Large $$N$$ N scaling and factorization in $${\mathrm {SU}}(N)$$ SU(N) Yang–Mills gauge theory

Miguel García Vera (John von Neumann Institute for Computing (NIC), DESY, Platanenallee 6, Zeuthen, 15738, Germany; Insitut für Physik, Humboldt Universität zu Berlin, Newtonstr. 15, Berlin, 12489, Germany; Departamento de Física, Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito, Ecuador; Departamento de Física, Escuela Superior Politécnica del Litoral, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, Guayaquil, Ecuador) ; Rainer Sommer (John von Neumann Institute for Computing (NIC), DESY, Platanenallee 6, Zeuthen, 15738, Germany; Insitut für Physik, Humboldt Universität zu Berlin, Newtonstr. 15, Berlin, 12489, Germany)

The large $$N$$ N limit of $${\mathrm {SU}}(N)$$ SU(N) gauge theories is well understood in perturbation theory. Also non-perturbative lattice studies have yielded important positive evidence that ’t Hooft’s predictions are valid. We go far beyond the statistical and systematic precision of previous studies by making use of the Yang–Mills gradient flow and detailed Monte Carlo simulations of $${\mathrm {SU}}(N)$$ SU(N) pure gauge theories in 4 dimensions. With results for $$N=3,4,5,6,8$$ N=3,4,5,6,8 we study the limit and the approach to it. We pay particular attention to observables which test the expected factorization in the large $$N$$ N limit. The investigations are carried out both in the continuum limit and at finite lattice spacing. Large $$N$$ N scaling is verified non-perturbatively and with high precision; in particular, factorization is confirmed. For quantities which only probe distances below the typical confinement length scale, the coefficients of the $$1/N$$ 1/N expansion are of $$\mathrm{O}(1)$$ O(1) , but we found that large (smoothed) Wilson loops have rather large $$\mathrm{O}(1/N^2)$$ O(1/N2) corrections. The exact size of such corrections does, of course, also depend on what is kept fixed when the limit is taken.

{
  "_oai": {
    "updated": "2019-03-02T03:32:43Z", 
    "id": "oai:repo.scoap3.org:45021", 
    "sets": [
      "EPJC"
    ]
  }, 
  "authors": [
    {
      "affiliations": [
        {
          "country": "Germany", 
          "value": "John von Neumann Institute for Computing (NIC), DESY, Platanenallee 6, Zeuthen, 15738, Germany", 
          "organization": "John von Neumann Institute for Computing (NIC), DESY"
        }, 
        {
          "country": "Germany", 
          "value": "Insitut f\u00fcr Physik, Humboldt Universit\u00e4t zu Berlin, Newtonstr. 15, Berlin, 12489, Germany", 
          "organization": "Humboldt Universit\u00e4t zu Berlin"
        }, 
        {
          "country": "Ecuador", 
          "value": "Departamento de F\u00edsica, Escuela Polit\u00e9cnica Nacional, Ladr\u00f3n de Guevara E11-253, Quito, Ecuador", 
          "organization": "Escuela Polit\u00e9cnica Nacional"
        }, 
        {
          "country": "Ecuador", 
          "value": "Departamento de F\u00edsica, Escuela Superior Polit\u00e9cnica del Litoral, Campus Gustavo Galindo Km. 30.5 V\u00eda Perimetral, Guayaquil, Ecuador", 
          "organization": "Escuela Superior Polit\u00e9cnica del Litoral"
        }
      ], 
      "surname": "Garc\u00eda Vera", 
      "email": "miguel.garcia@epn.edu.ec", 
      "full_name": "Garc\u00eda Vera, Miguel", 
      "given_names": "Miguel"
    }, 
    {
      "affiliations": [
        {
          "country": "Germany", 
          "value": "John von Neumann Institute for Computing (NIC), DESY, Platanenallee 6, Zeuthen, 15738, Germany", 
          "organization": "John von Neumann Institute for Computing (NIC), DESY"
        }, 
        {
          "country": "Germany", 
          "value": "Insitut f\u00fcr Physik, Humboldt Universit\u00e4t zu Berlin, Newtonstr. 15, Berlin, 12489, Germany", 
          "organization": "Humboldt Universit\u00e4t zu Berlin"
        }
      ], 
      "surname": "Sommer", 
      "given_names": "Rainer", 
      "full_name": "Sommer, Rainer"
    }
  ], 
  "titles": [
    {
      "source": "Springer", 
      "title": "Large $$N$$ <math><mi>N</mi></math>  scaling and factorization in $${\\mathrm {SU}}(N)$$ <math><mrow><mi>SU</mi><mo>(</mo><mi>N</mi><mo>)</mo></mrow></math>  Yang\u2013Mills gauge theory"
    }
  ], 
  "dois": [
    {
      "value": "10.1140/epjc/s10052-019-6539-4"
    }
  ], 
  "publication_info": [
    {
      "page_end": "14", 
      "journal_title": "European Physical Journal C", 
      "material": "article", 
      "journal_volume": "79", 
      "artid": "s10052-019-6539-4", 
      "year": 2019, 
      "page_start": "1", 
      "journal_issue": "1"
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2019-03-02T04:31:07.033539", 
    "source": "Springer", 
    "method": "Springer", 
    "submission_number": "797c98cc3c9b11e9aa3402163e01809a"
  }, 
  "page_nr": [
    14
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses//by/4.0", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "holder": "The Author(s)", 
      "year": "2019"
    }
  ], 
  "control_number": "45021", 
  "record_creation_date": "2019-01-17T16:30:22.220160", 
  "_files": [
    {
      "checksum": "md5:78451d482a615608ee90553128b09384", 
      "filetype": "xml", 
      "bucket": "f4ef66f1-ac7b-472f-8a01-9b1cd8c75c35", 
      "version_id": "f6756385-caf3-4575-8ec0-a12ec927dd76", 
      "key": "10.1140/epjc/s10052-019-6539-4.xml", 
      "size": 18959
    }, 
    {
      "checksum": "md5:a414af1086afd16490289b5ec6401bd9", 
      "filetype": "pdf/a", 
      "bucket": "f4ef66f1-ac7b-472f-8a01-9b1cd8c75c35", 
      "version_id": "5c61dca2-d10f-41d6-92fd-ec6a0c2bf950", 
      "key": "10.1140/epjc/s10052-019-6539-4_a.pdf", 
      "size": 906364
    }
  ], 
  "collections": [
    {
      "primary": "European Physical Journal C"
    }
  ], 
  "abstracts": [
    {
      "source": "Springer", 
      "value": "The large $$N$$ <math><mi>N</mi></math>  limit of $${\\mathrm {SU}}(N)$$ <math><mrow><mi>SU</mi><mo>(</mo><mi>N</mi><mo>)</mo></mrow></math>  gauge theories is well understood in perturbation theory. Also non-perturbative lattice studies have yielded important positive evidence that \u2019t Hooft\u2019s predictions are valid. We go far beyond the statistical and systematic precision of previous studies by making use of the Yang\u2013Mills gradient flow and detailed Monte Carlo simulations of $${\\mathrm {SU}}(N)$$ <math><mrow><mi>SU</mi><mo>(</mo><mi>N</mi><mo>)</mo></mrow></math>  pure gauge theories in 4 dimensions. With results for $$N=3,4,5,6,8$$ <math><mrow><mi>N</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>8</mn></mrow></math>  we study the limit and the approach to it. We pay particular attention to observables which test the expected factorization in the large $$N$$ <math><mi>N</mi></math>  limit. The investigations are carried out both in the continuum limit and at finite lattice spacing. Large $$N$$ <math><mi>N</mi></math>  scaling is verified non-perturbatively and with high precision; in particular, factorization is confirmed. For quantities which only probe distances below the typical confinement length scale, the coefficients of the $$1/N$$ <math><mrow><mn>1</mn><mo>/</mo><mi>N</mi></mrow></math>  expansion are of $$\\mathrm{O}(1)$$ <math><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math> , but we found that large (smoothed) Wilson loops have rather large $$\\mathrm{O}(1/N^2)$$ <math><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>/</mo><msup><mi>N</mi><mn>2</mn></msup><mo>)</mo></mrow></math>  corrections. The exact size of such corrections does, of course, also depend on what is kept fixed when the limit is taken."
    }
  ], 
  "imprints": [
    {
      "date": "2019-01-17", 
      "publisher": "Springer"
    }
  ]
}
Published on:
17 January 2019
Publisher:
Springer
Published in:
European Physical Journal C , Volume 79 (2019)
Issue 1
Pages 1-14
DOI:
https://doi.org/10.1140/epjc/s10052-019-6539-4
Copyrights:
The Author(s)
Licence:
CC-BY-4.0

Fulltext files: