Placing the newly observed state BJ(5840) in bottom spectra along with states B1(5721), B2*(5747), Bs1(5830), B2s*(5840), and BJ(5970)

Pallavi Gupta (School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India) ; A. Upadhyay (School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India)

We apply the formalism of P. Colangelo et al. [Phys. Rev. D 86, 054024 (2012)] to discuss the quantum number assignments for the recently observed BJ(5840) state by R. Aaij et al. (LHCb Collaboration) [J. High Energy Phys. 04 (2015) 024], and we classify the six possible JP’s for this state on the basis of the theoretically available masses. By analyzing the strong decay widths and the branching ratios for all six of these cases of BJ(5840), we justify one of them to be the most favorable assignment. We also examine the recently observed bottom state BJ(5970) as 2S1 and states BJ(5721) and B2*(5747) with their strange partners Bs1(5830) and B2s*(5840) for their JP’s as 1P3/21+ and 1P3/22+, respectively. The predicted coupling constants gXH, g˜HH, and gTH help in redeeming the strong decay width of experimentally missing bottom states B(2S10), Bs(2S31), Bs(2S10), B(1D12), Bs(1D31), and Bs(1D12). These predictions provide crucial information for upcoming experimental studies.

{
  "_oai": {
    "updated": "2021-08-28T16:13:57Z", 
    "id": "oai:repo.scoap3.org:47635", 
    "sets": [
      "PRD"
    ]
  }, 
  "authors": [
    {
      "raw_name": "Pallavi Gupta", 
      "affiliations": [
        {
          "country": "India", 
          "value": "School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India"
        }
      ], 
      "surname": "Gupta", 
      "given_names": "Pallavi", 
      "full_name": "Gupta, Pallavi"
    }, 
    {
      "raw_name": "A. Upadhyay", 
      "affiliations": [
        {
          "country": "India", 
          "value": "School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India"
        }
      ], 
      "surname": "Upadhyay", 
      "given_names": "A.", 
      "full_name": "Upadhyay, A."
    }
  ], 
  "titles": [
    {
      "source": "APS", 
      "title": "Placing the newly observed state <math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>(</mo><mn>5840</mn><mo>)</mo></mrow></math> in bottom spectra along with states <math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mn>5721</mn><mo>)</mo></mrow></math>, <math><msubsup><mi>B</mi><mn>2</mn><mo>*</mo></msubsup><mo>(</mo><mn>5747</mn><mo>)</mo></math>, <math><msub><mi>B</mi><mrow><mi>s</mi><mn>1</mn></mrow></msub><mo>(</mo><mn>5830</mn><mo>)</mo></math>, <math><msubsup><mi>B</mi><mrow><mn>2</mn><mi>s</mi></mrow><mo>*</mo></msubsup><mo>(</mo><mn>5840</mn><mo>)</mo></math>, and <math><msub><mi>B</mi><mi>J</mi></msub><mo>(</mo><mn>5970</mn><mo>)</mo></math>"
    }
  ], 
  "dois": [
    {
      "value": "10.1103/PhysRevD.99.094043"
    }
  ], 
  "publication_info": [
    {
      "journal_volume": "99", 
      "journal_title": "Physical Review D", 
      "material": "article", 
      "journal_issue": "9", 
      "year": 2019
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2021-08-25T10:37:19.118669", 
    "source": "APS", 
    "method": "APS", 
    "submission_number": "810b323c058f11ecb53772fd3742099d"
  }, 
  "page_nr": [
    11
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses/by/4.0/", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "statement": "Published by the American Physical Society", 
      "year": "2019"
    }
  ], 
  "control_number": "47635", 
  "record_creation_date": "2019-05-31T16:30:06.421854", 
  "_files": [
    {
      "checksum": "md5:f67207c93ce9716710135285e58cfdef", 
      "filetype": "pdf", 
      "bucket": "73134209-7b64-48ee-aff6-65ccb07e87d6", 
      "version_id": "fed8a16f-0c25-42e6-98bc-270ff5a0d22c", 
      "key": "10.1103/PhysRevD.99.094043.pdf", 
      "size": 272593
    }, 
    {
      "checksum": "md5:a83e5dad255ec3f647a3c2511767ecd8", 
      "filetype": "xml", 
      "bucket": "73134209-7b64-48ee-aff6-65ccb07e87d6", 
      "version_id": "e7991243-378a-4c90-b58f-13e72aebdac3", 
      "key": "10.1103/PhysRevD.99.094043.xml", 
      "size": 342198
    }
  ], 
  "collections": [
    {
      "primary": "HEP"
