1.

6d SCFTs, 5d dualities and Tao web diagrams
/ Hayashi, Hirotaka ; Kim, SungSoo ; Lee, Kimyeong ; Yagi, Futoshi
We propose 5d descriptions of 6d N = 1 , 0 $$ \mathcal{N}=\left(1,\ 0\right) $$ superconformal field theories arising from Type IIA brane configurations with an O8 − plane. [...]
Published in JHEP 1905 (2019) 203
10.1007/JHEP05(2019)203
arXiv:1509.03300
Fulltext: XML PDF (PDFA);

2.

Rank3 antisymmetric matter on 5brane webs
/ Hayashi, Hirotaka ; Kim, SungSoo ; Lee, Kimyeong ; Yagi, Futoshi
We discuss Type IIB 5brane configurations for 5d N = 1 $$ \mathcal{N}=1 $$ gauge theories with hypermultiplets in the rank3 antisymmetric representation and with various other hypermultiplets, which flow from a UV fixed point at the infinite coupling. [...]
Published in JHEP 1905 (2019) 133
10.1007/JHEP05(2019)133
arXiv:1902.04754
Fulltext: XML PDF (PDFA);

3.

Tropical geometry and five dimensional Higgs branches at infinite coupling
/ Cabrera, Santiago ; Hanany, Amihay ; Yagi, Futoshi
Superconformal five dimensional theories have a rich structure of phases and brane webs play a crucial role in studying their properties. [...]
Published in JHEP 1901 (2019) 068
10.1007/JHEP01(2019)068
arXiv:1810.01379
Fulltext: XML PDF (PDFA);

4.

Dualities and 5brane webs for 5d rank 2 SCFTs
/ Hayashi, Hirotaka ; Kim, SungSoo ; Lee, Kimyeong ; Yagi, Futoshi
We consider Type IIB 5brane configurations for 5d rank 2 superconformal theories which are classified recently by geometry in [1]. [...]
Published in JHEP 1812 (2018) 016
10.1007/JHEP12(2018)016
arXiv:1806.10569
Fulltext: XML PDF (PDFA);

5.

5brane webs for 5d N $$ \mathcal{N} $$ = 1 G 2 gauge theories
/ Hayashi, Hirotaka ; Kim, SungSoo ; Lee, Kimyeong ; Yagi, Futoshi
We propose 5brane webs for 5d N $$ \mathcal{N} $$ = 1 G 2 gauge theories. [...]
Published in JHEP 1803 (2018) 125
10.1007/JHEP03(2018)125
arXiv:1801.03916
Fulltext: XML PDF (PDFA);

6.

Topological vertex formalism with O5plane
/ Kim, SungSoo ; Yagi, Futoshi
We propose a new topological vertex formalism for a type IIB $(p,q)$ 5brane web with an O5plane. [...]
Published in Phys. Rev. D 97 (2018)
10.1103/PhysRevD.97.026011
arXiv:1709.01928
Fulltext: XML PDF;

7.

Discrete theta angle from an O5plane
/ Hayashi, Hirotaka ; Kim, SungSoo ; Lee, Kimyeong ; Yagi, Futoshi
We consider 5d N $$ \mathcal{N} $$ = 1 Sp(1) gauge theory based on a brane configuration with an O5plane. [...]
Published in JHEP 1711 (2017) 041
10.1007/JHEP11(2017)041
arXiv:1707.07181
Fulltext: XML PDF (PDFA);

8.

Spectral curves of N $$ \mathcal{N} $$ = 1 theories of class S k $$ {\mathcal{S}}_k $$
/ Coman, Ioana ; Pomoni, Elli ; Taki, Masato ; Yagi, Futoshi
We study the Coulomb branch of class S k $$ {\mathcal{S}}_k $$ N $$ \mathcal{N} $$ = 1 SCFTs by constructing and analyzing their spectral curves..
Published in JHEP 1706 (2017) 136
10.1007/JHEP06(2017)136
arXiv:1512.06079
Fulltext: XML PDF (PDFA);

9.

Equivalence of several descriptions for 6d SCFT
/ Hayashi, Hirotaka ; Kim, SungSoo ; Lee, Kimyeong ; Yagi, Futoshi
We show that the three different looking BPS partition functions, namely the elliptic genus of the 6d N = 1 , 0 $$ \mathcal{N}=\left(1,\ 0\right) $$ Sp(1) gauge theory with 10 flavors and a tensor multiplet, the Nekrasov partition function of the 5d N = 1 S p 2 $$ \mathcal{N}=1\ \mathrm{S}\mathrm{p}(2) $$ gauge theory with 10 flavors, and the Nekrasov partition function of the 5d N = 1 S U 3 $$ \mathcal{N}=1\ \mathrm{S}\mathrm{U}(3) $$ gauge theory with 10 flavors, are all equal to each other under specific maps among gauge theory parameters. [...]
Published in JHEP 1701 (2017) 093
10.1007/JHEP01(2017)093
arXiv:1607.07786
Fulltext: XML PDF (PDFA);

10.

More on 5d descriptions of 6d SCFTs
/ Hayashi, Hirotaka ; Kim, SungSoo ; Lee, Kimyeong ; Taki, Masato ; et al
We propose new fivedimensional gauge theory descriptions of sixdimensional N $$ \mathcal{N} $$ = (1 , 0) superconformal field theories arising from type IIA brane configurations including an ON 0 plane. [...]
Published in JHEP 1610 (2016) 126
10.1007/JHEP10(2016)126
arXiv:1512.08239
Fulltext: XML PDF (PDFA);
