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We study the T -μ phase diagram of anisotropic media, created in heavy-ion collisions (HIC). Such a 
statement of the problem is due to several indications that this media is anisotropic just after HIC. To 
study T -μ phase diagram we use holographic methods. To take into account the anisotropy we use an 
anisotropic black brane solutions for a bottom-up QCD approach in 5-dim Einstein-dilaton-two-Maxwell 
model constructed in our previous work. We calculate the minimal surfaces of the corresponding probing 
open string world-sheet in anisotropic backgrounds with various temperatures and chemical potentials. 
The dynamical wall (DW) locations, providing the quark confinement, depend on the orientation of the 
quark pairs, that gives a crossover transition between confinement/deconfinement phases in the dual 
gauge theory.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Study of the phase diagram in the temperature and chemical 
potential (μ, T )-plane is one of the most important questions for 
QCD [1]. It aims to describe the physics of strongly interacting mat-
ter at extreme energy densities, where we have evidence that a 
new phase of matter, the quark gluon-plasma (QGP) appears, as 
well to understand the matter, which prevailed in early Universe 
in first 30 micro seconds.

It is well known that perturbative methods are inapplicable to 
study this subject. The lattice QCD still has difficulties with the 
study of theories with non-zero chemical potential due to the sign 
problem [2]. The gravity/gauge duality provides an alternative tool 
to study T -μ phase diagram [3–5].

The phase diagram has been experimentally studied only for 
small μ and large T values (RHIC, LHC) on the one hand and for 
low energies (small T ) and finite chemical potential values (SPS) 
on the other hand. The experimental study of the phase diagram 
in between these two particular cases is one of the main tasks 
of FAIR and NICA, now being under construction. For this purpose 
the results of the beam scanning in HIC are supposed to be an-
alyzed. In this context note, that there is an obvious anisotropy 
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(the nonequivalence of the longitudinal and transverse directions) 
in the substance produced in HIC. In fact it is believed, that QGP 
formed in HIC is initially in an anisotropic state and isotropization
occurs approximately in 0.5 ÷ 2 fm/c after a collision [6]. Therefore 
it seems natural to assume that the results of the beam scanning 
will study the phase transition in an anisotropic QCD (with pa-
rameter of anisotropy depending on time). One cannot use the 
anisotropic lattice QCD [9–12] to study T -μ phase diagram be-
cause of the well known sign problem mentioned above.

This anisotropy of QGP can be taken into account holographi-
cally. An additional argument to use anisotropic holographic model 
is that it supports the estimation of multiplicity [7]. We use the 
bottom-up holographic model to study T -μ phase diagram and 
investigate the anisotropy influence on it. On the gravity side 
anisotropy is supplied with the magnetic ansatz of Maxwell field 
to dilaton gravity action. Non-zero chemical potential is introduced 
via electric ansatz for the second Maxwell field [13]. Thereby the 
5-dimensional dilaton gravity with two Maxwell fields turns out 
to be the most suitable model. Such model was considered in [13,
14]. The simplest anisotropic model, characterized by anisotropic 
parameter ν , has been investigated in [7]. The feature of this par-
ticular model is that it correctly reproduces the energy dependence 
of multiplicity of charged particles produced at LHC in heavy ion 
collisions (results by ATLAS and Alice [15,16]). Other holographic 
models cannot fit experimental data in spite of several attempts 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. A) Coupling function f2(z) for zh = 1, c = −1, q = 1 and different μ in anisotropic case, ν = 4.5. B) Scalar field potential V (φ) for zh = 1, c = −1 and different μ in 
anisotropic case, ν = 4.5.
(see our previous papers on the subject [7,8,13]). We take ν = 4.5
to fit the experimental data.

The specific view of T -μ diagram describing the confine-
ment/deconfinement phase transition in anisotropic media de-
pends on orientation of the quark pair relative to the anisotropy 
axis. Anisotropy axis in QGP created in HIC is defined by the axes 
of ions collisions. In our previous work we studied longitudinal 
and transverse orientation cases and showed that they have two 
different T -μ curves on phase diagram [13]. But it is obvious that 
in real experiment, especially for large chemical potentials, the 
quark pair orientation should be random thus causing blurring of 
the phase transition line. In this paper we investigate the general 
confinement/deconfinement phase transition picture for arbitrary 
quark pair orientation and describe the emerging variety of sce-
narios.

We consider a 5-dim metric defined by anisotropic parameter 
ν , non-trivial warp-factor, non-zero time component of the first 
Maxwell field and non-zero longitudinal magnetic component of 
the second Maxwell field. We take the warp-factor in the sim-

plest form b(z) = e
cz2

2 , as this particular case allows to construct 
explicit solution [13]. We study the confinement/deconfinement 
phase transition line for the pair of quarks in the anisotropic 
QGP. We show the dependence of the confinement/deconfinement 
phase transition on the angle θ between quarks line and heavy-ion 
collisions line. We calculate the expectation values of the rectan-
gular temporal Wilson loop WθT for different orientation of the 
spacial part of the Wilson loop and find the conditions of the con-
finement/deconfinement phase transition for this line. For this pur-
pose we introduce the effective potential V(z), that depends on the 
angle θ and describes the interquark interaction. The confinement 
takes place, when the effective potential V has a critical point. We 
find conditions, under which the critical point exists, and study 
the dependence of the confinement/deconfinement phase transi-
tion temperature on chemical potential μ and angle θ .

The specific feature of the holographic description of the con-
finement/deconfinement is the position of the phase diagram as-
sociated with the Wilson loop behavior relative to the line of the 
Hawking-Page phase transition, characterized by the 5-dim back-
ground metric. It is evident, that unlike the confinement/decon-
finement transition line, the Hawking-Page transition line’s posi-
tion on the phase diagram doesn’t depend on the angle θ . As a 
result the change of this angle leads to changing of the mutual ar-
rangement of the confinement/deconfinement transition line and 
Hawking-Page transition line on the phase diagram. We find the 
critical value, for which the top of the Hawking-Page transition 
line, corresponding to μ = 0, and the top of the confinement/de-
confinement transition line coincide.
The paper is organized as follows. In Sect. 2 we briefly de-
scribe the 5-dim black brane solution in the anisotropic back-
ground (Sect. 2.1) and sketch calculates of the expectation value 
of the temporal Wilson loop (Sect. 2.2). In Sect. 3 we find the con-
dition of the confinement-deconfinement phase transition for zero 
and non-zero temperature. In Sect. 4 we perform detailed phase 
diagrams depending on the angle θ and in Sect. 5 discuss further 
directions of investigation of holographic anisotropic QCD.

2. Setup

2.1. The model

We consider a 5-dimensional Einstein-dilaton-two-Maxwell sys-
tem. In the Einstein frame the action of the system is specified as

S =
∫

d5x

16πG5

√
−det(gμν)

×
[

R − f1(φ)

4
F 2

(1) − f2(φ)

4
F 2

(2) − 1

2
∂μφ∂μφ − V (φ)

]
, (1)

where F 2
(1) and F 2

(2) are the squares of the Maxwell fields F (1)
μν =

∂μ A(1)
ν − ∂ν A(1)

μ and F (2)
μν = q dy1 ∧ dy2, f1(φ) and f2(φ) are the 

gauge kinetic functions associated with the corresponding Maxwell 
fields, V (φ) is the potential of the scalar field φ.

To find the black brane solution in the anisotropic background 
we used the metric ansatz in the following form:

ds2 = Gμνdxμdxν

= L2 b(z)

z2

[
− g(z)dt2 + dx2 + z2− 2

ν

(
dy2

1 + dy2
2

)
+ dz2

g(z)

]
,

(2)

φ = φ(z), A(1)
μ = At(z)δ0

μ, (3)

F (2)
μν = q dy1 ∧ dy2, (4)

where b(z) is the warp factor and g(z) is the blackening func-
tion (see (2.31) and (2.38) in [13]); we set the AdS radius L = 1. 
The coupling function f2, directly connected with the model 
anisotropy, depends on chemical potential as well (Fig. 1.A). The 
potential V (Fig. 1.B) can be approximated by a sum of two expo-
nents and a negative constant (see (2.70)–(2.74) in [13]). Functions 
f1 and f2 are given by eqs. (2.17) and (2.51) in [13]. All the quan-
tities in formulas and figures are presented in dimensionless units.
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Fig. 2. A) Wilson loop and the world sheet. B) Projection of the world sheet to fixed t .
2.2. The Wilson loop

The purpose of our consideration is to calculate the expectation 
value of the temporal Wilson loop

W [Cθ ] = e−Sθ,T , (5)

oriented along vector �n, such that nx = cos θ , ny = sin θ .
Following the holographic approach [18–20] we have to calcu-

late the value of the Nambu-Goto action for the test string in our 
background:

S = − 1

2πα′

∫
dt dξ e

√
2
3 φ(z)

√
−det Gμν∂α Xμ∂β Xν, (6)

where Gμν is given by (2). The world sheet presented in Fig. 2 is 
parameterized as

X0 ≡ t, X1 ≡ x = ξ cos θ, X2 ≡ y1 = ξ sin θ,

X3 ≡ y2 = const, X4 ≡ z = z(ξ).

The action (6) can be rewritten:

S = − τ

2πα′

∫
dξ M(z(ξ))

√
F(z(ξ)) + (z′(ξ))2, τ =

∫
dt, (7)

M(z(ξ)) = b(z(ξ))

z(ξ)2
e

√
2
3 φ(z)

,

F(z(ξ)) = g(z(ξ))
(

z(ξ)2− 2
ν sin2(θ) + cos2(θ)

)
. (8)

Let us introduce the effective potential:

V(z) ≡ M(z)
√
F(z). (9)

From (7) we have representations for the character length of the 
string and the action:

�

2
=

z∗∫
0

1√
F(z)

dz√
V2(z)
V2(z∗)

− 1
, (10)

S

2
=

z∗∫
ε

V(z)

V(z∗)
M(z)dz√
V2(z)
V2(z∗)

− 1
, (11)

where z∗ is a top point. Here we introduce the UV cut-off ε since 
M has singular behavior near z ∼ 0:

M(z) ∼
z∼0

M0

zk
, k ≥ 1. (12)

From (10) and (11) we see that S and � make sense if the potential
is a decreasing function in the interval 0 < z < z∗ ,

V(z) > V(z∗), 0 < z∗ < zmin, (13)

where zmin is the local minimum of V(z), zmin < zh . We are inter-
ested in studying the asymptotics of S at large �. To get � → ∞
and S → ∞ we have to take z∗ = zmin . Indeed, substituting

V2(z)

V2(zmin)
= 1 +V2(z − zmin)2 + o((z − zmin)2),

V2 ≡ V′′(zmin)

V(zmin)
, (14)

into (10) and (11), we get

� = 2

zmin∫
0

dz√
F(z)V2 (zmin − z)

∼
√

V(zmin)

F(zmin) V′′(zmin)
log(zmin − z), (15)

S = 2

zmin∫
ε

V(z)M(z)dz

V(zmin)
√
V2 (zmin − z)

∼ M(zmin)

√
V(zmin)

V′′(zmin)
log(zmin − z), (16)

so that � → ∞ as z → zmin − 0 and S → ∞ as z → zmin − 0.
The stationary point, V′|z=zmin = 0, is usually called a dynamical 

wall (DW) point and satisfies the equation:

z = zDW : M ′(z)

M(z)
+ 1

2

F′(z)

F(z)
= 0. (17)

Taking the top point z∗ = zDW , we get

S ∼ σDW �, σDW = M(zDW )
√
F(zDW ). (18)

3. Confinement/deconfinement phase transition

In our case the effective potential depends on the warp factor, 
the scalar field and the angle. To find stationary points of V(z) we 
solve the equation (17) for the potential (9) with arbitrary angle. 
This equation has the form

�(z, zh,μ, c, ν) − �(z, ν, θ) = 0, (19)

where �(z, zh, μ, c, ν) does not depend on θ :

�(z, zh,μ, c, ν) ≡ σ(z, c, ν) + g′(z)

2g(z)
,

σ (z, c, ν) ≡ cz + 1

νz

√
2

3

√
3c ν2z2

(
cz2

2
− 3

)
+ 4ν − 4, (20)
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Fig. 3. A) Functions σx(z, c, ν) (blue lines), σy(z, c, ν) (magenta lines), σθ (z, c, ν, θ) (cyan dashed lines) for the angle θ = 54◦ , ν = 4.5 and for different c. B) DWs’ positions, 
corresponding to the Wilson lines W xT , W yT , WθT in the anisotropic case ν = 4.5, are given by intersections of gray lines representing �(z) and the blue, cyan, magenta 
lines representing another part of the equation (19) for angles θ = 0◦, 54◦, 90◦ . Here we vary zh and c. In all cases to get the DW position we take the minimal intersection 
point.
and �(z, ν, θ) does:

�(z, ν, θ) ≡ 2

z
−

(
1 − 1

ν

)
z1− 2

ν sin2(θ)

cos2(θ) + z2− 2
ν sin2(θ)

. (21)

Equations for DWs in particular cases for θ = 0, π/2, considered 
previously in [13], follow immediately from equation (19). For zero 
temperature, i.e. g = 1, we get equation

σθ (z, c, ν) ≡ σ(z, c, ν) − �(z, ν, θ) = 0. (22)

The existence/non-existence of solutions of equations (22) and 
(19) can be seen graphically at Fig. 3. At Fig. 3.A plots of σx =
σθ=0, σy = σθ=π/2 and σθ (z, c, ν, θ) for a particular θ = 54◦ are 
presented. We see that for c = 0 there are no roots of equation 
(22), meanwhile there are roots for any orientations of the Wilson 
line and negative c presented here.

For non-zero temperature it is more convenient to find the 
roots of equation (19) by drawing �(z, zh, μ, c, ν) and �(z, ν, θ)

separately and find their intersections. In this case the loca-
tion of �(z, ν, θ) depends on the geometry of quark-antiquark 
pair, meanwhile the location of �(z, zh, μ, c, ν) depends on zh , 
μ, c, ν . We see that for these parameters fixed the intersec-
tion of �(z, zh, μ, c, ν) and �(z, ν, θ) depends on the orientation. 
In particular, the line �(z, 1.5, 0, −1, 4.5) at Fig. 3.B intersects 
the magenta line and does not intersect the dashed darker cyan 
and blue lines. This shows that for θ = 90◦ confinement occurs, 
but for θ = 54◦ and, moreover, for θ = 0◦ , does not. The disap-
pearance of the root we interpret as disappearance of confine-
ment. The parameters, at which this occurs, define the location 
of the Wilson confinement/deconfinement transition line. Since 
we are interested in location of the confinement/deconfinement 
line in the (μ, T )-plane, we use the expression for the temper-
ature T (zh, μ, c, ν) given by formula (3.1) in [13]. The locations 
of the Wilson confinement/deconfinement transition lines on the 
(μ, T )-plane are presented at Fig. 4 by solid lines. We see that 
varying θ for chemical potential μ large enough we get essen-
tial spread of position of the confinement/deconfinement transition 
lines.

For small chemical potentials the situation is more complicated 
due to the Hawking-Page instability of the background (2) [13]. If 
the system cools down with the non-zero chemical potential less 
than some critical value μcr , the background at the temperature 
T B B(μ) undergoes the phase transition from a large to a small 
black hole. This is a generalization of the corresponding effect in 
the isotropic case [21–25]. For zero μ the Hawking-Page phase 
transition takes place at T H P , where the free energy equals zero 
and the black hole dissolves to thermodynamically stable thermal 
gas. The particular value of T H P depends on parameters c and ν . 
For the isotropic background the Hawking-Page transition temper-
ature T H P is higher than for the anisotropic one with the same c <

0, also the temperature of the large/small black hole phase transi-
tion in the isotropic case is higher than in the anisotropic one, 
i.e. T (anis)

B B (μ) < T (iso)
B B (μ). The value of the critical chemical po-

tential, up to which this phase transition exists, in the anisotropic 
case is larger compared to the isotropic one, μ(anis)

cr > μ
(iso)
cr . Also 

in [13] we have found that the point (μ(anis)
cr , T (anis)

cr ) for ν → 1
goes smoothly to (μ(iso)

cr , T (iso)
cr ). The location of the Hawking-Page 

transition line for anisotropic case ν = 4.5 is presented at Fig. 4
by the dashed red line. This line starts at (0, T H P ) and end up at 
(μ

(anis)
cr , T (anis)

cr ).

4. Results

The phase diagram in (μ, T )-plane is in fact defined by the rel-
ative disposition of the Hawking-Page transition line and the Wil-
son transition line. In the model we have determined the critical 
angles θcr1 = 45◦ , θcr2 = 54◦ and θcr3 = 65◦ . For the critical an-
gle θcr1 = 45◦ the Hawking-Page phase transition line (red dashed 
line in Fig. 4) and the phase transition line, determined by the 
Wilson loop (orange line in Fig. 4), have only one common point 
(μ

(anis)
cr , T (anis)

cr ) at the end of the Hawking-Page transition line. In 
this case for μ ≤ μ

(anis)
cr the whole Hawking-Page line determines 

the confinement/deconfinement phase transition. For the angle 
θcr2 = 54◦ the top point (corresponding to μ = 0) of the Hawking-
Page phase transition coincides with the top point of the Wilson 
phase transition (gray line in Fig. 4), T H P = T top,θcr2 . For θcr3 = 65◦
the Hawking-Page phase transition line and phase transition line, 
determined by the Wilson loop (red solid line), have only one com-
mon point (μ(anis)

cr , T (anis)
cr ) at the end of the Hawking-Page phase 

transition line again. In this case the whole confinement/decon-
finement phase transition line is determined by the Wilson loop 
only since this line is located below the Hawking-Page phase tran-
sition line.

Between these critical values of θ we have the following pic-
tures.
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Fig. 4. Phase transition diagrams. The plots A) and B) are the zooms of the green areas and C) is a zoom of the yellow area in B).
• For 0◦ ≤ θ < 45◦ parts of the Wilson transition lines near zero 
values of the chemical potential enter the instability regions 
of our background, where the small black holes collapse to 
large ones. Here the phase transition is determined by the 
Hawking-Page phase transition. After the chemical potential 
exceeds some critical value, the confinement/deconfinement 
phase transition is no longer determined by the background 
and the influence on the Wilson loop starts to dominate, 
analogous to the longitudinal orientation case, presented as 
W xT in [13] and associated with θx = 0◦ . The green line on 
Fig. 4 corresponds to θ1 = 10◦ and shows a typical disposi-
tion of the Wilson transition line in respect to the Hawking-
Page transition line. It intersects the Hawking-Page line at the 
green point (μc,θ1 , Tc,θ1 ) shown at Fig. 4.B. The intersection of 
the Hawking-Page line with the Wilson transition line corre-
sponding to θx = 0◦ is shown by the blue point at Fig. 4.B. 
While increasing the angle up to θcr1 = 45◦ , the intersection 
reaches the end point of the Hawking-Page transition line, 
(μ

(anis)
cr , T (anis)

cr ).
• For θcr1 = 45◦ the line corresponding to the Wilson loop con-

tribution meets the Hawking-Page phase transition line at its 
very end (red point (μ(anis)

cr , T (anis)
cr ) on Fig. 4.B).

• For 45◦ < θ < 54◦ we have no intersections of the Hawking-
Page phase transition line and the Wilson transition line lies 
above, so there is a jump from the Hawking-Page to the Wil-
son transition line.

• For θcr2 = 54◦ the Wilson line on the phase diagram (gray line) 
starts at μ = 0 at the same point as the Hawking-Page transi-
tion line, then goes above it and intersects it again. Note that 
the gray line almost coincides with the Hawking-Page phase 
transition line (the dashed red line) at Fig. 4.

• For 54◦ < θ < 65◦ we have no intersections of the Hawking-
Page phase transition line and the Wilson transition line. In 
this case the whole confinement/deconfinement phase transi-
tion is determined by the Wilson transition line.

• For θcr3 = 65◦ the line corresponding to the Wilson transition 
line meets the Hawking-Page phase transition line at its very 
end again (red point (μ(anis)

cr , T (anis)
cr ) on Fig. 4.B).

• For 65◦ < θ ≤ 90◦ the picture is analogous to the case 
of the transversal orientation case, presented as W yT in 
[13] and corresponding to θy = 90◦ . The confinement/de-
confinement phase transition is determined by the Wil-
son transition line starting from the zero values of chem-
ical potential up to μc,y (magenta point (μc,y, Tc,y) on 
Fig. 4.B), where it meets the instability of the background. 
Starting from this point the Hawking-Page phase transi-
tion takes place up to (μ

(anis)
cr , T (anis)

cr ), where we have a 
jump to a point (μ

( jump)
c,y , T ( jump)

c,y ) on the Wilson transition 
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line. A typical Wilson transition line for θ2 = 78◦ is pre-
sented in darker red. It intersects the Hawking-Page line 
in point (μc,θ2 , Tc,θ2 ), and the jump from the end of the 
Hawking-Page line (μ(anis)

cr , T (anis)
cr ) into the darker red point 

(μ
( jump)
c,θ2

, T ( jump)
c,θ2

) is also shown on Fig. 4.B.

5. Conclusion and discussion

We have found the dependence of the confinement/deconfine-
ment phase transition line on the orientation of the quark pair. For 
this purpose we have studied the behavior of the temporal Wil-
son loops in the particular 5-dimensional anisotropic background 
supported by dilaton and two-Maxwell field constructed in [13]. 
We specified the quark pair orientation by angle θ . For each angle 
there is its own confinement/deconfinement transition line (see a 
variety of these lines in Fig. 4). There is a Hawking-Page instability 
in our background. Combining the phase transition for the Wilson 
line with this Hawking-Page instability we have arrived to the pic-
ture presented in Fig. 4.

At the end we would like to point out, that the possibility of 
an experimental check of our estimation of the confinement/de-
confinement line blurring essentially depends on the ability of the 
experimental measurement particle yield immediately after HIC. 
The reason for this is that the anisotropy effects are expected in 
the contents of the fireball, created in HIC, just after collision at 
times of about 0.5 ÷ 2 fm/c. Anisotropy makes spectrum of the 
hadrons created by this fireball depend on the orientation, but this 
anisotropy disappears very soon and as a consequence the blurring 
disappears as well.

As to the future investigations, the following natural questions 
to static and non-static properties of our model are worth noting. 
As has been mentioned, the anisotropic background constructed in 
[13] can be generalized to provide a more realistic model. In this 
case the solution can be given in terms of quadratures only and 
we suppose to generalize the Wilson loop calculations to this more 
realistic case. As to static properties, it is natural to

• investigate θ -oriented Wilson loops based on more compli-
cated factor b(z), in particular such that in the isotropic limit 
it fits the Cornell potential known by lattice QCD;

• study the Regge spectrum for mesons, adding the probe gauge 
fields to the backgrounds and find its dependence on θ ;

• consider estimations for direct photons and find dependence 
on orientation [14];

• evaluate transport coefficients and their dependence on the 
anisotropy;

• estimate the holographic entanglement entropy and find its 
dependence on θ ; note that this has been done in [7] for zero 
chemical potential and θ = 0, π/2; the isotropic case for non-
zero chemical potential has been considered recently in [26];

• find a generalization results of [17] where an explicit isotropic 
solution for the dilaton potential as a sum of two exponents 
and zero chemical potential has been found.

As to the thermalization processes, which are the main mo-
tivations of our consideration of the anisotropic background (see 
details in [14,27]), it would be interesting to investigate the be-
havior of the temporal Wilson loop during thermalization. This 
problem for zero chemical potential has been studied in [28]. It is 
also interesting to generalize the result of paper [29] and consider 
thermalization of the spacial Wilson loops for non-zero chemical 
potential. This will give the dependence of the drag-forces on the 
chemical potential.
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