMEGAs 4.3 [25] implementing relevant interactions. 
We find that relic density can be explained around 2M X ∼ mφ by 
resonant enhancement of annihilation cross section; we also see 
resonance effect at 2M X ∼ mh but relic density is too large in this 
parameter setting. The relic density also decreases as M X increases 
since scalar interactions are proportional to M X . In addition, relic 
density can be explained via GB mode when vϕ is smaller as can 
be seen in e.g. ref. [26]. The resonant point is consistent with 
the constraint of direct detection since DM-scalar coupling can be 
small [27]. But it depends on the parameter space for solution 
without resonance.

In case of the bosonic DM candidate that is not considered as 
a DM one in our whole analysis, the dominant contribution to the 
relic density comes from kinetic terms, and the free parameter is 
almost the DM mass only. Thus the formulation is already estab-
lished by ref. [18,28], which suggests M X ∼ 10 TeV. As a result, any 
masses of new fields must be 10 TeV or larger than 10 TeV, and 
one cannot detect any new particles at current colliders.
Fig. 3. Relic density of DM as a function of DM mss fixing mφ = 400 GeV, vϕ =
2000 GeV and sinα = 0.1.

3. Numerical analyses

In this section, we carry out numerical analysis taking into ac-
count neutrino mass and LFV constraints exploring possible value 
of Yukawa coupling yD and �aμ . In addition collider physics is 
discussed focusing on doubly charged lepton production at the 
LHC.

3.1. Yukawa coupling and �aμ in benchmark points

Here we have numerical analysis in two benchmark points, 
where we commonly fix the following values:

θ23 ≈ 0.62 + 1.08i, θ13 ≈ 0.46 + 0.69i, θ12 ≈ 1.82 + 14.95i,

(34)

mν1 = 0.1 meV, v3 ≈ 3 GeV, (35)

g ≈
⎡
⎣ 0.2 0.027 0.000020

0.000021 0.091 0.083
0.0033 0.000034 0.58

⎤
⎦ , (36)

where θ12,13,23 is the mixings of O introduced in the analysis of 
neutrino mass matrix, and these values; especially θ12,13,23, are se-
lected so as to maximize muon g − 2 while minimizing LFVs.

Bench mark point 1: The first bench mark point is given by

(Mχ2 , Mχ3) = (2,2.5) TeV,

(M1, M2, M3) = (0.4,0.45,0.5) TeV,

(mR ,mI ) = (3,3.3) TeV, (mδ0 ,mδ±) = (0.3,0.35) TeV. (37)

Bench mark point 2: The second bench mark point is given by

(Mχ2 , Mχ3) = (4,4.5) TeV,

(M1, M2, M3) = (0.5,0.55,0.6) TeV,

(mR ,mI ) = (5,5.5) TeV, (mδ0 ,mδ±) = (0.4,0.45) TeV. (38)

Fig. 4 represents the flow of maximum component of yD(=
Max[|yD |]) in terms of the DM mass M X ≡ Mχ1 , where the 
left(right)-hand side shows the bench mark point 1(2), and 
the horizontal line represents the perturbation limit; 

√
4π . The 

left(right)-hand side figure suggests that the allowed region of 
DM mass be less than ∼190(400) GeV, satisfying the perturbative 
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Fig. 4. A line of the maximum absolute value of yD (= Max[|yD |]) in terms of the DM mass M X ≡ Mχ1 , where the left(right)-hand side shows the bench mark point 1(2), 
and the horizontal line represents the perturbation limit; 

√
4π .

Fig. 5. Line of �aμ in terms of M X , where the left(right)-hand side shows the bench mark point 1(2). The green region is expected to be detected by the experiment that 
covers over �aμ = (26.1 ± 16.0) × 10−10 at 2σ C.L.
limit. Fig. 5 represents the flow of maximum component of �aμ

in terms of M X , where the left(right)-hand side shows the bench 
mark point 1(2). The green region is expected to be detected by 
the experiment that covers over �aμ = (26.1 ± 16.0) × 10−10 at 
2σ C.L. It implies that the left-bench mark point can reach the ob-
served region of muon g − 2 at 130 GeV� M X �190 GeV, while 
the right one is below the allowed region of muon g − 2 in the 
perturbative limit even though the allowed region of DM mass is 
wider than the left one.

