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1 Introduction

The old conformal bootstrap [1–7] has seen a remarkable revival in recent years. The

seminal work [8] proposed an efficient numerical procedure for extracting information about

the space of all conformal field theories, and has been followed by many other works in a

variety of contexts [8–23]. Similarly, the studies [24–27] have shown that it is even possible

to analytically derive completely generic constraints on the spectrum of CFTs. Numerical

works have been possible due to increased computer power in the last decades, and rely

crucially on an increased understanding of conformal blocks — see [15, 28–35].

An important test case for the conformal bootstrap has been the critical 3d Ising

model [19, 35], which has been well studied from a variety of theoretical and numerical

approaches [36]. In [20] this study was taken a step further, by considering the critical

Ising model in fractional spacetime dimension d, namely for 2 < d < 4. Remarkably, the

results obtained were consistent with the existence of a CFT living at a corner or kink in

the space of unitary theories, whose spectrum very precisely matches that of the Wilson-

Fisher fixed point [37–41]. In this work we explore the conformal bootstrap in the range

1 < d < 2, extending and completing the work carried out in [20].

Although our approach is essentially that of [20], our results are very different. Our

bounds not only unequivocally rule out essentially all theoretical predictions for the critical

Ising model in these dimensions, they also exclude the critical points found on Monte Carlo

lattice simulations. To be clear, by this we mean that all these models and predictions

cannot possibly describe unitary, conformal field theories. This is not really a big issue

for the Monte Carlo simulations, since one does not necessarily expect the fixed points

to have conformal symmetry; but it is quite striking that agreement with theory fails so

catastrophically given the beautiful agreement found for d > 2. We will argue that this
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is evidence for a qualitative difference in the nature of the Ising model universality class

below d = 2, and will back this up with a detailed analysis of the spectra of solutions to

crossing symmetry in the neighbourhood of the hypothetical Ising model for d . 2.

There are multiple reasons why the bootstrap in 1 < d < 2 is interesting. Firstly,

Borel resummation methods [40] employed to obtain accurate critical exponents for 2 <

d < 4 become increasingly unreliable for d < 2. Several alternative techniques have been

proposed [40, 42–46] but there is no overall consensus, with large variations in predictions.

In contrast, the bootstrap approach has several advantages: although results are numerical

in nature, convergence is fast [21]; furthermore, the bootstrap equations are manifestly

analytic in d — it is as difficult to work in integer as fractional dimensions — providing

a definition of the theory for any dimension; finally, the results are non-perturbative in

nature and do not depend on any approximation scheme.

Another reason to consider fractional dimensions is in the context of models on fractal

lattices — for example, one may wish to understand whether the Ising model on such a

lattice becomes related to a fractional d field theory in the continuum limit. Initially this

seems unlikely, as generic fractal spaces are expected to break translation invariance even

in the continuum limit. Nevertheless, such systems do show critical behaviour at finite

temperature, and so there have been multiple attempts to compare the Wilson-Fisher

critical exponents with those of fractals, with mixed results [47]. Furthermore, it has been

suggested that certain fractals [48–50] (those with small lacunarity) do recover translational

invariance in the continuum.

A final reason to consider 1 < d < 2 is to understand the limit d → 1. From a

theoretical standpoint, this is an interesting limit because the number of independent

conformal cross-ratios of four point functions jumps discontinuously from two to one when

d = 1. Furthermore, for d = 1 there are only spin-0 conformal primaries whereas for

any d > 1 there is an infinite set of spin-L representations. We show that in this limit

the crossing equations decompose into two sectors, only one of which is present at exactly

d = 1. This implies that the bootstrap results can be discontinuous in the d→ 1 limit, and

remarkably this is precisely what we find. From a practical standpoint, we shall be able to

compare our results with those of the d = 1 + ε expansion [45, 46] — these are models of

interfaces between two phases which can show critical behaviour and have been argued to

describe the Ising model. In any case, they lead to concrete analytic predictions for critical

exponents which we are able to compare with our numerical results.

This paper is organized as follows. After a brief review of the conformal bootstrap

program, in section 3 we present our bounds and then compare them with theoretical

predictions for the Ising critical exponents. In section 4 we give a short review of fractal

lattice models and compare our bounds with various results in the literature. We then

carefully study the d → 1 limit in section 5. We show that in this limit there can be a

discontinuity in the bounds, a discontinuity which we find numerically. This discontinuity

rules out the predictions of the ε = d−1 expansion, and indeed of any model which predicts

that in this limit one should have (∆σ,∆ε) → (0, 1), or equivalently (η, ν) → (1,∞). We

finish with a discussion.
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2 Review

In this section we briefly review the numerical bootstrap program and how it is used to

constrain the space of unitary conformal field theories. We will not be too detailed, and

refer to reader to e.g. [35] for more details. We begin with the four-point function of a

scalar field σ,

〈σ(x1)σ(x2)σ(x3)σ(x4)〉 =
g(u, v)

x2∆σ
12 x2∆σ

34

. (2.1)

Conformal symmetry forces this particular kinematic dependence. In particular, the func-

tion g(u, v) can only depend only on the conformally invariant cross-ratios

u =
x2

12x
2
34

x2
13 x

2
24

, v =
x2

14x
2
23

x2
13 x

2
24

. (2.2)

In a conformal field theory there is also an (exponentially fast [51]) convergent operator

product expansion (OPE), which gives us dynamic constraints on the correlator. For

instance, equality of the OPE expansions in the (12) and (14) channels forces

g(u, v) =
∑
O
λ2
σσOG∆,L(u, v) =

(u
v

)∆σ ∑
O
λ2
σσOG∆,L(v, u). (2.3)

The conformal block G∆,L(u, v) represents the contribution to the four point function

from a primary operator O with conformal dimension ∆ and traceless-symmetric spin L,

together with all its descendants. Such operators can appear in the σ × σ OPE with

coefficient λσσO. This equality can be rewritten in an obvious way as a linear equation

with positive coefficients, ∑
O
λ2
σσOF

∆σ
∆,L(u, v) = 0 (2.4)

where

F∆σ
∆,L(u, v) = v∆σG(u, v)− u∆σG(v, u). (2.5)

The idea now is to think of eq. (2.4) as an abstract equation, involving a continuously

infinite set of constraints on the continuously infinite set of parameters λ∆,L, which any

CFT must satisfy. In a typical CFT the actual operators appearing in a given four point

function are countably infinite, but in analysing this equation we will not assume it.

Unitarity guarantees positivity of the squares of the OPE coefficients, which in turn

guarantees the non-triviality of the equation above — for even if the ensemble of functions

F∆σ
∆,L(u, v) for all ∆, L would form a “basis”, it might not be possible to find a solution for

this equation with positive coefficients. Of course, one trivial solution would be to set all

coefficients to zero — but this is impossible due to the guaranteed presence of the identity

operator which appears with unit coefficient.

To proceed we discretise the set of constraints, typically by Taylor-expanding the

functions F up to some finite order. We also impose a cut-off on the allowed spins and
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conformal dimensions. In practice one checks that the results are independent of the

choice of cut-offs if we choose them sufficiently high. The larger the set of constraints,

the higher the cut-off one must take. With these modifications we can now solve the

problem — linear equations with linear inequalities are examples of linear programs for

which efficient algorithms have been developed since the 1950’s. In this work we use

a variation of Dantzig’s simplex method [52] suitable for a continuous set of ∆. The

numerical package used has been developed in the Julia language,1 but the methods are

otherwise essentially those of [35], and we will follow their conventions for the truncation

of the problem.2

Once we have a method for solving the equations, we can derive various constraints

on the spectrum of operators appearing in the sum rule. Here we will be concerned with

deriving the maximal possible gap in the scalar sector — in other words, the maximal

allowed dimension for the first scalar operator appearing in the σ×σ OPE, which we shall

call ε:

σ × σ ' 1 + ε+ . . . (2.6)

In order to achieve this, we remove scalar operators from the sum rule up to some value

∆ε until we can no longer find a solution. The precise value depends on the number of

constraints, but it is guaranteed to decrease as this number is increased. In this way, for

any truncation of the equations we derive a perfectly valid upper bound on the dimension of

the leading scalar. This bound also constrains the allowed ranges of the critical exponents

η and ν of the Ising model through the relations

∆ε = d− 1

ν
, ∆σ =

1

2
(d− 2 + η). (2.7)

We can repeat this procedure for several values of ∆σ, thereby obtaining a bound curve.

This is what we shall do in the following sections, varying the spacetime dimension as we

go along. This is sufficient to rule out large regions in the parameter space of conformal

field theories. However, we can go further. If we place ourselves precisely at the boundary

between allowed and disallowed theories, we can extract a unique solution to crossing

symmetry [21] — that is, the low-lying spectrum of a hypothetical CFT living at this

boundary. As we move along the boundary, these spectra can behave in interesting ways,

displaying sharp rearrangements [35] which can signal interesting theories — in particular,

this is the case for the Wilson-Fisher fixed point in 2 < d < 4. In this note we will determine

spectra and use them as a guide to a better understanding of the nature of these theories.

3 Bounds for 1 < d < 2

Our numerical results are presented in figure 1. It shows upper bounds on the conformal

dimension of the leading scalar primary ε as a function of ∆σ for various values of spacetime

dimension d. These bounds provide universal constraints on the space of unitary CFTs

1The package, JuliBootS will be officially released soon but is already available on GitHub:

http://github.com/mfpaulos/JuliBoots.
2In particular, truncations are labelled by a number nmax which determines the size of the truncation.
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Figure 1. Bounds for 1 < d < 2. In the terminology of [19] these were done with nmax = 15. They

correspond to a truncation of the constraints to 136 components.

in 1 < d < 2. As a consistency check the generalized free scalar, which is described by

the curve ∆ε = 2∆σ is well below our bounds in any d; we have also checked that for

d = 2 we reproduce existing results in the literature [11]. Notice however that the bound

for d = 1.00001 does not match the result in [23] for d = 1. Indeed for d = 1 there is

a generalized free fermion (GFF) solution available which has ∆ε = 1 + 2∆σ, shown as a

dashed line in our figure. We will have more to say about this in section 5.

For now we would like to see how these bounds relate to various predictions for the

Ising model critical exponents in fractional dimension. Here we shall mention only four,

which were conveniently compiled in [42]:

• LGZJ – Le Guillou and Zinn-Justin [40] used Borel resummation methods on 4-loop

(ε5) epsilon expansion [53] results to obtain accurate critical exponents for ε = 1 and

ε = 2. In later work [54] the critical exponents were obtained for various values of

dimension between one and four.

• H – One can also compute the critical exponents in φ4 theory directly in the desired

dimension, as proposed in [55] and applied with success to d = 3 in [41, 56]. Of more

interest to us are similar computations performed by Holovatch [42] for various values

1 < d < 3 to three loops.

• N – A different approach is an interpolation method for numerical transfer matrix

data of Novotny [44]. The idea there is to rewrite the Ising model lattice partition

function in terms of a suitable transfer matrix, in such a way that computations can

be generalized for arbitrary dimensionality. Critical exponents are then determined

by finite-size scaling.

– 5 –
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some of the predictions lie outside the unitarity bounds and we do not show them.

• BH – Bonnier and Hontebeyrie [43] considered the Ising model in a static magnetic

field with a variational parameter defined as h = H + λ(1− t), with all final results

evaluated at t = 1. They then approximated the functional form of the critical

exponents by Padé approximants and tuned λ to find coherent values.

Figure 2 compares our bounds with these approaches for several values of d. Remarkably,

our bounds essentially completely rule out these four different sets of predictions. These

methods are usually tuned to agree with the exact 2d Ising results. Accordingly they are

more or less consistent with each other for larger d, and rapidly develop large error bars

and relative disagreements as d tends to one. But even if we focus on the first plot with,

where we are still relatively close to d = 2, we see that our bounds already exclude quite

clearly all four different approaches.

The Borel-resummed ε-expansion results are particularly interesting. In previous work

it was found that the predictions of this method are beautifully consistent with those of

the bootstrap [20]. In that work, bounds were computed for various dimensions 2 < d < 4.

– 6 –
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Figure 3. Spectra of solutions to crossing symmetry along the edge of the allowed region. Shown

are the low-lying spin-0 and spin-2 operators. Plots were made using truncations to 78 components

(nmax = 11).

All such bounds had sharp kinks located very precisely at the location predicted by the

ε-expansion computations. Here however the situation is very different: the predictions are

simply not consistent with the bootstrap results, even for d as large as 1.875. This suggests

that the nature of the Wilson-Fisher fixed point is different for d < 2. In particular,

whatever it is, it seems that it cannot be a unitary conformal field theory.

If this is really so, we would like to see some evidence for it directly from a bootstrap

perspective. For d > 2, the Wilson-Fisher fixed point lies on a kink. It is interesting then

to consider what happens to this kink for d < 2. However, we immediately run into a

puzzle: a closer look at our curves seems to show that there is not one but two inflection

points! They can be seen especially clearly in the bounds for dimensions 1.875 and 1.65,

and seem to fade away below d = 1.5. To clear up the situation we must examine the

spectra of the solutions to crossing symmetry along the boundary of the bounds. Kinks

in the bounds have previously [35] been shown to be related to rearrangements in the

spectrum of solutions as we vary ∆σ. Therefore, instead of looking for features in the

bound plots, we shall instead consider the spectra and look for such rearrangements there.

We begin by considering what happens as d is lowered below two. In figure 3 we show

the spectra close to ∆σ = 1/8 (which is the correct value for the critical Ising model in d =

2) for d = 1.98 and d = 2. For d = 2 we see that there are sharp operator rearrangements

taking place in both the spin 0 and spin 2 sectors. These two rearrangements lie very close

to each other, and indeed we have checked that as we increase the level of the truncation

(i.e. as our bounds become stronger) they approach each other. For d = 1.98 we see that

these rearrangements are still present, but a significantly larger distance apart. Going down

in dimension, we display in figure 4 wider-range spectra for d = 1.8 and d = 1.5. In the first

the two features are again clearly seen, but now a very wide distance apart. By the time

we get down to d = 1.5 one them seems to have disappeared, or at the very least moved

out towards ∆σ = 0. The tentative conclusion seems to be that the unique kink observed

in 2 ≤ d < 4 actually splits into two distinct features which grow apart as d is lowered:

one of the kinks moves towards ∆σ = 0 while the other one eventually becomes the feature

– 7 –
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Figure 4. Spectrum along the bound curves for dimensions 1.8 and 1.5. Two spectra rearrange-

ments can be clearly seen in the first case. For d = 1.5 the first one seems to have disappeared or

moved out towards the origin.

seen in the bound plots for d ' 1. From the perspective of the bootstrap program, this

qualitative difference in the bounds (and the set of solutions of crossing that follow from

them) provides strong evidence that the nature of the Wilson-Fisher fixed point drastically

changes below d = 2.

4 The Ising model on fractal surfaces

The results discussed so far have a somewhat formal character since it is not clear to what

(if any) systems they could be applied. However there is a very natural guess — since we

are considering theories in fractional spacetime dimension, we may attemp to model this

by considering a system living on a fractal lattice, whose dimension in the continuum limit

become non-integer. This was precisely the approach first attempted by Mandelbrot and

collaborators [50], who considered the Ising model on various kinds of fractal lattices. An

incomplete list of later work includes [57–62]. These works show that for large classes of

fractals it is possible to find critical points and associated critical exponents.

There are several issues which arise when we attempt to identify a particular theoretical

result in fractional dimension with a concrete setup of the Ising model on a fractal lattice.

Firstly, it is generally assumed that close to criticality we obtain not only scaling invariance,

but also full translational symmetry. For fractal structures this does not happen, since there

are voids in the lattice which persist at all length scales. Furthermore, fractals are defined

by several parameters other than dimensionality — e.g. ramification order and lacunarity3

— features which again are present at all length scales, surviving the continuum limit.

Critical exponents (or even the existence of a critical point) depend on these — a phase

transition can occur only for infinite ramification order [50], and it has been claimed that

translation invariance can be recovered in the limit of zero lacunarity [63]. Unfortunately,

3The ramification order is the number of bonds that must be cut to isolate an arbitrarily large sub-

lattice, while lacunarity is related to the mean square deviation of the mass of a fractal contained in a shell

of fixed radius.
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fractal lattices with low lacunarity are more difficult to model numerically as they have

more sites.

Given this restriction to fractals with low lacunarity and infinite ramification order,

all of the in-depth numerical studies in the literature focus on Sierpinski carpets. The

Sierpinski carpet SC(b, c) is constructed by dividing a square into b2 subsquares and then

removing c2 of them; this process is then iterated infinitely many times on the remaining

squares to achieve a mathematical fractal. In practice, Monte Carlo simulations are run on

fractals where the segmentation and deletion procedure has been iterated a finite number k

times. The fractal SC(b, c) is understood to represent a surface with fractional dimension,

known as the Hausdorff dimension dH = log(b2 − c2)/ log(b).

When modelling the Ising model on a fractal lattice, there are several choices to be

made which can significantly affect the final results. Firstly, in the construction of the

fractal itself there are numerous schemes for choosing which c2 subsquares to delete. We

will mention only two: in SCa fractals, the subsquares are deleted from the center of

the larger square, while in SCb the squares are deleted in an alternating fashion starting

from the uppermost left corner. SCa(x, y) and SCb(x, y) have identical dH but different

lacunarities. Secondly, the numerical simulation itself depends on several parameters: the

number of iterations k to include, the boundary conditions satisfied by the lattice (i.e.

periodic vs. free), whether the spins are placed in the center of the squares or at vertices,

and the method of calculation chosen (Monte Carlo, real-space renormalization, high-T

expansions, etc.). For a thorough review of these intricacies, see [47].

For the purposes of this (admittedly limited) review of this topic, these different choices

will play no major role. We have chosen to present a selection of fractals from the rela-

tively recent work of Bab, Fabricius, and Albano [58]. They studied a range of Sierpinski

carpets using Monte Carlo simulations with the Metropolis algorithm, periodic boundary

conditions, and spins placed at lattice vertices. More information about their approach

can be found in [57, 64]. Other results are available [47, 62] but differ from the results

of [58] by comparitively minor amounts and do not affect the qualitative conclusions of the

comparison with our bounds.

