The pseudoscalar correlator is an ideal lattice probe for thermal modifications to quarkonium spectra, given that it is not compromised by a contribution from a large transport peak. We construct a perturbative spectral function incorporating resummed thermal effects around the threshold and vacuum asymptotics above the threshold, and compare the corresponding imaginary-time correlators with continuum-extrapolated lattice data for quenched SU(3) at several temperatures. Modest differences are observed, which may originate from non-perturbative mass shifts or renormalization factors, however no resonance peaks are needed for describing the quenched lattice data for charmonium at and above T ∼ 1.1T c ∼ 350 MeV. For comparison, in the bottomonium case a good description of the lattice data is obtained with a spectral function containing a single thermally broadened resonance peak.
{ "license": [ { "url": "https://creativecommons.org/licenses/by/3.0", "license": "CC-BY-3.0" } ], "copyright": [ { "material": "Article", "holder": "The Author(s)", "year": "2017" } ], "control_number": "22572", "_oai": { "updated": "2018-08-14T18:16:19Z", "id": "oai:repo.scoap3.org:22572" }, "authors": [ { "affiliations": [ { "country": "Switzerland", "value": "Gymnase de Renens, Av. du Silo 1, Renens, CH-1020, Switzerland", "organization": "Gymnase de Renens" } ], "surname": "Burnier", "email": "yannis.burnier@gmail.com", "full_name": "Burnier, Y.", "given_names": "Y." }, { "affiliations": [ { "country": "China", "value": "Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan, 430079, China", "organization": "Central China Normal University" } ], "surname": "Ding", "email": "hengtong.ding@mail.ccnu.edu.cn", "full_name": "Ding, H.T.", "given_names": "H.T." }, { "affiliations": [ { "country": "China", "value": "Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan, 430079, China", "organization": "Central China Normal University" }, { "country": "Germany", "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, Bielefeld, 33615, Germany", "organization": "Universit\u00e4t Bielefeld" } ], "surname": "Kaczmarek", "email": "okacz@physik.uni-bielefeld.de", "full_name": "Kaczmarek, O.", "given_names": "O." }, { "affiliations": [ { "country": "Germany", "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, Bielefeld, 33615, Germany", "organization": "Universit\u00e4t Bielefeld" } ], "surname": "Kruse", "email": "alkruse@physik.uni-bielefeld.de", "full_name": "Kruse, A.L.", "given_names": "A.L." }, { "affiliations": [ { "country": "Switzerland", "value": "AEC, ITP, University of Bern, Sidlerstrasse 5, Bern, CH-3012, Switzerland", "organization": "AEC, ITP, University of Bern" } ], "surname": "Laine", "email": "laine@itp.unibe.ch", "full_name": "Laine, M.", "given_names": "M." }, { "affiliations": [ { "country": "Japan", "value": "Center for Computational Sciences, University of Tsukuba, Ibaraki, 305-8577, Japan", "organization": "University of Tsukuba" }, { "country": "USA", "value": "Physics Department, Brookhaven National Laboratory, Upton, NY, 11973, U.S.A.", "organization": "Physics Department, Brookhaven National Laboratory" } ], "surname": "Ohno", "email": "hohno@ccs.tsukuba.ac.jp", "full_name": "Ohno, H.", "given_names": "H." }, { "affiliations": [ { "country": "Germany", "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, Bielefeld, 33615, Germany", "organization": "Universit\u00e4t Bielefeld" } ], "surname": "Sandmeyer", "email": "hsandmeyer@physik.uni-bielefeld.de", "full_name": "Sandmeyer, H.", "given_names": "H." } ], "_files": [ { "checksum": "md5:12f077a2b4ab474031cde2615288570e", "filetype": "xml", "bucket": "7a5ab2b4-0be9-4734-92e7-6537e7d808b8", "version_id": "334894f2-0405-4f60-bbb0-28848ddc41db", "key": "10.1007/JHEP11(2017)206.xml", "size": 86773 }, { "checksum": "md5:659cb4f58951f8437afcd7586353eae7", "filetype": "pdf/a", "bucket": "7a5ab2b4-0be9-4734-92e7-6537e7d808b8", "version_id": "54f7a8a6-ab35-4d55-ac80-0d89eb6bf776", "key": "10.1007/JHEP11(2017)206_a.pdf", "size": 1192285 } ], "record_creation_date": "2017-12-02T00:00:00", "titles": [ { "source": "Springer", "title": "Thermal quarkonium physics in the pseudoscalar channel" } ], "collections": [ { "primary": "Journal of High Energy Physics" } ], "dois": [ { "value": "10.1007/JHEP11(2017)206" } ], "publication_info": [ { "page_end": "27", "journal_title": "Journal of High Energy Physics", "material": "article", "journal_volume": "2017", "year": 2018, "page_start": "1", "journal_issue": "11" } ], "$schema": "http://repo.scoap3.org/schemas/hep.json", "abstracts": [ { "source": "Springer", "value": "The pseudoscalar correlator is an ideal lattice probe for thermal modifications to quarkonium spectra, given that it is not compromised by a contribution from a large transport peak. We construct a perturbative spectral function incorporating resummed thermal effects around the threshold and vacuum asymptotics above the threshold, and compare the corresponding imaginary-time correlators with continuum-extrapolated lattice data for quenched SU(3) at several temperatures. Modest differences are observed, which may originate from non-perturbative mass shifts or renormalization factors, however no resonance peaks are needed for describing the quenched lattice data for charmonium at and above T \u223c 1.1T c \u223c 350 MeV. For comparison, in the bottomonium case a good description of the lattice data is obtained with a spectral function containing a single thermally broadened resonance peak." } ], "imprints": [ { "date": "2017-11-30", "publisher": "Springer" } ], "acquisition_source": { "date": "2018-08-14T20:13:51.741298", "source": "Springer", "method": "Springer", "submission_number": "422f808c9fed11e89ebf02163e01809a" } }