SCOAP3 Repository 3 records found  Search took 0.08 seconds. 
1. Bounded Collection of Feynman Integral Calabi-Yau Geometries / Bourjaily, Jacob L. ; McLeod, Andrew J. ; von Hippel, Matt ; Wilhelm, Matthias
We define the rigidity of a Feynman integral to be the smallest dimension over which it is nonpolylogarithmic. [...]
Published in Physical Review Letters 122 (2019) 10.1103/PhysRevLett.122.031601 arXiv:1810.07689
Fulltext: Download fulltextXML Download fulltextPDF;
2. Traintracks through Calabi-Yau Manifolds: Scattering Amplitudes beyond Elliptic Polylogarithms / Bourjaily, Jacob L. ; He, Yang-Hui ; McLeod, Andrew J. ; von Hippel, Matt ; et al
We describe a family of finite, four-dimensional, L-loop Feynman integrals that involve weight-(L+1) hyperlogarithms integrated over (L1)-dimensional elliptically fibered varieties we conjecture to be Calabi-Yau manifolds. [...]
Published in Physical Review Letters 121 (2018) 10.1103/PhysRevLett.121.071603 arXiv:1805.09326
Fulltext: Download fulltextXML Download fulltextPDF;
3. Elliptic Double-Box Integrals: Massless Scattering Amplitudes beyond Polylogarithms / Bourjaily, Jacob L. ; McLeod, Andrew J. ; Spradlin, Marcus ; von Hippel, Matt ; et al
We derive an analytic representation of the ten-particle, two-loop double-box integral as an elliptic integral over weight-three polylogarithms. [...]
Published in Phys. Rev. Lett. 120 (2018) 10.1103/PhysRevLett.120.121603 arXiv:1712.02785
Fulltext: Download fulltextXML Download fulltextPDF;

See also: similar author names
7 McLeod, Andrew
Interested in being notified about new results for this query?
Subscribe to the RSS feed.