In this work we explore an alternative phenomenological model to Chaplygin gas proposed by Hova et al. (Int J Mod Phys D 26:1750178, 2017), consisting on a modification of a perfect fluid, to explain the dynamics of dark matter and dark energy at cosmological scales immerse in a flat or curved universe. Adopting properties similar to a Chaplygin gas, the proposed model is a mixture of dark matter and dark energy components parameterized by only one free parameter denoted as $$\mu $$ . We focus on contrasting this model with the most recent cosmological observations of Type Ia supernovae and Hubble parameter measurements. Our joint analysis yields a value $$\mu = 0.843^{+0.014}_{-0.015}\,$$ ($$0.822^{+0.022}_{-0.024}$$ ) for a flat (curved) universe. Furthermore, with these constraints we also estimate the deceleration parameter today $$q_0=-0.67 \pm 0.02\,(-0.51\pm 0.07)$$ , the acceleration-deceleration transition redshift $$z_t=0.57\pm 0.04\, (0.50 \pm 0.06)$$ , and the universe age $$t_A = 13.108^{+0.270}_{-0.260}\,\times (12.314^{+0.590}_{-0.430})\,$$ Gyrs. We also report a best value of $$\varOmega _k = 0.183^{+0.073}_{-0.079}$$ consistent at $$3\sigma $$ with the one reported by Planck Collaboration. Our analysis confirm the results by Hova et al. this Chaplygin gas-like is a plausible alternative to explain the nature of the dark sector of the universe.
{ "_oai": { "updated": "2019-03-02T03:35:53Z", "id": "oai:repo.scoap3.org:44554", "sets": [ "EPJC" ] }, "authors": [ { "affiliations": [ { "country": "Mexico", "value": "Facultad de Ingenier\u00eda, Universidad Aut\u00f3noma de Quer\u00e9taro, Centro Universitario Cerro de las Campanas, Santiago de Quer\u00e9taro, 76010, Mexico", "organization": "Universidad Aut\u00f3noma de Quer\u00e9taro, Centro Universitario Cerro de las Campanas" } ], "surname": "Hern\u00e1ndez-Almada", "email": "ahalmada@uaq.mx", "full_name": "Hern\u00e1ndez-Almada, A.", "given_names": "A." }, { "affiliations": [ { "country": "Chile", "value": "Instituto de F\u00edsica y Astronom\u00eda, Facultad de Ciencias, Universidad de Valpara\u00edso, Avda. Gran Breta\u00f1a 1111, Valparaiso, Chile", "organization": "Universidad de Valpara\u00edso" } ], "surname": "Maga\u00f1a", "email": "juan.magana@uv.cl", "full_name": "Maga\u00f1a, Juan", "given_names": "Juan" }, { "affiliations": [ { "country": "Mexico", "value": "Unidad Acad\u00e9mica de F\u00edsica, Universidad Aut\u00f3noma de Zacatecas, Calzada Solidaridad esquina con Paseo a la Bufa S/N, Zacatecas, CP 98060, Mexico", "organization": "Unidad Acad\u00e9mica de F\u00edsica, Universidad Aut\u00f3noma de Zacatecas" }, { "country": "Mexico", "value": "Consejo Nacional de Ciencia y Tecnolog\u00eda, Av. Insurgentes Sur 1582. Colonia Cr\u00e9dito Constructor, Del. Benito Ju\u00e1rez, Mexico City, CP 03940, Mexico", "organization": "Consejo Nacional de Ciencia y Tecnolog\u00eda" } ], "surname": "Garc\u00eda-Aspeitia", "email": "aspeitia@fisica.uaz.edu.mx", "full_name": "Garc\u00eda-Aspeitia, Miguel", "given_names": "Miguel" }, { "affiliations": [ { "country": "Chile", "value": "Instituto de F\u00edsica y Astronom\u00eda, Facultad de Ciencias, Universidad de Valpara\u00edso, Avda. Gran Breta\u00f1a 1111, Valparaiso, Chile", "organization": "Universidad de Valpara\u00edso" } ], "surname": "Motta", "email": "veronica.motta@uv.cl", "full_name": "Motta, V.", "given_names": "V." } ], "titles": [ { "source": "Springer", "title": "Cosmological constraints on alternative model to Chaplygin fluid revisited" } ], "dois": [ { "value": "10.1140/epjc/s10052-018-6521-6" } ], "publication_info": [ { "page_end": "9", "journal_title": "European Physical Journal C", "material": "article", "journal_volume": "79", "artid": "s10052-018-6521-6", "year": 2019, "page_start": "1", "journal_issue": "1" } ], "$schema": "http://repo.scoap3.org/schemas/hep.json", "acquisition_source": { "date": "2019-03-02T04:31:07.235439", "source": "Springer", "method": "Springer", "submission_number": "797c98cc3c9b11e9aa3402163e01809a" }, "page_nr": [ 9 ], "license": [ { "url": "https://creativecommons.org/licenses//by/4.0", "license": "CC-BY-4.0" } ], "copyright": [ { "holder": "The Author(s)", "year": "2019" } ], "control_number": "44554", "record_creation_date": "2019-01-08T15:09:35.795459", "_files": [ { "checksum": "md5:c3f403e15c13f11ac17d1dc8eca90203", "filetype": "xml", "bucket": "97199bc1-312a-4571-8ae9-204fb58dc8d1", "version_id": "884be490-4e20-4512-9e1a-d6f499469d1b", "key": "10.1140/epjc/s10052-018-6521-6.xml", "size": 22328 }, { "checksum": "md5:78ce479c1eb26881687be0a15bcbc9c1", "filetype": "pdf/a", "bucket": "97199bc1-312a-4571-8ae9-204fb58dc8d1", "version_id": "986d6b1c-bd74-4c15-b5d7-4aee5efecd59", "key": "10.1140/epjc/s10052-018-6521-6_a.pdf", "size": 1006223 } ], "collections": [ { "primary": "European Physical Journal C" } ], "abstracts": [ { "source": "Springer", "value": "In this work we explore an alternative phenomenological model to Chaplygin gas proposed by Hova et al. (Int J Mod Phys D 26:1750178, 2017), consisting on a modification of a perfect fluid, to explain the dynamics of dark matter and dark energy at cosmological scales immerse in a flat or curved universe. Adopting properties similar to a Chaplygin gas, the proposed model is a mixture of dark matter and dark energy components parameterized by only one free parameter denoted as $$\\mu $$ <math><mi>\u03bc</mi></math> . We focus on contrasting this model with the most recent cosmological observations of Type Ia supernovae and Hubble parameter measurements. Our joint analysis yields a value $$\\mu = 0.843^{+0.014}_{-0.015}\\,$$ <math><mrow><mi>\u03bc</mi><mo>=</mo><mn>0</mn><mo>.</mo><msubsup><mn>843</mn><mrow><mo>-</mo><mn>0.015</mn></mrow><mrow><mo>+</mo><mn>0.014</mn></mrow></msubsup><mspace width=\"0.166667em\"></mspace></mrow></math> ($$0.822^{+0.022}_{-0.024}$$ <math><mrow><mn>0</mn><mo>.</mo><msubsup><mn>822</mn><mrow><mo>-</mo><mn>0.024</mn></mrow><mrow><mo>+</mo><mn>0.022</mn></mrow></msubsup></mrow></math> ) for a flat (curved) universe. Furthermore, with these constraints we also estimate the deceleration parameter today $$q_0=-0.67 \\pm 0.02\\,(-0.51\\pm 0.07)$$ <math><mrow><msub><mi>q</mi><mn>0</mn></msub><mo>=</mo><mo>-</mo><mn>0.67</mn><mo>\u00b1</mo><mn>0.02</mn><mspace width=\"0.166667em\"></mspace><mrow><mo>(</mo><mo>-</mo><mn>0.51</mn><mo>\u00b1</mo><mn>0.07</mn><mo>)</mo></mrow></mrow></math> , the acceleration-deceleration transition redshift $$z_t=0.57\\pm 0.04\\, (0.50 \\pm 0.06)$$ <math><mrow><msub><mi>z</mi><mi>t</mi></msub><mo>=</mo><mn>0.57</mn><mo>\u00b1</mo><mn>0.04</mn><mspace width=\"0.166667em\"></mspace><mrow><mo>(</mo><mn>0.50</mn><mo>\u00b1</mo><mn>0.06</mn><mo>)</mo></mrow></mrow></math> , and the universe age $$t_A = 13.108^{+0.270}_{-0.260}\\,\\times (12.314^{+0.590}_{-0.430})\\,$$ <math><mrow><msub><mi>t</mi><mi>A</mi></msub><mo>=</mo><mn>13</mn><mo>.</mo><msubsup><mn>108</mn><mrow><mo>-</mo><mn>0.260</mn></mrow><mrow><mo>+</mo><mn>0.270</mn></mrow></msubsup><mspace width=\"0.166667em\"></mspace><mo>\u00d7</mo><mrow><mo>(</mo><mn>12</mn><mo>.</mo><msubsup><mn>314</mn><mrow><mo>-</mo><mn>0.430</mn></mrow><mrow><mo>+</mo><mn>0.590</mn></mrow></msubsup><mo>)</mo></mrow><mspace width=\"0.166667em\"></mspace></mrow></math> Gyrs. We also report a best value of $$\\varOmega _k = 0.183^{+0.073}_{-0.079}$$ <math><mrow><msub><mi>\u03a9</mi><mi>k</mi></msub><mo>=</mo><mn>0</mn><mo>.</mo><msubsup><mn>183</mn><mrow><mo>-</mo><mn>0.079</mn></mrow><mrow><mo>+</mo><mn>0.073</mn></mrow></msubsup></mrow></math> consistent at $$3\\sigma $$ <math><mrow><mn>3</mn><mi>\u03c3</mi></mrow></math> with the one reported by Planck Collaboration. Our analysis confirm the results by Hova et al. this Chaplygin gas-like is a plausible alternative to explain the nature of the dark sector of the universe." } ], "imprints": [ { "date": "2019-01-07", "publisher": "Springer" } ] }