3.2. Collider physics

Here we briefly discuss collider signature of the model. There 
are several exotic charged particles in the model coming from 
SU (2)L multiplet fermions and scalar fields. Interestingly we have 
two doubly charged particles in fermion and scalar sector. The 
doubly charged lepton ψ−− in quartet fermion can provide inter-
esting signal at the LHC since it decays into SM particles and its 
mass could be reconstructed. On the other hand doubly charged 
scalar φ++

4 in H4 decays into final state including DM due to Z2
oddness, and mass reconstruction is more difficult. We thus con-
centrate on doubly charged lepton production and its decay at the 
LHC.

Firstly doubly charged lepton can be produced via electroweak 
interactions where we consider pair production process. Relevant 
gauge interactions are given by

L ⊃ −2e Aμψ̄−−γ μψ−− + g2

cW

(
−3

2
+ 2s2

W

)
Zμψ̄−−γ μψ−−

(39)

where sW (cW ) = sin θW (cos θW ) with Weinberg angle θW and e
is electromagnetic coupling. Taking the first generation mass as 
M1 = 500 GeV as a benchmark point we obtain pair produc-
tion cross section σ(pp → ψ++ψ−−) around 40 fb estimated by 
1 1
CalcHEP [29]; here we focus on first generation ψ±±
1 since it pro-

vides the largest production cross section and omit generation 
index below. Then ψ±± decays into charged lepton and singly 
charged scalar δ± through the Yukawa interaction in Eq. (1) where 
we write by components such that

yDab [L̄a
L H3ψ

b
R ]

= yDab√
3

[
ēa

L

(
ψ0

Rδ′ − − √
2ψ ′ −

R δ0 + √
3ψ−−

R δ+)
+ν̄L

(
ψ ′ −

R δ+ − √
2ψ0

Rδ0 + √
3ψ+

R δ′ −)]
. (40)

For simplicity we assume � = e, μ in the decay of ψ−− → �−δ− in 
the following discussion. The singly charged scalar δ± dominantly 
decay into W + Z since H3 do not couple to SM fermions directly. 
In total we have following signal process:

pp → ψ++ψ−− → δ+δ−�+
1 �+

2 → W +W − Z Z�+
1 �−

2 . (41)

Taking into account decays of SM gauge bosons our signal at the 
LHC will be multi-lepton with or without jets. In Table 2, we sum-
marize products of cross section and branching ratios (BRs) for 
each representative final state where we take doubly charged lep-
ton mass as M = 500 GeV as a benchmark point and final states 
are distinguished by number of charged lepton and jets. We find 
that the cross section is less than 1 fb when there are more than 4 
charged leptons in final state. Thus sufficiently large integrated lu-
minosity is required to analyze the signal at the LHC experiments. 
Detailed simulation study including SM backgrounds is beyond the 
scope of this letter and it will be given elsewhere.

4. Summary and discussion

In this work, we constructed inverse seesaw model with global 
lepton number symmetry in which Majorana mass term of ex-
tra neutral fermion from SU (2)L quartet is induced at one-loop 
level realizing natural hierarchy of neutral fermion masses. In our 
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Table 2
Some final states from doubly charged lepton pair production with values of σ(pp → ψ++ψ−−)B R fixing M1 = 500 GeV.

Signal 4�+4�− /E T 3�+3�−2 j/E T 2�+2�−4 j/E T 4�±3�∓2 j/E T 3�±2�∓4 j/E T 3�+3�−4 j

σ · B R [fb] 0.0097 0.19 0.97 0.053 0.053 0.072
model, Z2 odd scalar quartet and fermion singlet are introduced 
which propagate inside a loop diagram generating the Majorana 
mass. Then the lightest Z2 odd particle can be a good DM candi-
date where we consider the Majorana fermion DM.

We have formulated neutrino mass matrix, LFV and muon g −2. 
In addition we show that relic density can be explained by scalar 
exchanging interactions. Then numerical analysis is carried out ex-
ploring allowed value of coupling constant and muon g − 2. We 
find that sizable muon g − 2 can be obtained when DM mass is 
130 GeV ≤ M X ≤ 190 GeV taking into account perturbative limit of 
coupling constants. Furthermore we have discussed collider physics 
focusing on doubly charged lepton production at the LHC where 
we have shown the products of cross section and branching ratio 
for each final state. We could test the signals with sufficiently large 
integrated luminosity.

Finally we discuss possibility of embedding this model in a 
grand unified theory such as an S O (10) model [7]. In our model, 
we have introduced SU (2)L quartet fermions and scalar field to re-
alize one loop generation of Majorana mass term in inverse seesaw, 
and a large S O (10) multiplet is required to obtain SU (2)L quartet 
such as 210′ or 320 representation [30]. Thus it is non-trivial to 
embed our model in a S O (10) model and further investigation is 
left for future study.
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