Covariant holographic entanglement negativity for disjoint intervals in AdS3/CFT2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AdS_3/CFT_2$$\end{document}

Malvimat, Vinay (Aff1, 0000 0004 1764 2413, grid.417959.7, Indian Institute of Science Education and Research, Homi Bhabha Rd, Pashan, 411 008, Pune, India) ; Mondal, Sayid (Aff2, 0000 0000 8702 0100, grid.417965.8, Department of Physics, Indian Institute of Technology, 208 016, Kanpur, India) ; Paul, Boudhayan (Aff2, 0000 0000 8702 0100, grid.417965.8, Department of Physics, Indian Institute of Technology, 208 016, Kanpur, India) ; Sengupta, Gautam (Aff2, 0000 0000 8702 0100, grid.417965.8, Department of Physics, Indian Institute of Technology, 208 016, Kanpur, India)

17 June 2019

Abstract: We advance a construction for the covariant holographic entanglement negativity for time dependent mixed states of disjoint intervals in (1+1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+1)$$\end{document} dimensional conformal field theories ( CFT1+1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CFT_{1+1}$$\end{document} ) dual to bulk non static AdS3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AdS_3$$\end{document} geometries. Application of our proposal to such mixed states in a CFT1+1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CFT_{1+1}$$\end{document} dual to bulk non extremal and extremal rotating BTZ black holes exactly reproduces the replica technique results in the large central charge limit. We also investigate the time dependent holographic entanglement negativity for such mixed states in a CFT1+1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CFT_{1+1}$$\end{document} dual to a bulk Vaidya- AdS3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AdS_3$$\end{document} geometry in the context of their thermalization involving bulk black hole formation.


Published in: EPJC 79 (2019) 514 DOI: 10.1140/epjc/s10052-019-7032-9
License: CC-BY-3.0



Back to search

Fulltext:
Download fulltextXML Download fulltextPDF (PDFA)