    }, 
    {
      "primary": "Citeable"
    }, 
    {
      "primary": "Published"
    }
  ], 
  "arxiv_eprints": [
    {
      "categories": [
        "hep-ph"
      ], 
      "value": "1803.03136"
    }
  ], 
  "abstracts": [
    {
      "source": "APS", 
      "value": "We apply the formalism of P. Colangelo et al. [Phys. Rev. D 86, 054024 (2012)] to discuss the quantum number assignments for the recently observed <math><msub><mi>B</mi><mi>J</mi></msub><mo>(</mo><mn>5840</mn><mo>)</mo></math> state by R. Aaij et al. (LHCb Collaboration) [J. High Energy Phys. 04 (2015) 024], and we classify the six possible <math><msup><mi>J</mi><mi>P</mi></msup></math>\u2019s for this state on the basis of the theoretically available masses. By analyzing the strong decay widths and the branching ratios for all six of these cases of <math><msub><mi>B</mi><mi>J</mi></msub><mo>(</mo><mn>5840</mn><mo>)</mo></math>, we justify one of them to be the most favorable assignment. We also examine the recently observed bottom state <math><msub><mi>B</mi><mi>J</mi></msub><mo>(</mo><mn>5970</mn><mo>)</mo></math> as <math><mn>2</mn><mi>S</mi><msup><mn>1</mn><mo>\u2212</mo></msup></math> and states <math><msub><mi>B</mi><mi>J</mi></msub><mo>(</mo><mn>5721</mn><mo>)</mo></math> and <math><msubsup><mi>B</mi><mn>2</mn><mo>*</mo></msubsup><mo>(</mo><mn>5747</mn><mo>)</mo></math> with their strange partners <math><msub><mi>B</mi><mrow><mi>s</mi><mn>1</mn></mrow></msub><mo>(</mo><mn>5830</mn><mo>)</mo></math> and <math><msubsup><mi>B</mi><mrow><mn>2</mn><mi>s</mi></mrow><mo>*</mo></msubsup><mo>(</mo><mn>5840</mn><mo>)</mo></math> for their <math><msup><mi>J</mi><mi>P</mi></msup></math>\u2019s as <math><mrow><mn>1</mn><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub><msup><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msup></mrow></math> and <math><mn>1</mn><msub><mi>P</mi><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msub><msup><mn>2</mn><mo>+</mo></msup></math>, respectively. The predicted coupling constants <math><msub><mi>g</mi><mrow><mi>X</mi><mi>H</mi></mrow></msub></math>, <math><msub><mover><mi>g</mi><mo>\u02dc</mo></mover><mrow><mi>H</mi><mi>H</mi></mrow></msub></math>, and <math><msub><mi>g</mi><mrow><mi>T</mi><mi>H</mi></mrow></msub></math> help in redeeming the strong decay width of experimentally missing bottom states <math><mrow><mi>B</mi><mo>(</mo><mn>2</mn><msub><mrow><mmultiscripts><mrow><mi>S</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>1</mn></mrow></mmultiscripts></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></math>, <math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mn>2</mn><msub><mrow><mmultiscripts><mrow><mi>S</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>3</mn></mrow></mmultiscripts></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow></math>, <math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><mn>2</mn><msub><mrow><mmultiscripts><mrow><mi>S</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>1</mn></mrow></mmultiscripts></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></math>, <math><mrow><mi>B</mi><mo>(</mo><mn>1</mn><msub><mrow><mmultiscripts><mrow><mi>D</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>1</mn></mrow></mmultiscripts></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow></math>, <math><msub><mi>B</mi><mi>s</mi></msub><mo>(</mo><mn>1</mn><msub><mmultiscripts><mrow><mi>D</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>3</mn></mrow></mmultiscripts><mn>1</mn></msub><mo>)</mo></math>, and <math><msub><mi>B</mi><mi>s</mi></msub><mo>(</mo><mn>1</mn><msub><mmultiscripts><mrow><mi>D</mi></mrow><mprescripts></mprescripts><none></none><mrow><mn>1</mn></mrow></mmultiscripts><mn>2</mn></msub><mo>)</mo></math>. These predictions provide crucial information for upcoming experimental studies."
    }
  ], 
  "imprints": [
    {
      "date": "2019-05-31", 
      "publisher": "APS"
    }
  ]
}
Published on:
31 May 2019
Publisher:
APS
Published in:
Physical Review D , Volume 99 (2019)
Issue 9
DOI:
https://doi.org/10.1103/PhysRevD.99.094043
arXiv:
1803.03136
Copyrights:
Published by the American Physical Society
Licence:
CC-BY-4.0

Fulltext files: