Nucleon matrix elements from lattice QCD with all-mode-averaging and a domain-decomposed solver: An exploratory study

Georg von Hippel (PRISMA Cluster of Excellence, Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Mainz, D-55099, Germany) ; Thomas D. Rae (Bergische Universität Wuppertal, Gaußstraße 20, Wuppertal, D-42119, Germany) ; Eigo Shintani (PRISMA Cluster of Excellence, Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Mainz, D-55099, Germany; RIKEN Advanced Institute for Computational Science, Kōbe, Hyōgo, 650-0047, Japan) ; Hartmut Wittig (PRISMA Cluster of Excellence, Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Mainz, D-55099, Germany; Helmholtz Institute Mainz, University of Mainz, Mainz, 55099, Germany)

We study the performance of all-mode-averaging (AMA) when used in conjunction with a locally deflated SAP-preconditioned solver, determining how to optimize the local block sizes and number of deflation fields in order to minimize the computational cost for a given level of overall statistical accuracy. We find that AMA enables a reduction of the statistical error on nucleon charges by a factor of around two at the same cost when compared to the standard method. As a demonstration, we compute the axial, scalar and tensor charges of the nucleon in Nf=2 lattice QCD with non-perturbatively O( a )-improved Wilson quarks, using O(10,000) measurements to pursue the signal out to source-sink separations of ts∼1.5 fm . Our results suggest that the axial charge is suffering from a significant amount (5–10%) of excited-state contamination at source-sink separations of up to ts∼1.2 fm , whereas the excited-state contamination in the scalar and tensor charges seems to be small.

{
  "license": [
    {
      "url": "http://creativecommons.org/licenses/by/3.0/", 
      "license": "CC-BY-3.0"
    }
  ], 
  "copyright": [
    {
      "statement": "The Author(s)"
    }
  ], 
  "control_number": "17821", 
  "_oai": {
    "updated": "2018-04-19T11:21:47Z", 
    "id": "oai:repo.scoap3.org:17821", 
    "sets": [
      "NPB"
    ]
  }, 
  "authors": [
    {
      "surname": "von Hippel", 
      "given_names": "Georg", 
      "raw_name": "von Hippel, Georg", 
      "affiliations": [
        {
          "country": "Germany", 
          "value": "PRISMA Cluster of Excellence, Institut f\u00fcr Kernphysik, Johannes Gutenberg-Universit\u00e4t Mainz, Mainz, D-55099, Germany"
        }
      ], 
      "full_name": "von Hippel, Georg", 
      "orcid": "0000-0002-3318-3566"
    }, 
    {
      "raw_name": "Rae, Thomas D.", 
      "affiliations": [
        {
          "country": "Germany", 
          "value": "Bergische Universit\u00e4t Wuppertal, Gau\u00dfstra\u00dfe 20, Wuppertal, D-42119, Germany"
        }
      ], 
      "surname": "Rae", 
      "given_names": "Thomas D.", 
      "full_name": "Rae, Thomas D."
    }, 
    {
      "raw_name": "Shintani, Eigo", 
      "affiliations": [
        {
          "country": "Germany", 
          "value": "PRISMA Cluster of Excellence, Institut f\u00fcr Kernphysik, Johannes Gutenberg-Universit\u00e4t Mainz, Mainz, D-55099, Germany"
        }, 
        {
          "country": "Japan", 
          "value": "RIKEN Advanced Institute for Computational Science, K\u014dbe, Hy\u014dgo, 650-0047, Japan"
        }
      ], 
      "surname": "Shintani", 
      "given_names": "Eigo", 
      "full_name": "Shintani, Eigo"
    }, 
    {
      "raw_name": "Wittig, Hartmut", 
      "affiliations": [
        {
          "country": "Germany", 
          "value": "PRISMA Cluster of Excellence, Institut f\u00fcr Kernphysik, Johannes Gutenberg-Universit\u00e4t Mainz, Mainz, D-55099, Germany"
        }, 
        {
          "country": "Germany", 
          "value": "Helmholtz Institute Mainz, University of Mainz, Mainz, 55099, Germany"
        }
      ], 
      "surname": "Wittig", 
      "given_names": "Hartmut", 
      "full_name": "Wittig, Hartmut"
    }
  ], 
  "_files": [
    {
      "checksum": "md5:1920729f77a589befa9ac9d9896c4083", 
      "filetype": "pdf", 
      "bucket": "58f553ca-58b7-4416-aeec-f8f8689e42ee", 
      "version_id": "e8daf70c-e8ee-479e-8bd0-593820575805", 
      "key": "10.1016/j.nuclphysb.2016.11.003.pdf", 
      "size": 1118400
    }, 
    {
      "checksum": "md5:f8bb0b22d3aeaeb3c08eea2240faccb2", 
      "filetype": "xml", 
      "bucket": "58f553ca-58b7-4416-aeec-f8f8689e42ee", 
      "version_id": "4b0031df-97ae-4556-8d76-9c311978f027", 
      "key": "10.1016/j.nuclphysb.2016.11.003.xml", 
      "size": 269817
    }, 
    {
      "checksum": "md5:5eacceeb44c65d4474cddb3bc7a59e91", 
      "filetype": "pdf/a", 
      "bucket": "58f553ca-58b7-4416-aeec-f8f8689e42ee", 
      "version_id": "92b7b7f5-b25c-4e1f-87fd-03fd29814e8f", 
      "key": "10.1016/j.nuclphysb.2016.11.003_a.pdf", 
      "size": 1437756
    }
  ], 
  "record_creation_date": "2016-11-09T00:00:00", 
  "titles": [
    {
      "source": "Elsevier", 
      "title": "Nucleon matrix elements from lattice QCD with all-mode-averaging and a domain-decomposed solver: An exploratory study"
    }
  ], 
  "dois": [
    {
      "value": "10.1016/j.nuclphysb.2016.11.003"
    }
  ], 
  "publication_info": [
    {
      "journal_title": "Nuclear Physics B", 
      "material": "article", 
      "year": 2016
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "abstracts": [
    {
      "source": "Elsevier", 
      "value": "We study the performance of all-mode-averaging (AMA) when used in conjunction with a locally deflated SAP-preconditioned solver, determining how to optimize the local block sizes and number of deflation fields in order to minimize the computational cost for a given level of overall statistical accuracy. We find that AMA enables a reduction of the statistical error on nucleon charges by a factor of around two at the same cost when compared to the standard method. As a demonstration, we compute the axial, scalar and tensor charges of the nucleon in Nf=2 lattice QCD with non-perturbatively O( a )-improved Wilson quarks, using O(10,000) measurements to pursue the signal out to source-sink separations of ts\u00e2\u0088\u00bc1.5\u00c2 fm . Our results suggest that the axial charge is suffering from a significant amount (5\u00e2\u0080\u009310%) of excited-state contamination at source-sink separations of up to ts\u00e2\u0088\u00bc1.2\u00c2 fm , whereas the excited-state contamination in the scalar and tensor charges seems to be small."
    }
  ], 
  "imprints": [
    {
      "date": "2016-11-09", 
      "publisher": "Elsevier"
    }
  ], 
  "acquisition_source": {
    "date": "2016-11-09T00:00:00", 
    "source": "Elsevier", 
    "method": "scoap3", 
    "submission_number": "f692f55443c211e898b102163e01809a"
  }
}
Published on:
09 November 2016
Publisher:
Elsevier
Published in:
Nuclear Physics B (2016)

DOI:
https://doi.org/10.1016/j.nuclphysb.2016.11.003
Copyrights:
The Author(s)
Licence:
CC-BY-3.0

Fulltext files: