Anomalies in bottom from new physics in top

José Eliel Camargo-Molina (Department of Physics, Imperial College London, South Kensington campus, London, UK) ; Alejandro Celis (Ludwig-Maximilians-Universität München, Fakultät für Physik, Arnold Sommerfeld Center for Theoretical Physics, München, Germany) ; Darius A. Faroughy (J. Stefan Institute, Ljubljana, Slovenia)

We analyze the possibility to accommodate current bs+ anomalies with TeV-scale mediators that couple to right-handed top quarks and muons, contributing to bs+ at the one-loop level. We use the Standard Model Effective Field Theory (SMEFT) framework but also look at specific scenarios by taking into account all possible irreducible representations of the Lorentz and Standard Model gauge group for the mediators. From a global fit of bs+ data and LEP-I observables we find that the Wilson coefficients of two SMEFT operators: Ou=(¯LμγαLμ)(t¯RγαtR) and Oeu=(μ¯RγαμR)(t¯RγαtR) need to satisfy CeuCu. New physics enters then in bs+ mainly through the operator O9=(s¯γμPLb)(¯γμ) of the Weak Effective Theory. After discussing all possible mediators, we concentrate on two scenarios: A vector boson in the irreducible representation Zμ(1,1,0) of the Standard Model gauge group with vectorial coupling to muons, and a combination of two leptoquarks: the scalar R2(3,2,7/6) and the vector U˜1μ(3,1,5/3). We derive LHC constraints by recasting di-muon resonance, pptt¯tt¯ and SUSY searches. Additionally, we analyze the prospects for discovering these mediators during the high-luminosity phase of the LHC.

