Cosmological constraints on alternative model to Chaplygin fluid revisited
A. Hernández-Almada (Facultad de Ingeniería, Universidad Autónoma de Querétaro, Centro Universitario Cerro de las Campanas, Santiago de Querétaro, 76010, Mexico); Juan Magaña (Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Avda. Gran Bretaña 1111, Valparaiso, Chile); Miguel García-Aspeitia (Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo a la Bufa S/N, Zacatecas, CP 98060, Mexico, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582. Colonia Crédito Constructor, Del. Benito Juárez, Mexico City, CP 03940, Mexico); V. Motta (Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Avda. Gran Bretaña 1111, Valparaiso, Chile)
In this work we explore an alternative phenomenological model to Chaplygin gas proposed by Hova et al. (Int J Mod Phys D 26:1750178, 2017), consisting on a modification of a perfect fluid, to explain the dynamics of dark matter and dark energy at cosmological scales immerse in a flat or curved universe. Adopting properties similar to a Chaplygin gas, the proposed model is a mixture of dark matter and dark energy components parameterized by only one free parameter denoted as $$\mu $$ . We focus on contrasting this model with the most recent cosmological observations of Type Ia supernovae and Hubble parameter measurements. Our joint analysis yields a value $$\mu = 0.843^{+0.014}_{-0.015}\,$$ ($$0.822^{+0.022}_{-0.024}$$ ) for a flat (curved) universe. Furthermore, with these constraints we also estimate the deceleration parameter today $$q_0=-0.67 \pm 0.02\,(-0.51\pm 0.07)$$ , the acceleration-deceleration transition redshift $$z_t=0.57\pm 0.04\, (0.50 \pm 0.06)$$ , and the universe age $$t_A = 13.108^{+0.270}_{-0.260}\,\times (12.314^{+0.590}_{-0.430})\,$$ Gyrs. We also report a best value of $$\varOmega _k = 0.183^{+0.073}_{-0.079}$$ consistent at $$3\sigma $$ with the one reported by Planck Collaboration. Our analysis confirm the results by Hova et al. this Chaplygin gas-like is a plausible alternative to explain the nature of the dark sector of the universe.