One important question raised by this and other works is that of the “true” dimen-

sionality of the system. Specifically, does the Hausdorff dimension satisfy the known hy-

perscaling relationship for small dimensions (d = 2β/ν + 2 − η)? For certain fractals the

critical exponents lead to an ‘effective’ dimmension deff , given by the hyperscaling relation-

ship, that roughly matches dH . However, in general the two dimensions are quite different,

suggesting that dH is perhaps not the relevant dimension for these critical systems (though

a rigorous understanding of this phenomenon is lacking).

We make a comparison between our bounds and the results of [58] in figure 5. To

convert their data into conformal dimensions we have used eq. (2.7) together with the

hyperscaling relation, assuming that d = deff . Using dH instead of deff does not move any of

the points inside our bounds, and in fact it can lead to negative values for ∆σ. In doing the

comparison we have shown a single one of our bounds, namely that for dimension d = 1.65.

We are allowed to do this because the bounds become more constraining for higher d and

deff > 1.65 for all theories we considered. We have included only a representative selection

– 9 –
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Figure 5. Comparison of fractal Ising models on Sierpinski carpets with the d = 1.65 bound.

of fractal Ising models, but we have checked that other results in literature [47, 62] fall

within this general area and none satisfy our bounds.

Unfortunately our results also shed little light on the question of whether decreasing

lacunarity corresponds to a theory closer to the fractional d field theory in the continuum

limit. For example, of the fractals considered in figure 5, SCa(3, 1) has the highest lacunar-

ity while SCb(9, 5) has the lowest, but they both appear roughly the same distance from

the bound. It is difficult to draw any firm conclusions from this analysis due to the low

number of numerical results in the literature.

5 The limit d → 1

5.1 Bootstrap equations

Conformal symmetry of correlation functions effectively reduces their dependence to a

handful of cross-ratios, which are invariants under the action of the conformal group. The

number of independent cross-ratios depends on the number of fields and is naively given

by n(n − 3)/2. However, this is not strictly true since cross-ratios are built out of finite-

dimensional coordinate vectors, and this can lead to non-linear identities between them.

In particular, for four-point functions the two cross-ratios u and v are not independent in

d = 1, since

1− (x1 − x2)(x3 − x4)

(x1 − x3)(x2 − x4)
− (x1 − x4)(x2 − x3)

(x1 − x3)(x2 − x4)
= 0⇒ v = (1−

√
u)2 . (5.1)

Defining u = zz̄, v = (1− z)(1− z̄) (z, z̄ are complex conjugates in the Euclidean domain),

this equality corresponds to restricting oneself to z = z̄. In particular this implies that

– 10 –
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correlation functions and conformal blocks in one dimension can only depend on a single

parameter. On the other hand, we do know that there exist solutions to crossing symmetry

in d arbitrarily close to one, which will necessarily depend on two cross-ratios — generalized

free fields provide an example — so it seems like there must be some discontinuity involved

in the d→ 1 limit.

To examine this question, we consider conformal blocks as functions of spacetime

dimension. Conformal blocks are eigenfunctions of the Casimir operators of the conformal

group [28]. In terms of the z, z̄ variables the action of the quadratic Casimir takes the

form [65]:

C(ε)
2 = Dz +Dz̄ + 2ε

zz̄

z − z̄
[(1− z)∂z − (1− z̄)∂z̄] , (5.2)

Dz ≡ (1− z)z2 ∂2
z − (a+ b+ 1) z2∂z − abz, ε =

d− 2

2
, (5.3)

with a = ∆1 −∆2, b = ∆3 −∆4 are related to the dimensions of the operators in a four

point function. The conformal blocks then satisfy the equation:

(Cε2 − c2)G∆,L(z, z̄) = 0, c2 =
1

2
[L(L+ 2ε) + ∆(∆− 2− 2ε)] . (5.4)

Since the d→ 1 limit is related to z → z̄, let us expand the blocks around z = z̄. Defining

x, y = (z ± z̄)/2, we have

G∆,L(z, z̄) = g∆,L(x) + y2h∆,L(x) +O(y4) . (5.5)

It turns out that the function g∆,L(x) satisfies a differential equation which can be obtained

by considering the action of the quartic Casimir together with the quadratic one [65]. The

exact form of this equation is not important here — it is sufficient to mention that for

L = 0 the block satisfies a third-order differential equation for general d, whereas for L > 0

it satisfies a fourth-order equation. On the other hand, the Casimir equation above implies:

D̃εg∆,L(x) = −(1 + 2ε) (1− x)x2 h∆,L(x), (5.6)

D̃ε ≡
1

2
(1− x)x2 ∂2

x − (1 + a+ b+ ε)x2 ∂x − 2 ab x− c2 . (5.7)

We are interested in the limit d → 1 ⇒ ε → −1
2 . In this limit there are two distinct pos-

sibilities. Suppose first that h∆,L is finite in this limit. Then it follows that the conformal

block at z = z̄ satisfies a second order differential equation, namely D̃− 1
2
g∆,L = 0. Now,

we already know that this function generically satisfies a third or fourth order differential

equation, so this can only be true if such an equation factorizes for ε = −1
2 . We find this

to be precisely so only for the cases L = 0 and L = 1. We have exact expressions for these

blocks when z = z̄, derived in [19]:

G∆,0(z) =

(
z2

1− z

)∆/2

3F2

(
∆
2 ,

∆
2 ,

∆
2 − ε;

∆+1
2 ,∆− ε; z2

4(z − 1)

)
, (5.8)

G∆,1(z) =
2− z

2z

(
z2

1− z

)∆+1
2

3F2

(
∆+1

2 , ∆+1
2 , ∆+1

2 − ε; ∆
2 + 1,∆− ε; z2

4(z − 1)

)
. (5.9)
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Taking d→ 1, or equivalently ε→ −1/2 we get:

lim
d→1

G∆,0(z) = lim
d→1

G∆,1(z) = z∆
2F1(∆,∆, 2∆; z) (5.10)

so they are the same. A cross-check is that the values of the Casimir for L = 0 and L = 1

are the same when d = 1. Notice however that for d infinitesimally close to one these blocks

have a smooth analytic continuation into the region z 6= z̄ where they are distinct.

For higher spins instead h∆,L(x) diverges as d → 1. Considering higher orders in

the y expansion, no new sources of divergences are introduced, so that all other terms

are either finite or divergent as 1/(d− 1). This divergence suggests we should change the

normalization of the L ≥ 2 conformal blocks by the same factor - or equivalently, absorbing

it into the OPE coefficients. When we do so, we see that the purely z = z̄ piece of the block

decouples as d → 1 — the blocks become purely transverse! This means that accordingly

the bootstrap equations develop a decoupled sector consisting of the L = 0, 1 blocks at

z = z̄. Altogether, these results imply that for a generic four point function the crossing

equations take the schematic form in the limit d→ 1:

∑
L=0

λ2
∆,0

(
F
‖
∆,0

F⊥∆,0

)
+
∑
L=1

λ2
∆,1

(
F
‖
∆,0

F⊥∆,1

)
+
∑
L>0

λ̂2
∆,L

(
0

(d− 1)F⊥∆,L

)
=

(
0

0

)
. (5.11)

In the crossing symmetry relations for four identical scalars we must of course have λ2
∆,L = 0

for all odd spins L. The equations above shows that the crossing equations split into two

parts. Firstly, the parallel equations — denoted with ‖— involve only scalars/spin-1 blocks

with z = z̄ and so form a decoupled sector. This decoupled sector is of course simply the

purely d = 1 bootstrap. Hence solutions to crossing symmetry for d arbitrarily close to one

have to at least satisfy the same constraints as those in d = 1. Once these constraints are

solved, the spin-0/spin-1 spectrum is completely fixed. Next step is to satisfy the remaining

equations, which can be thought of as determining whether an analytic continuation into

transverse space — denoted by ⊥ — of this d = 1 solution can exist. Indeed, since for

d > 1 we switch on the transverse parts of the spin-0 and spin-1 blocks, we will also need

to turn on higher spins to cancel those. If we can solve these extra equations, then the

analytic continuation exists and will be a smooth function of d. If it doesn’t, then we

are necessarily faced with a discontinuity in the bounds at d = 1. In other words, the

discontinuity can arise because the transverse parts of the L = 0, 1 blocks and also higher

spins are by definition only turned on for d strictly greater than one — this adds a whole

new set of crossing constraints which may not have a solution.

5.2 Results

To determine if there is a discontinuity, we examine the d→ 1 limit numerically. Figure 6

shows bounds for dimensions successively closer to d = 1. Also shown is the strict d = 1

bound where we keep only the constraints along z = z̄. These bounds are computed with

a small number of derivatives — 10 components. This is because our bounds can only

get stronger with more constraints, so it is sufficient to find a discontinuity in this simple

case where we can be sure that our numerics are under control. In the plot, the difference

– 12 –
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Figure 6. Bounds in d = 1 and d = 1 + ε. The discontinuity is due to the extra constraints from

transverse derivatives which are present for d > 1. These bounds are evaluated with the constraints

truncated at only 10 components (nmax = 3), but the discontinuity moves further from d = 1 as

the number of components increases.

between the d = 1.0001 and d = 1.000001 bounds are less than .0001%, indicating that

they have stopped progressing towards the d = 1 bound. Also, the d = 1 limit seems to

exhibit a kink at the point where the bound transitions to d = 1 curve. As explained in

the previous section, in this regime the analytic continuation of the d = 1 solution into the

transverse space exists.

Now that we are confident that there is indeed a discontinuity, we can do a more

detailed numerical analysis, and read off the spectrum along the bound.The low lying L = 0

and L = 2 operators are shown in figure 7. Adding derivatives has moved the kink in the

bound all the way to ∆σ ' 0.07. Here we are actually quite confident that the feature

corresponds to a true non-analyticity in the limit where we include infinite constraints,

since we expect the d = 1 bound to precisely saturate the straight line ∆ε = 1 + 2∆σ. This

corresponds to a generalized free fermion [23], whose four point function is given by

〈ψ(x1)ψ(x2)ψ(x4)ψ(x4)〉 =
sgn(x1 − x2) sgn(x3 − x4)

x2∆σ
12 x2∆σ

34

[
1 +

(u
v

)∆σ

− u∆σ

]
, (5.12)

where d = 1 forces v = (1 −
√
u)2. This has an expansion in terms of d = 1 conformal

blocks with dimensions ∆ = 1 + 2∆σ + 2n for n positive integer, something we can see in

figure 7 for ∆σ above the kink . This result goes some way in helping us understand the

origin of the discontinuity. Indeed, given the correlation function above, the natural guess

for its d > 1 extension is to simply drop the d = 1 constraint relating the v to the u cross-

ratio. But this cannot work, since the expansion of such a four point function will include

only odd-spin conformal blocks, whereas we are assuming that the σ field is bosonic, and

– 13 –
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Figure 7. The spin-0 and spin-2 spectrum (blue and red respectively) for d = 1.0001. Analysis

done with 78 components (nmax = 11). The “plateaus” which are visible start when the bound

equals that for d = 1.

hence the correlation function decomposition should only include even spins. How is it

then that nevertheless we obtain (5.12) in d = 1? The answer comes from the analysis of

the previous section, where we showed that the z = z̄ parts of the scalar and spin-1 blocks

actually match in the d → 1 limit. Hence, we may interpret the discontinuity as coming

from the fact that d = 1 is special in allowing us access to fermionic correlation functions

using scalar conformal blocks. We expect then that repeating the bootstrap computations

for d > 1 allowing odd instead of even spin conformal blocks we should see a continuous

limit — a result which we have confirmed.

It is interesting to compare these results with models in the literature. The planar

interface model of Wallace and Zia discusses the dynamics of a codimension one defect

separating two different phases of a d-dimensional thermodynamical system [45]. The

model is a simple DBI action for a (d− 1)-dimensional brane which is expanded about an

infinitely extended surface. One finds there is a weakly coupled UV fixed point for small

ε = d− 1, with critical exponents known up to four loops [66]. It will be sufficient for our

purposes to quote the leading result

ν =
1

ε
+O(1) . (5.13)

Recall that ν is associated with the divergence of the correlation length with as T → Tc.

It determines the dimension of ε in the Ising model, via

∆ε = d− 1

ν
' 1 +O(ε2) . (5.14)
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Similarly, the droplet model [46] considers the configuration energy of surface tension of

spherical droplets. Near d = 1 the droplet distribution function can be computed exactly,

and from this the magnetization. At the fixed point we can read off the η critical exponent:

d+ η − 2 =
8

π
(ε)−1−ε/2e−1−2C−2/ε (5.15)

with C ' 0.577 the Euler constant. The conformal dimension of the field σ is then

∆σ =
1

2
(d− 2 + η) =

4

π
(ε)−1−ε/2e−1−2C−2/ε . (5.16)

It is important to note, that a priori there is no fundamental reason for claiming that

these critical exponents are those of the Ising model — indeed there are arguments that

these models do not fully capture the interface free energy of the Ising model [67] — so

this remains a conjecture. Nevertheless we can take this model as face value and try to

find it in our plots. As should be clear however, the discontinuity in our bounds implies

that there is no hope of matching the theoretical analysis of the droplet model, since they

predict ∆σ → 0 and ∆ε → 1 when d → 1. Clearly all such models are then ruled out as

unitary conformally invariant fixed points.

6 Discussion

We have derived bounds on operator dimensions for conformal field theories in 1 < d < 2.

