Massless Weyl Spinors from Bosonic Scalar-Tensor Duality
Nicola Maggiore (Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy, INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy)
; Andrea Amoretti (Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy, INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy)
; Alessandro Braggio (INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy, CNR-SPIN, Via Dodecaneso 33, 16146 Genova, Italy)
; Giacomo Caruso (Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy, INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy); Nicodemo Magnoli (Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy, INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy)
We consider the fermionization of a bosonic-free theory characterized by the scalar-tensor duality. This duality can be interpreted as the dimensional reduction, via a planar boundary, of the topological BF theory. In this model, adopting the Sommerfield tomographic representation of quantized bosonic fields, we explicitly build a fermionic operator and its associated Klein factor such that it satisfies the correct anticommutation relations. Interestingly, we demonstrate that this operator satisfies the massless Dirac equation and that it can be identified with a Weyl spinor. Finally, as an explicit example, we write the integrated charge density in terms of the tomographic transformed bosonic degrees of freedom.