Heavy Sterile Neutrino in Dark Matter Searches
John D. Vergados (TEI of Western Macedonia, 501 00 Kozani, Greece)
; Paraskevi C. Divari (Department of Physical Sciences and Applications, Hellenic Army Academy, Vari, 16673 Attica, Greece)
Sterile neutrinos are possible dark matter candidates. We examine here possible detection mechanisms, assuming that the neutrino has a mass of about 50 keV and couples to the ordinary neutrino. Even though this neutrino is quite heavy, it is nonrelativistic with a maximum kinetic energy of 0.1 eV. Thus new experimental techniques are required for its detection. We estimate the expected event rate in the following cases: (i) measuring electron recoil in the case of materials with very low electron binding; (ii) low temperature crystal bolometers; (iii) spin induced atomic excitations at very low temperatures, leading to a characteristic photon spectrum; (iv) observation of resonances in antineutrino absorption by a nucleus undergoing electron capture; (v) neutrino induced electron events beyond the end point energy of beta decaying systems, for example, in the tritium decay studied by KATRIN.