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Abstract

We define a two-parameter family of integrable deformations of the principal chiral model on an arbitrary 
compact group. The Yang–Baxter σ -model and the principal chiral model with a Wess–Zumino term both 
correspond to limits in which one of the two parameters vanishes.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It was shown by S. Rajeev in [1] that there exists a one-parameter deformation of the Poisson 
brackets satisfied by the current of the principal chiral model. It was also observed that this 
deformed Poisson structure coincides with that of two Poisson commuting classical Kac–Moody 
currents [1]. It turns out that the Kac–Moody currents are either both real or complex conjugate 
of one another, depending on the value of the deformation parameter [2]. We will therefore refer 
to these two branches in the deformation parameter as real and complex, respectively. In each 
branch, the integrable field theory which provides a realisation of the deformed Poisson algebra 
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is known. As was shown in [3], for the complex branch this is the Yang–Baxter σ -model defined 
by C. Klimčík in [4,5]. The Yang–Baxter σ -model on SU(2) is simply the squashed 3-sphere 
σ -model studied in [6,7]. For the real branch, the model is the one introduced by K. Sfetsos in 
[8] (see also [2,9,10]). It generalises the model studied in [11] to higher rank.

In the case of SU(2), it was found in [11] that the deformed Poisson brackets can even be 
extended to a two-parameter deformation. Furthermore, it is clear that the Poisson brackets con-
structed in [11] extend immediately to any Lie algebra. In this note we exhibit the action of the 
integrable field theory which realises the double deformation in the complex branch.

2. Action and Lax pair

2.1. Ansatz for the action

Let g be a compact Lie algebra with Lie group G. To construct a two-parameter deformation 
of the principal chiral model on G we will start with a fairly general ansatz for the action of a 
G-valued field g, which we take to be:

S[g] = −1

2
K

∫
d2x tr

(
g−1∂−g

1 + η2

1 − η2R2
g−1∂+g + g−1∂−g

(1 + η2)AR

1 − η2R2
g−1∂+g

)

− 1

2
kK

∫
d3x tr

(
g−1∂ξg

[
g−1∂−g,g−1∂+g

])
. (2.1)

Here ∂± = ∂τ ± ∂σ denote the usual light-cone derivatives on the worldsheet. The last term in 
(2.1) is the standard Wess–Zumino term integrated over a 3-dimensional space parameterised by 
(τ, σ, ξ) and whose boundary is the worldsheet. We denote this term by SWZ[g].

For the moment η, A and k are three independent real parameters. The real parameter K is an 
overall normalisation which will not play much role in our analysis. Note that when k = 0 and 
A = ±η one recovers the Yang–Baxter σ -model of [4,5]. Specifically, the first two terms in (2.1) 
reduce in this limit to the symmetric and anti-symmetric part of the operator (1 ∓ ηR)−1 in the 
Yang–Baxter σ -model action respectively. Furthermore, when η = A = k = 0 the above action 
reduces to that of the principal chiral model.

The linear operator R is a skew-symmetric non-split solution of the modified classical Yang–
Baxter equation (see [3] for details) on g. That is to say, for any x, y ∈ g it satisfies

[Rx,Ry] = R
([Rx,y] + [x,Ry]) + [x, y]. (2.2)

In what follows we shall work with the standard solution to this equation which is constructed as 
follows. Given a Cartan–Weyl basis (H i, Eα) of the complexified Lie algebra gC, a basis of the 
compact real form g is given by

T i = iH i, Bα = i√
2

(
E+α + E−α

)
, Cα = 1√

2

(
E+α − E−α

)
.

The operator R is then defined by [5]

R
(
T i

) = 0, R
(
Bα

) = Cα, R
(
Cα

) = −Bα. (2.3)
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2.2. Flat and conserved current

The equations of motion computed from the action (2.1) take the form of the conservation 
equation

∂−K+ + ∂+K− = 0

where we have defined

K± = g

((
1 + η2

1 − η2R2
(1 ± AR) ∓ k

)
g−1∂±g

)
g−1. (2.4)

We will now determine the conditions under which this conserved current K± is also on-shell 
flat. This will immediately imply the existence of a Lax pair for the resulting model. However, 
for simplicity, we shall make use of the fact that by construction the R-matrix (2.3) satisfies

R3 = −R. (2.5)

Using the property (2.5) one can show that

1 + η2

1 − η2R2
= 1 + η2 + η2R2,

(1 + η2)R

1 − η2R2
= R. (2.6)

The action (2.1) may therefore be written as

S[g] = −1

2
K

∫
d2x tr

(
g−1∂−g

(
1 + η2 + AR + η2R2)g−1∂+g

) + SWZ[g]. (2.7)

Substituting (2.6) into the above expression (2.4) for K± we obtain

g−1K±g = (
1 + η2 ∓ k ± AR + η2R2)g−1∂±g. (2.8)

The inverse of the operator on the right hand side of (2.8) can be constructed explicitly by equat-
ing the coefficients in front of each power of R, using (2.5), on both sides of the following 
equation(

a± + b±R + c±R2)(1 + η2 ∓ k ± AR + η2R2) = 1.

We find explicitly that

a± = 1

1 + η2 ∓ k
, b± = ∓ A

A2 + (1 ∓ k)2
,

c± = 1

1 + η2 ∓ k
− 1 ∓ k

A2 + (1 ∓ k)2
. (2.9)

This inverse operator enables us to rewrite (2.8) as

∂±gg−1 = (
a± + b±Rg + c±R2

g

)
K±, (2.10)

where the action of the operator Rg on any x ∈ g is defined as

Rgx = gR
(
g−1xg

)
g−1. (2.11)

Next we note that the modified classical Yang–Baxter equation (2.2) for R together with the 
property (2.5) implies the following equation for R2,[

R2x,R2y
] = R2([R2x, y

] + [
x,R2y

]) + (
1 + 2R2)[x, y]. (2.12)
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Substituting the expression (2.10) into the curvature

∂−
(
∂+gg−1) − ∂+

(
∂−gg−1) + [

∂+gg−1, ∂−gg−1]
and making use of the modified classical Yang–Baxter equation (2.2) for the operator R as well 
as its consequence (2.12), one can show that

∂−
(
∂+gg−1) − ∂+

(
∂−gg−1) + [

∂+gg−1, ∂−gg−1]
=

(
a+ − a−

2
+ b+ − b−

2
Rg + c+ − c−

2
R2

g

)
(∂−K+ + ∂+K−)

+
(

a+ + a−
2

+ b+ + b−
2

Rg + c+ + c−
2

R2
g

)
(∂−K+ − ∂+K−)

+ (
a+a− − b+b− − c+c− + (

(a+ − c+)b− + (a− − c−)b+
)
Rg

+ (
(a+ − c+)c− + (a− − c−)c+

)
R2

g

)[K+,K−]
+ b+c−

(
1 + R2

g

)[RgK−,K+] + b−c+
(
1 + R2

g

)[K−,RgK+]. (2.13)

Now we have the following relations between the parameters (2.9),

b+ + b−
2

= (a+ − c+)b− + (a− − c−)b+. (2.14)

Moreover, we impose the relation

A = η

√
1 − k2

1 + η2
, (2.15)

between the three parameters η, A and k. Note that the exact same relation (2.15) was previously 
obtained in [12,13] for the ‘squashed WZNW-model’, which is a deformation of the squashed 
3-sphere σ -model by addition of a WZ term. The model defined by the action (2.1), with A set 
to the value (2.15), can therefore be seen as a generalisation of the latter from the su(2) case 
to an arbitrary Lie algebra g. Using (2.15), we find the following further relations among these 
parameters

b+c− = b−c+, (2.16a)
a+ + a−

2
= a+a− − b+b− − c+c−, (2.16b)

c+ + c−
2

= (a+ − c+)c− + (a− − c−)c+. (2.16c)

Substituting all these relations into (2.13) we arrive at the following

∂−
(
∂+gg−1) − ∂+

(
∂−gg−1) + [

∂+gg−1, ∂−gg−1]
=

(
a+ − a−

2
+ b+ − b−

2
Rg + c+ − c−

2
R2

g

)
(∂−K+ + ∂+K−)

+
(

a+ + a−
2

+ b+ + b−
2

Rg + c+ + c−
2

R2
g

)(
∂−K+ − ∂+K− + [K+,K−])

+ b+c−
(
1 + R2)([RgK−,K+] + [K−,RgK+]). (2.17)
g
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The last line can be shown to vanish using the following identity(
1 + R2)([Rx,y] + [x,Ry]) = 0, (2.18)

valid for any x, y ∈ g. To show the latter, note that the left hand side can be rewritten as(
1 + R2)([Rx,y] + [x,Ry]) = (R − i)

[
(R + i)x, (R + i)y

]
,

by using the modified classical Yang–Baxter equation (2.2) for R in the form

(R + i)
([Rx,y] + [x,Ry]) = [

(R + i)x, (R + i)y
]
.

However, since R ± i are respectively the projectors onto the Borel subalgebras b± of gC, it 
follows that (R − i)[(R + i)x, (R + i)y] = 0 for any x, y ∈ g, and hence we obtain (2.18). We 
are therefore left with

∂−
(
∂+gg−1) − ∂+

(
∂−gg−1) + [

∂+gg−1, ∂−gg−1]
=

(
a+ − a−

2
+ b+ − b−

2
Rg + c+ − c−

2
R2

g

)
(∂−K+ + ∂+K−)

+
(

a+ + a−
2

+ b+ + b−
2

Rg + c+ + c−
2

R2
g

)(
∂−K+ − ∂+K− + [K+,K−]). (2.19)

Since the operator in parenthesis in the last line is invertible, this implies that the conserved 
current K± is also on-shell flat. The equations of motion for the action (2.1) with the parameter 
A fixed by the relation (2.15) can therefore be recast in the form of a zero curvature equation for 
the Lax pair

L±(z) = K±
1 ∓ z

.

We denote the spatial component 1
2(L+(z) −L−(z)) by

L(z) = 1

1 − z2
(K1 + zK0). (2.20)

2.3. 3-parameter current

Before studying the 2-parameter action (2.1) with A fixed by (2.15), let us note that there 
is a redundancy between the set of four equations (2.14) and (2.16) for the six coefficients 
(a±, b±, c±) entering in Eq. (2.10). Indeed, Eqs. (2.14) and (2.16a) together imply (2.16c). As 
a consequence, it is possible to construct a 3-parameter current1 whose conservation equation 
implies its flatness. After solving the remaining independent equations, one may parameterise
this current as

g−1K±g = (
1 + η2 ∓ k ± AR + η2R2 ± ξR2)g−1∂±g, (2.21)

where A is now given in terms of k, η and ξ as

A = η

√√√√
1 −

ξ2

η2 + (k + ξ)2

1 + η2
.

It is not clear, however, which action could give rise to such a current.

1 We thank B. Hoare for pointing out this possibility.
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3. Double deformation of the Poisson brackets

In this section, we will derive the Hamiltonian form of the fields K0, K1 and show that their 
Poisson brackets correspond to a double deformation of those of the principal chiral model. They 
correspond to the Poisson brackets found in [11] and to the ones in [13] for the su(2) case. We 
show that the Poisson bracket of the Lax matrix (2.20) takes the standard r/s-form [14,15] and 
identify the corresponding twist function [16].

3.1. Canonical analysis

To perform the canonical analysis of the action (2.1) we introduce coordinates ϕi on the group 
G and write

g−1∂ig = LA
i TA,

in terms of a basis {TA} of g. Letting fAB
C denote the structure constants with respect to this 

basis, namely [TA, TB ] = fAB
CTC , we define

ηAB = − tr(TATB), fABC = ηCDfAB
D.

We also introduce the tensor λij = −λji through the relation

− tr
(
g−1∂ig

[
g−1∂jg, g−1∂kg

]) = ∂iλjk + ∂jλki + ∂kλij .

In terms of this, the WZ term in the action (2.1) can be rewritten as

SWZ[g] = kK

∫
d2x∂0ϕ

i∂1ϕ
jλij .

The conjugate momenta πi of ϕi can be computed from the action (2.1) written in the form

S[g] = −1

2
K

∫
d2x tr

(
g−1∂0g

(
1 + η2 + η2R2)g−1∂0g

− g−1∂1g
(
1 + η2 + η2R2)g−1∂1g + 2g−1∂0gARg−1∂1g

)
+ kK

∫
d2x∂0ϕ

i∂1ϕ
jλij .

It is convenient to express the result in terms of the g-valued field

X = Li
Aπiη

ABTB,

where Li
A is defined as the inverse of LA

i , namely Li
ALB

i = δB
A . Explicitly, we find that

X = K
(
1 + η2 + η2R2)g−1∂0g + KARg−1∂1g + XWZ (3.1)

where

XWZ = kKλij ∂1ϕ
jLi

AT A. (3.2)

Note that using this last expression, the WZ term in the action (2.1) can be written more suc-
cinctly as

SWZ[g] = −
∫

d2x tr
(
g−1∂0gXWZ

)
.
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The canonical Poisson brackets between the coordinates ϕi and their conjugate momenta πi

may be conveniently expressed in terms of the fields g and X as

{g1, g2} = 0, (3.3a)

{X1, g2} = −g2C12δσσ ′, (3.3b)

{X1,X2} = [C12,X2]δσσ ′, (3.3c)

where to simplify the notation we use the convention that the argument of a function in the first 
(resp. second) tensor factor is σ (resp. σ ′). For instance, g1 = g(σ ) ⊗ 1 and g2 = 1 ⊗ g(σ ′). The 
quadratic Casimir is C12 = ηABTA ⊗ TB . We also note the following relation

{X1,XWZ2} + {XWZ1,X2} = kK
[
C12, g

−1
2 ∂σ g2

]
δσσ ′ + [C12,XWZ2]δσσ ′ . (3.3d)

In what follows it will be convenient to work with the g-valued field Y = X − XWZ. Its Poisson 
brackets can be determined using (3.3) and read

{Y1, g2} = −g2C12δσσ ′, (3.4a)

{Y1, Y2} = [C12, Y2]δσσ ′ − kK
[
C12, g

−1
2 ∂σ g2

]
δσσ ′ . (3.4b)

Finally, the expression for the Hamiltonian is obtained as the Legendre transform of the La-
grangian. Explicitly we find

H = − K

2(A2 + (k − 1)2)(A2 + (k + 1)2)

∫
dσ tr

[(
1 + k2 + A2)(K2

0 +K2
1

) + 4kK0K1
]
.

(3.5)

3.2. Current

By using the relation (3.1) we may express g−1∂0g in terms of g−1∂1g and Y . Substituting 
this into the expressions (2.4) we find

K0 = 1

K
gYg−1 − k∂1gg−1, (3.6a)

K1 = g

(
1

K

(
− k

1 + η2
+ AR + kη2

1 + η2
R2

)
Y

+ k

(
1 + η2

k
+ AR + kη2

1 + η2
R2

)
g−1∂1g

)
g−1. (3.6b)

There are two interesting special limits of (3.6). The first one is the Yang–Baxter limit obtained 
by taking k = 0, which implies XWZ = 0. By virtue of (2.15) we then have A = η. So in this 
limit the expressions (3.6) become

K0 = 1

K
gXg−1, (3.7a)

K1 = η

K
gRXg−1 + (

1 + η2)∂1gg−1. (3.7b)

This is in agreement with the expressions found in [3] provided we set K = 1 + η2, which cor-
responds to the normalisation of the action used there. The second interesting limit corresponds 
to taking η = 0 in which case A = 0 and (3.6) reduce to
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K0 = 1

K
gYg−1 − k∂1gg−1, (3.8a)

K1 = − k

K
gYg−1 + ∂1gg−1. (3.8b)

Finally, the GL × GR invariance of the principal chiral model is broken down to GL × HR

by the deformation, where H is the Cartan subgroup of G. Note that 
∫

dσK0 is the charge 
which generates the unbroken symmetry GL. This preservation of the GL symmetry is in contrast 
with the situation in the bi-Yang–Baxter σ -model [17], where both GL and GR symmetries are 
broken.

3.3. Two-parameter deformed Poisson brackets

Given the expressions (3.6) for the fields K0, K1 in terms of g and Y , we may compute their 
Poisson brackets using (3.4). After a direct but lengthy calculation using the modified classical 
Yang–Baxter equation (2.2) for R, its consequence (2.12) for R2 and the expression (2.15) for A
together with the identities (2.18) and(

1 + R2)[x,
(
1 + R2)y] = 0,

valid for any x, y ∈ g, we find

{K01,K02} = − 1

K
[C12,K02]δσσ ′ − 2k

K
C12∂σ δσσ ′, (3.9a)

{K01,K12} = − 1

K
[C12,K12]δσσ ′ + 1 + k2 + A2

K
C12∂σ δσσ ′, (3.9b)

{K11,K12} = k2 + A2

K
[C12,K02]δσσ ′ + 2k

K
[C12,K12]δσσ ′ − 2k

K
C12∂σ δσσ ′ . (3.9c)

In the su(2) case, this Poisson bracket is exactly the one of the ‘squashed WZW model’ which 
was identified in [13], up to the overall factor of 1/K . The bracket (3.9) was also studied more 
recently in [9] for a general Lie algebra. The notation used there for the current components I0, 
I1, and for the parameters ρ, x and e2 may be identified with the present notation as

K0 = −I0, K1 = −I1, K = 1

2e2

1

1 + ρ2 + x(1 − ρ2)
,

k = 2e2Kρ, A2 = 4e4K2(1 − x2)(1 − ρ2)2
.

In particular, since A must be a real parameter in the action (2.1), we have A2 ≥ 0 and so we see 
that the Poisson brackets (3.9) correspond to −1 ≤ x ≤ 1, which is known to correspond to the 
complex branch [2].

Let us consider the k = 0 limit of these Poisson brackets. If we choose the normalisation of 
the action to be K = 1 + η2 then we find

{K01,K02} = − 1

1 + η2
[C12,K02]δσσ ′, (3.10a)

{K01,K12} = − 1

1 + η2
[C12,K12]δσσ ′ + C12∂σ δσσ ′, (3.10b)

{K11,K12} = η2

2
[C12,K02]δσσ ′ . (3.10c)
1 + η
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This agrees with the one-parameter deformation of the Poisson brackets of the principal chiral 
model (see for instance [3]).

3.4. Twist function

The Poisson brackets (3.9) can be written in terms of the Lax matrix (2.20) as{
L1(z),L2

(
z′)} = [

r12,L1(z) +L2
(
z′)]δσ,σ ′ − [

s12,L1(z) −L2
(
z′)]δσ,σ ′ − 2s12δ

′
σσ ′,

(3.11)

where the r/s-matrices read

r12
(
z, z′) = ϕη,k(z)

−1 + ϕη,k(z
′)−1

z − z′ C12, s12
(
z, z′) = ϕη,k(z)

−1 − ϕη,k(z
′)−1

z − z′ C12,

and the deformed twist function ϕη,k(z) is given by

ϕη,k(z) = K(1 − z2)

A2 + (z − k)2
. (3.12)

Here A is defined as in (2.15). As usual, the form (3.11) for the Poisson bracket of the Lax matrix 
implies the existence of an infinite number of Poisson commuting quantities [14,15]. Finally, let 
us note that, just as in the case of the 1-parameter deformed Poisson brackets [1], one can also 
recast the Poisson bracket (3.9) in the form of two Poisson commuting complex Kac–Moody 
algebras. In general, Kac–Moody currents can be constructed by taking the Lax matrix at the 
simple poles of the twist function [18]. In the present case, if we define the currents

J± = L(k ± iA) = 1

1 − (k ± iA)2

(
K1 + (k ± iA)K0

)
,

then J†
− = J+ and these satisfy the following Poisson brackets

γ±{J±1,J±2} = −[C12,J±2]δσσ ′ + C12δ
′
σσ ′,

{J+1,J−2} = 0,

where γ± = ± K
2iA

(1 − (k ± iA)2).

4. Conclusion

In this note we presented a two-parameter deformation of the principal chiral model.
Let us emphasise that our proof of the integrability of the model defined by the action (2.1)

makes use of the identity (2.5) for the R-matrix. Although the latter is certainly satisfied by the 
standard R-matrix, it doesn’t hold in general. The more general case deserves further study.

The deformed model furnishes a higher rank generalisation of the ‘squashed WZNW-model’ 
introduced in [12,13]. The action of the latter is given simply by adding a Wess–Zumino term to 
the squashed 3-sphere σ -model action. A peculiarity of the su(2) case, however, is the absence 
of a B-field in the Yang–Baxter σ -model. In the higher rank cases, where a B-field is present, 
we see that the action (2.1) is not obtained from the Yang–Baxter σ -model action by the mere 
addition of a Wess–Zumino term. Indeed, the relative weight of the metric and B-field terms in 
the Yang–Baxter σ -model action also has to be suitably deformed.
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As already emphasised, the model provides a realisation of the two-parameter family of de-
formed Poisson brackets [11] in the complex branch. It would be very interesting to identify the 
integrable σ -model realising the deformed Poisson bracket in the real branch. Although the latter 
is not known, it was recently shown in [9] that this hypothetical model admits a classical Yangian 
symmetry YC(g). It would be interesting to identify the full symmetry algebra of the model in 
the complex branch as well, using the methods developed in [6,7,3,12,19].
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