These results turn out to be surprisingly strong: they completely and clearly rule out a

large set of models and predictions for the critical exponents of the Ising model universality

class. In particular, the Borel-resummed ε-expansion, which compares very favourably with

the results of the bootstrap for 2 < d < 4, is already ruled out even at d = 1.875. Overall,

there are two sets of approaches for studying Ising-like systems in 1 < d < 2: theoretical

analyses, such as ε-expansion, transfer matrix methods, and the droplet model; and Monte-

Carlo simulations of the Ising model on fractal spaces. In every case we have found these

models cannot describe unitary CFTs.

Recently the authors of [68] have noticed that free field theories, and in all likelihood

even the Wilson-Fisher fixed point, is non-unitary for any fractional dimension. Could

this be an (admitedly somewhat trivial) explanation for our results? It is hard to say.

After all the bootstrap does work for fractional d > 2. It would be surprising if it would

stop being so for d . 2. The reason it does work for d > 2 is that such non-unitarity

shows up only at relatively high values of the conformal dimension of operators, and so

this has a relatively small effect on say the dimension of the first scalar in the σ× σ OPE.

However such operators are expected to appear at lower dimensions for d < 2. In any

case, we might naively think that continuity would imply that our results should match

at least the Borel-resummed ε-expansion for d close to two. The fact that they do not

suggests something fundamentally new is happening. We have argued that the bootstrap

itself gives qualitative evidence for this, through the fact that the single kink present above

d = 2 surprisingly splits into two below it. In the context of λφ4 theory, we also expect

that indeed d < 2 is different, since the UV of the renormalization group flow down to
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the hypothetical Wilson-Fisher fixed point is a non-unitary free theory. Accordingly φ4

acts as a perturbation with negative conformal dimension, which is unusual to say the

least. Perhaps this might ultimately be the explanation for our results, but at this point

it remains speculative.

Our bounds do not provide much clarity to the complex collection of results surround-

ing the Ising model on fractal lattices. Of course there is no reason a priori to expect any

of these (non-translationally invariant) theories to lie within our bounds, although they

do exhibit critical behaviour. It would be interesting to show that fractal Ising models

come closer to our bounds as lacunarity decreases, however there are currently not enough

numerical results for a study of this type to be pursued. And, given that the Wilson-Fisher

fixed point appears to no longer be a unitary CFT in this regime it is entirely possible

that a decrease in lacunarity will have no impact on the connection between fractal Ising

models and our bounds. Another avenue for future research would be to consider fractal

lattices generated by a random deletion of subsquares, which restores an average transla-

tional invariance in the large k limit. Perhaps this, or some other topology, might produce

a fractal Ising model corresponding to a unitary CFT in noninteger dimensions, but at this

point it does not look too promising.

Our results for d→ 1 are rather interesting. On very general grounds we have excluded

models which give (∆σ,∆ε)→ (0, 1) as d→ 1. This is precisely the behaviour expected for

the Ising model in this limit — e.g. the spin field correlation function becomes a constant

close to the T = 0 “critical point” in d = 1. Hence this is perhaps the strongest evidence for

our claim that the Wilson-Fisher fixed point is very different below d < 2. Let us consider

the nature of the solution to crossing symmetry obtained by setting ourselves at the bound

and for ∆σ sufficiently large such that we are above the kink. Due to the peculiar d → 1

limit, the scalar sector and the higher spin sector decouple, and furthermore the z = z̄

piece of the solution is given solely in terms of the scalar blocks. This piece is reproduced

by the four point function of a generalized free fermion. It would be extremely interesting

to determine what the solution looks like for z 6= z̄. This would require understanding the

conformal blocks in this limit analytically, which unfortunately seems difficult. Regarding

the kink itself, we see that in spite of the very sharp change in the properties of the

spectrum, no operator rearrangements are visible. In particular we see no analog of “null

states” as in previous studies [35]. This suggests that this transition may be kinematical in

nature, and not due to the existence of an interesting conformal field theory at this point.

Overall, we may say the results in this note are a double edged sword: on the one hand,

they exemplify the power of the conformal bootstrap in cutting through large swaths of

conformal theory space and eliminating hypothetical fixed points; but on the other hand

they remind us that there may be interesting critical systems which it cannot capture —

if there is indeed a non-unitary Wilson-Fisher fixed point for d < 2, we will never see it.

This is because the bootstrap approach depends on positivity in a crucial way, and this in

turn follows from unitarity. In this respect, it would be interesting to pursue the approach

promoted by Gliozzi [18, 69] — although it is less developed and understood, at least for

such systems it might be superior, since it does not depend on unitarity.
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