{
  "_oai": {
    "updated": "2020-07-14T15:03:57Z", 
    "id": "oai:repo.scoap3.org:41720", 
    "sets": [
      "PLB"
    ]
  }, 
  "authors": [
    {
      "surname": "Camargo-Molina", 
      "given_names": "Jos\u00e9 Eliel", 
      "affiliations": [
        {
          "country": "UK", 
          "value": "Department of Physics, Imperial College London, South Kensington campus, London, UK"
        }
      ], 
      "full_name": "Camargo-Molina, Jos\u00e9 Eliel", 
      "orcid": "0000-0001-9636-8552", 
      "email": "J.camargo-molina@imperial.ac.uk"
    }, 
    {
      "affiliations": [
        {
          "country": "Germany", 
          "value": "Ludwig-Maximilians-Universit\u00e4t M\u00fcnchen, Fakult\u00e4t f\u00fcr Physik, Arnold Sommerfeld Center for Theoretical Physics, M\u00fcnchen, Germany"
        }
      ], 
      "surname": "Celis", 
      "email": "Alejandro.Celis@physik.uni-muenchen.de", 
      "full_name": "Celis, Alejandro", 
      "given_names": "Alejandro"
    }, 
    {
      "surname": "Faroughy", 
      "given_names": "Darius A.", 
      "affiliations": [
        {
          "country": "Slovenia", 
          "value": "J. Stefan Institute, Ljubljana, Slovenia"
        }
      ], 
      "full_name": "Faroughy, Darius A.", 
      "orcid": "0000-0002-4027-5477", 
      "email": "darius.faroughy@ijs.si"
    }
  ], 
  "titles": [
    {
      "source": "Elsevier", 
      "title": "Anomalies in bottom from new physics in top"
    }
  ], 
  "dois": [
    {
      "value": "10.1016/j.physletb.2018.07.051"
    }
  ], 
  "publication_info": [
    {
      "page_end": "293", 
      "journal_title": "Physics Letters B", 
      "material": "article", 
      "journal_volume": "784 C", 
      "artid": "33982", 
      "year": 2018, 
      "page_start": "284"
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2020-07-14T16:35:38.283016", 
    "source": "Elsevier", 
    "method": "Elsevier", 
    "submission_number": "1ff510a8c5df11ea825402163e01809a"
  }, 
  "page_nr": [
    10
  ], 
  "license": [
    {
      "url": "http://creativecommons.org/licenses/by/3.0/", 
      "license": "CC-BY-3.0"
    }
  ], 
  "copyright": [
    {
      "year": "2018"
    }
  ], 
  "control_number": "41720", 
  "record_creation_date": "2018-07-30T15:00:14.404610", 
  "_files": [
    {
      "checksum": "md5:0164a98c48ba8123441f4e45fa9f5770", 
      "filetype": "xml", 
      "bucket": "51104740-776b-4123-9466-d7c93ef97def", 
      "version_id": "1378d5b0-bd86-4c0a-b352-6c307050f35d", 
      "key": "10.1016/j.physletb.2018.07.051.xml", 
      "size": 313081
    }, 
    {
      "checksum": "md5:564498bbfd1e99fcbcc273e0774ee470", 
      "filetype": "pdf", 
      "bucket": "51104740-776b-4123-9466-d7c93ef97def", 
      "version_id": "58c81765-f0a0-460d-aaab-767101d359cc", 
      "key": "10.1016/j.physletb.2018.07.051.pdf", 
      "size": 1304573
    }, 
    {
      "checksum": "md5:18c80e618939d684f6943a9f01a2ba80", 
      "filetype": "pdf/a", 
      "bucket": "51104740-776b-4123-9466-d7c93ef97def", 
      "version_id": "33461168-f102-4375-a5f0-2b9d86d8c43a", 
      "key": "10.1016/j.physletb.2018.07.051_a.pdf", 
      "size": 1612261
    }
  ], 
  "collections": [
    {
      "primary": "Physics Letters B"
    }
  ], 
  "abstracts": [
    {
      "source": "Elsevier", 
      "value": "We analyze the possibility to accommodate current <math><mi>b</mi><mo>\u2192</mo><mi>s</mi><msup><mrow><mi>\u2113</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>\u2113</mi></mrow><mrow><mo>\u2212</mo></mrow></msup></math> anomalies with TeV-scale mediators that couple to right-handed top quarks and muons, contributing to <math><mi>b</mi><mo>\u2192</mo><mi>s</mi><msup><mrow><mi>\u2113</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>\u2113</mi></mrow><mrow><mo>\u2212</mo></mrow></msup></math> at the one-loop level. We use the Standard Model Effective Field Theory (SMEFT) framework but also look at specific scenarios by taking into account all possible irreducible representations of the Lorentz and Standard Model gauge group for the mediators. From a global fit of <math><mi>b</mi><mo>\u2192</mo><mi>s</mi><msup><mrow><mi>\u2113</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>\u2113</mi></mrow><mrow><mo>\u2212</mo></mrow></msup></math> data and LEP-I observables we find that the Wilson coefficients of two SMEFT operators: <math><msub><mrow><mi>O</mi></mrow><mrow><mi>\u2113</mi><mi>u</mi></mrow></msub><mo>=</mo><mo>(</mo><msub><mrow><mover><mrow><mi>\u2113</mi></mrow><mrow><mo>\u00af</mo></mrow></mover></mrow><mrow><mi>L</mi><mi>\u03bc</mi></mrow></msub><msup><mrow><mi>\u03b3</mi></mrow><mrow><mi>\u03b1</mi></mrow></msup><msub><mrow><mi>\u2113</mi></mrow><mrow><mi>L</mi><mi>\u03bc</mi></mrow></msub><mo>)</mo><mo>(</mo><msub><mrow><mover><mrow><mi>t</mi></mrow><mrow><mo>\u00af</mo></mrow></mover></mrow><mrow><mi>R</mi></mrow></msub><msub><mrow><mi>\u03b3</mi></mrow><mrow><mi>\u03b1</mi></mrow></msub><msub><mrow><mi>t</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>)</mo></math> and <math><msub><mrow><mi>O</mi></mrow><mrow><mi>e</mi><mi>u</mi></mrow></msub><mo>=</mo><mo>(</mo><msub><mrow><mover><mrow><mi>\u03bc</mi></mrow><mrow><mo>\u00af</mo></mrow></mover></mrow><mrow><mi>R</mi></mrow></msub><msup><mrow><mi>\u03b3</mi></mrow><mrow><mi>\u03b1</mi></mrow></msup><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>)</mo><mo>(</mo><msub><mrow><mover><mrow><mi>t</mi></mrow><mrow><mo>\u00af</mo></mrow></mover></mrow><mrow><mi>R</mi></mrow></msub><msub><mrow><mi>\u03b3</mi></mrow><mrow><mi>\u03b1</mi></mrow></msub><msub><mrow><mi>t</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>)</mo></math> need to satisfy <math><msub><mrow><mi>C</mi></mrow><mrow><mi>e</mi><mi>u</mi></mrow></msub><mo>\u223c</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>\u2113</mi><mi>u</mi></mrow></msub></math>. New physics enters then in <math><mi>b</mi><mo>\u2192</mo><mi>s</mi><msup><mrow><mi>\u2113</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>\u2113</mi></mrow><mrow><mo>\u2212</mo></mrow></msup></math> mainly through the operator <math><msub><mrow><mi>O</mi></mrow><mrow><mn>9</mn></mrow></msub><mo>=</mo><mo>(</mo><mover><mrow><mi>s</mi></mrow><mrow><mo>\u00af</mo></mrow></mover><msub><mrow><mi>\u03b3</mi></mrow><mrow><mi>\u03bc</mi></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mi>L</mi></mrow></msub><mi>b</mi><mo>)</mo><mo>(</mo><mover><mrow><mi>\u2113</mi></mrow><mrow><mo>\u00af</mo></mrow></mover><msup><mrow><mi>\u03b3</mi></mrow><mrow><mi>\u03bc</mi></mrow></msup><mi>\u2113</mi><mo>)</mo></math> of the Weak Effective Theory. After discussing all possible mediators, we concentrate on two scenarios: A vector boson in the irreducible representation <math><msubsup><mrow><mi>Z</mi></mrow><mrow><mi>\u03bc</mi></mrow><mrow><mo>\u2032</mo></mrow></msubsup><mo>\u223c</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>)</mo></math> of the Standard Model gauge group with vectorial coupling to muons, and a combination of two leptoquarks: the scalar <math><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>\u223c</mo><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>7</mn><mo>/</mo><mn>6</mn><mo>)</mo></math> and the vector <math><msub><mrow><mover><mrow><mi>U</mi></mrow><mrow><mo>\u02dc</mo></mrow></mover></mrow><mrow><mn>1</mn><mi>\u03bc</mi></mrow></msub><mo>\u223c</mo><mo>(</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>5</mn><mo>/</mo><mn>3</mn><mo>)</mo></math>. We derive LHC constraints by recasting di-muon resonance, <math><mi>p</mi><mi>p</mi><mo>\u2192</mo><mi>t</mi><mover><mrow><mi>t</mi></mrow><mrow><mo>\u00af</mo></mrow></mover><mi>t</mi><mover><mrow><mi>t</mi></mrow><mrow><mo>\u00af</mo></mrow></mover></math> and SUSY searches. Additionally, we analyze the prospects for discovering these mediators during the high-luminosity phase of the LHC."
    }
  ], 
  "imprints": [
    {
      "date": "2018-07-30", 
      "publisher": "Elsevier"
    }
  ]
}
Published on:
30 July 2018
Publisher:
Elsevier
Published in:
Physics Letters B , Volume 784 C (2018)

Pages 284-293
DOI:
https://doi.org/10.1016/j.physletb.2018.07.051
Copyrights:
No information available
Licence:
CC-BY-3.0

Fulltext files: