Predictive scotogenic model with flavor dependent symmetry

Han, Zhi-Long  (Aff1, grid.454761.5, School of Physics and Technology, University of Jinan, 250022, Jinan, Shandong, China) ; Wang, Weijian (Aff2, 0000 0004 0645 4572, grid.261049.8, Department of Physics, North China Electric Power University, 071003, Baoding, China)

18 June 2019

Abstract: In this paper, we propose a viable approach to realise two texture-zeros in the scotogenic model with flavor dependent U(1)B-2Lα-Lβ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(1)_{B-2L_\alpha -L_\beta }$$\end{document} gauge symmetry. These models are extended by two right-handed singlets NRi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{Ri}$$\end{document} and two inert scalar doublets ηi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{i}$$\end{document} , which are odd under the dark Z2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_2$$\end{document} symmetry. Among all the six constructed textures, texture A1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_1$$\end{document} and A2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_2$$\end{document} are the only two allowed by current experimental limits. Then choosing texture A1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_1$$\end{document} derived from U(1)B-2Le-Lτ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(1)_{B-2L_e-L_\tau }$$\end{document} , we perform a detail analysis on the corresponding phenomenology such as predictions of neutrino mixing parameters, lepton flavor violation, dark matter and collider signatures. One distinct nature of such model is that the structure of Yukawa coupling L¯η~NR \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{L}}{\tilde{\eta }}N_R$$\end{document} is fixed by neutrino oscillation data, and can be further tested by measuring the branching ratios of charged scalars η1,2± \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{1,2}^\pm $$\end{document} .


Published in: EPJC 79 (2019) 522 DOI: 10.1140/epjc/s10052-019-7033-8
License: CC-BY-3.0



Back to search

Fulltext:
Download fulltextXML Download fulltextPDF (PDFA)