Particle decay in post inflationary cosmology

Nathan Herring (Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA) ; Brian Pardo (Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA) ; Daniel Boyanovsky (Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA) ; Andrew R. Zentner (Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA; Pittsburgh Particle Physics, Astrophysics and Cosmology Center (Pitt PACC), Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA)

We study a scalar particle of mas m1 decaying into two particles of mass m2 during the radiation and matter dominated epochs of a standard cosmological model. An adiabatic approximation is introduced that is valid for degrees of freedom (d.o.f.) with typical wavelengths much smaller than the particle horizon ( Hubble radius) at a given time. We implement a nonperturbative method that includes the cosmological expansion and obtain a cosmological Fermi’s Golden Rule that enables one to compute the decay law of the parent particle with mass m1, along with the build up of the population of daughter particles with mass m2. The survival probability of the decaying particle is P(t)=eΓ˜k(t)t with Γ˜k(t) being an effective momentum and time dependent decay rate. It features a transition timescale tnr between the relativistic and nonrelativistic regimes and for k0 is always smaller than the analogous rate in Minkowski spacetime, as a consequence of (local) time dilation and the cosmological redshift. For ttnr the decay law is a “stretched exponential” P(t)=e(t/t*)3/2, whereas for the nonrelativistic stage with ttnr, we find P(t)=eΓ0t(t/tnr)Γ0tnr/2, with Γ0 the Minkowski space time decay width at rest. The Hubble timescale 1/H(t) introduces an energy uncertainty ΔEH(t) which relaxes the constraints of kinematic thresholds. This opens new decay channels into heavier particles for 2πEk(t)H(t)4m22m12, with Ek(t) the (local) comoving energy of the decaying particle. As the expansion proceeds this channel closes and the usual two particle threshold restricts the decay kinematics.

{
  "_oai": {
    "updated": "2022-03-04T10:56:58Z", 
    "id": "oai:repo.scoap3.org:42912", 
    "sets": [
      "PRD"
    ]
  }, 
  "authors": [
    {
      "raw_name": "Nathan Herring", 
      "affiliations": [
        {
          "country": "USA", 
          "value": "Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA"
        }
      ], 
      "surname": "Herring", 
      "given_names": "Nathan", 
      "full_name": "Herring, Nathan"
    }, 
    {
      "raw_name": "Brian Pardo", 
      "affiliations": [
        {
          "country": "USA", 
          "value": "Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA"
        }
      ], 
      "surname": "Pardo", 
      "given_names": "Brian", 
      "full_name": "Pardo, Brian"
    }, 
    {
      "raw_name": "Daniel Boyanovsky", 
      "affiliations": [
        {
          "country": "USA", 
          "value": "Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA"
        }
      ], 
      "surname": "Boyanovsky", 
      "given_names": "Daniel", 
      "full_name": "Boyanovsky, Daniel"
    }, 
    {
      "raw_name": "Andrew R. Zentner", 
      "affiliations": [
        {
          "country": "USA", 
          "value": "Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA"
        }, 
        {
          "country": "USA", 
          "value": "Pittsburgh Particle Physics, Astrophysics and Cosmology Center (Pitt PACC), Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA"
        }
      ], 
      "surname": "Zentner", 
      "given_names": "Andrew R.", 
      "full_name": "Zentner, Andrew R."
    }
  ], 
  "titles": [
    {
      "source": "APS", 
      "title": "Particle decay in post inflationary cosmology"
    }
  ], 
  "dois": [
    {
      "value": "10.1103/PhysRevD.98.083503"
    }
  ], 
  "publication_info": [
    {
      "journal_volume": "98", 
      "journal_title": "Physical Review D", 
      "material": "article", 
      "journal_issue": "8", 
      "year": 2018
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2020-06-29T15:30:10.097118", 
    "source": "APS", 
    "method": "APS", 
    "submission_number": "bca49440b8c511eaad8602163e01809a"
  }, 
  "page_nr": [
    26
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses/by/4.0/", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "statement": "Published by the American Physical Society", 
      "year": "2018"
    }
  ], 
  "control_number": "42912", 
  "record_creation_date": "2018-10-01T16:30:14.867118", 
  "_files": [
    {
      "checksum": "md5:c42f6b3bbbb864af3eccde38c8dc6d4a", 
      "filetype": "pdf", 
      "bucket": "a0153f73-4484-4cc9-af51-e587d69766eb", 
      "version_id": "af8c0767-952e-42aa-812c-6459a49836a2", 
      "key": "10.1103/PhysRevD.98.083503.pdf", 
      "size": 753135
    }, 
    {
      "checksum": "md5:4da148a168d6de735a1ac80b08acec94", 
      "filetype": "xml", 
      "bucket": "a0153f73-4484-4cc9-af51-e587d69766eb", 
      "version_id": "db667f86-0064-49bd-a25d-78d7cdc15b2e", 
      "key": "10.1103/PhysRevD.98.083503.xml", 
      "size": 643955
    }
  ], 
  "collections": [
    {
      "primary": "HEP"
    }, 
    {
      "primary": "Citeable"
    }, 
    {
      "primary": "Published"
    }
  ], 
  "arxiv_eprints": [
    {
      "categories": [
        "hep-ph", 
        "astro-ph.CO", 
        "gr-qc", 
        "hep-th"
      ], 
      "value": "1808.02539"
    }
  ], 
  "abstracts": [
    {
      "source": "APS", 
      "value": "We study a scalar particle of mas <math><msub><mi>m</mi><mn>1</mn></msub></math> decaying into two particles of mass <math><msub><mi>m</mi><mn>2</mn></msub></math> during the radiation and matter dominated epochs of a standard cosmological model. An adiabatic approximation is introduced that is valid for degrees of freedom (d.o.f.) with typical wavelengths much smaller than the particle horizon (<math><mo>\u221d</mo></math> Hubble radius) at a given time. We implement a nonperturbative method that includes the cosmological expansion and obtain a cosmological Fermi\u2019s Golden Rule that enables one to compute the decay law of the parent particle with mass <math><msub><mi>m</mi><mn>1</mn></msub></math>, along with the build up of the population of daughter particles with mass <math><msub><mi>m</mi><mn>2</mn></msub></math>. The survival probability of the decaying particle is <math><mi>P</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><msup><mi>e</mi><mrow><mo>\u2212</mo><msub><mover><mi>\u0393</mi><mo>\u02dc</mo></mover><mi>k</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo><mi>t</mi></mrow></msup></math> with <math><msub><mover><mi>\u0393</mi><mo>\u02dc</mo></mover><mi>k</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo></math> being an effective momentum and time dependent decay rate. It features a transition timescale <math><msub><mi>t</mi><mrow><mi>nr</mi></mrow></msub></math> between the relativistic and nonrelativistic regimes and for <math><mi>k</mi><mo>\u2260</mo><mn>0</mn></math> is always smaller than the analogous rate in Minkowski spacetime, as a consequence of (local) time dilation and the cosmological redshift. For <math><mi>t</mi><mo>\u226a</mo><msub><mi>t</mi><mrow><mi>nr</mi></mrow></msub></math> the decay law is a \u201cstretched exponential\u201d <math><mi>P</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><msup><mi>e</mi><mrow><mo>\u2212</mo><mo>(</mo><mi>t</mi><mo>/</mo><msup><mi>t</mi><mo>*</mo></msup><msup><mo>)</mo><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></msup></math>, whereas for the nonrelativistic stage with <math><mi>t</mi><mo>\u226b</mo><msub><mi>t</mi><mrow><mi>nr</mi></mrow></msub></math>, we find <math><mi>P</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><msup><mi>e</mi><mrow><mo>\u2212</mo><msub><mi>\u0393</mi><mn>0</mn></msub><mi>t</mi></mrow></msup><mo>(</mo><mi>t</mi><mo>/</mo><msub><mi>t</mi><mrow><mi>nr</mi></mrow></msub><msup><mo>)</mo><mrow><msub><mi>\u0393</mi><mn>0</mn></msub><msub><mi>t</mi><mrow><mi>nr</mi></mrow></msub><mo>/</mo><mn>2</mn></mrow></msup></math>, with <math><msub><mi>\u0393</mi><mn>0</mn></msub></math> the Minkowski space time decay width at rest. The Hubble timescale <math><mo>\u221d</mo><mn>1</mn><mo>/</mo><mi>H</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> introduces an energy uncertainty <math><mi>\u0394</mi><mi>E</mi><mo>\u223c</mo><mi>H</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> which relaxes the constraints of kinematic thresholds. This opens new decay channels into heavier particles for <math><mn>2</mn><mi>\u03c0</mi><msub><mi>E</mi><mi>k</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo><mi>H</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>\u226b</mo><mn>4</mn><msubsup><mi>m</mi><mn>2</mn><mn>2</mn></msubsup><mo>\u2212</mo><msubsup><mi>m</mi><mn>1</mn><mn>2</mn></msubsup></math>, with <math><msub><mi>E</mi><mi>k</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo></math> the (local) comoving energy of the decaying particle. As the expansion proceeds this channel closes and the usual two particle threshold restricts the decay kinematics."
    }
  ], 
  "imprints": [
    {
      "date": "2018-10-01", 
      "publisher": "APS"
    }
  ]
}
Published on:
01 October 2018
Publisher:
APS
Published in:
Physical Review D , Volume 98 (2018)
Issue 8
DOI:
https://doi.org/10.1103/PhysRevD.98.083503
arXiv:
1808.02539
Copyrights:
Published by the American Physical Society
Licence:
CC-BY-4.0

Fulltext files: