Chiral crossover in QCD at zero and non-zero chemical potentials

A. Bazavov (Department of Computational Mathematics, Science and Engineering, Department of Physics and Astronomy, Michigan State University, East Lansing, USA) ; H.T. Ding (Key Laboratory of Quark & Lepton Physics (MOE), Institute of Particle Physics, Central China Normal University, Wuhan, China) ; P. Hegde (Center for High Energy Physics, Indian Institute of Science, Bangaluru, India) ; O. Kaczmarek (Key Laboratory of Quark & Lepton Physics (MOE), Institute of Particle Physics, Central China Normal University, Wuhan, China; Fakultät für Physik, Universität Bielefeld, Bielefeld, Germany) ; F. Karsch (Fakultät für Physik, Universität Bielefeld, Bielefeld, Germany; Physics Department, Brookhaven National Laboratory, Upton, USA) ; et al. - Show all 17 authors

We present results for pseudo-critical temperatures of QCD chiral crossovers at zero and non-zero values of baryon (B), strangeness (S), electric charge (Q), and isospin (I) chemical potentials μX=B,Q,S,I. The results were obtained using lattice QCD calculations carried out with two degenerate up and down dynamical quarks and a dynamical strange quark, with quark masses corresponding to physical values of pion and kaon masses in the continuum limit. By parameterizing pseudo-critical temperatures as Tc(μX)=Tc(0)[1κ2X(μX/Tc(0))2κ4X(μX/Tc(0))4], we determined κ2X and κ4X from Taylor expansions of chiral observables in μX. We obtained a precise result for Tc(0)=(156.5±1.5) MeV. For analogous thermal conditions at the chemical freeze-out of relativistic heavy-ion collisions, i.e., μS(T,μB) and μQ(T,μB) fixed from strangeness-neutrality and isospin-imbalance, we found κ2B=0.012(4) and κ4B=0.000(4). For μB300 MeV, the chemical freeze-out takes place in the vicinity of the QCD phase boundary, which coincides with the lines of constant energy density of 0.42(6)GeV/fm3 and constant entropy density of 3.7(5)fm3.

{
  "_oai": {
    "updated": "2019-07-31T10:38:42Z", 
    "id": "oai:repo.scoap3.org:47753", 
    "sets": [
      "PLB"
    ]
  }, 
  "authors": [
    {
      "affiliations": [
        {
          "country": "USA", 
          "value": "Department of Computational Mathematics, Science and Engineering, Department of Physics and Astronomy, Michigan State University, East Lansing, USA"
        }
      ], 
      "surname": "Bazavov", 
      "given_names": "A.", 
      "full_name": "Bazavov, A."
    }, 
    {
      "orcid": "0000-0003-0590-081X", 
      "affiliations": [
        {
          "country": "China", 
          "value": "Key Laboratory of Quark & Lepton Physics (MOE), Institute of Particle Physics, Central China Normal University, Wuhan, China"
        }
      ], 
      "surname": "Ding", 
      "given_names": "H.T.", 
      "full_name": "Ding, H.T."
    }, 
    {
      "affiliations": [
        {
          "country": "India", 
          "value": "Center for High Energy Physics, Indian Institute of Science, Bangaluru, India"
        }
      ], 
      "surname": "Hegde", 
      "given_names": "P.", 
      "full_name": "Hegde, P."
    }, 
    {
      "affiliations": [
        {
          "country": "China", 
          "value": "Key Laboratory of Quark & Lepton Physics (MOE), Institute of Particle Physics, Central China Normal University, Wuhan, China"
        }, 
        {
          "country": "Germany", 
          "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, Bielefeld, Germany"
        }
      ], 
      "surname": "Kaczmarek", 
      "given_names": "O.", 
      "full_name": "Kaczmarek, O."
    }, 
    {
      "affiliations": [
        {
          "country": "Germany", 
          "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, Bielefeld, Germany"
        }, 
        {
          "country": "USA", 
          "value": "Physics Department, Brookhaven National Laboratory, Upton, USA"
        }
      ], 
      "surname": "Karsch", 
      "given_names": "F.", 
      "full_name": "Karsch, F."
    }, 
    {
      "affiliations": [
        {
          "country": "USA", 
          "value": "Physics Department, Brookhaven National Laboratory, Upton, USA"
        }
      ], 
      "surname": "Karthik", 
      "given_names": "N.", 
      "full_name": "Karthik, N."
    }, 
    {
      "affiliations": [
        {
          "country": "Germany", 
          "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, Bielefeld, Germany"
        }
      ], 
      "surname": "Laermann", 
      "given_names": "E.", 
      "full_name": "Laermann, E."
    }, 
    {
      "affiliations": [
        {
          "country": "Germany", 
          "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, Bielefeld, Germany"
        }
      ], 
      "surname": "Lahiri", 
      "given_names": "Anirban", 
      "full_name": "Lahiri, Anirban"
    }, 
    {
      "affiliations": [
        {
          "country": "USA", 
          "value": "Physics Department, Brookhaven National Laboratory, Upton, USA"
        }
      ], 
      "surname": "Larsen", 
      "given_names": "R.", 
      "full_name": "Larsen, R."
    }, 
    {
      "affiliations": [
        {
          "country": "China", 
          "value": "Key Laboratory of Quark & Lepton Physics (MOE), Institute of Particle Physics, Central China Normal University, Wuhan, China"
        }
      ], 
      "surname": "Li", 
      "given_names": "S.T.", 
      "full_name": "Li, S.T."
    }, 
    {
      "affiliations": [
        {
          "country": "USA", 
          "value": "Physics Department, Brookhaven National Laboratory, Upton, USA"
        }
      ], 
      "surname": "Mukherjee", 
      "given_names": "Swagato", 
      "full_name": "Mukherjee, Swagato"
    }, 
    {
      "affiliations": [
        {
          "country": "Japan", 
          "value": "Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan"
        }
      ], 
      "surname": "Ohno", 
      "given_names": "H.", 
      "full_name": "Ohno, H."
    }, 
    {
      "affiliations": [
        {
          "country": "USA", 
          "value": "Physics Department, Brookhaven National Laboratory, Upton, USA"
        }
      ], 
      "surname": "Petreczky", 
      "given_names": "P.", 
      "full_name": "Petreczky, P."
    }, 
    {
      "affiliations": [
        {
          "country": "Germany", 
          "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, Bielefeld, Germany"
        }
      ], 
      "surname": "Sandmeyer", 
      "given_names": "H.", 
      "full_name": "Sandmeyer, H."
    }, 
    {
      "affiliations": [
        {
          "country": "Germany", 
          "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, Bielefeld, Germany"
        }
      ], 
      "surname": "Schmidt", 
      "given_names": "C.", 
      "full_name": "Schmidt, C."
    }, 
    {
      "affiliations": [
        {
          "country": "India", 
          "value": "Department of Theoretical Physics, The Institute of Mathematical Sciences, Chennai, India"
        }
      ], 
      "surname": "Sharma", 
      "given_names": "S.", 
      "full_name": "Sharma, S."
    }, 
    {
      "affiliations": [
        {
          "country": "USA", 
          "value": "Physics Department, Brookhaven National Laboratory, Upton, USA"
        }
      ], 
      "surname": "Steinbrecher", 
      "given_names": "P.", 
      "full_name": "Steinbrecher, P."
    }
  ], 
  "titles": [
    {
      "source": "Elsevier", 
      "title": "Chiral crossover in QCD at zero and non-zero chemical potentials"
    }
  ], 
  "dois": [
    {
      "value": "10.1016/j.physletb.2019.05.013"
    }
  ], 
  "publication_info": [
    {
      "page_end": "21", 
      "journal_title": "Physics Letters B", 
      "material": "article", 
      "journal_volume": "795 C", 
      "artid": "34633", 
      "year": 2019, 
      "page_start": "15"
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2019-07-31T12:28:42.324679", 
    "source": "Elsevier", 
    "method": "Elsevier", 
    "submission_number": "0ca954cab37d11e9be7602163e01809a"
  }, 
  "page_nr": [
    7
  ], 
  "license": [
    {
      "url": "http://creativecommons.org/licenses/by/3.0/", 
      "license": "CC-BY-3.0"
    }
  ], 
  "copyright": [
    {
      "holder": "The Author(s)", 
      "statement": "The Author(s)", 
      "year": "2019"
    }
  ], 
  "control_number": "47753", 
  "record_creation_date": "2019-06-11T11:30:57.835511", 
  "_files": [
    {
      "checksum": "md5:bf99355f4558b13eeff1c612809834b5", 
      "filetype": "xml", 
      "bucket": "527a151d-dd96-423b-86c4-6b74cd2dafe5", 
      "version_id": "01ca1396-a57c-4444-b815-a31f5f597fd7", 
      "key": "10.1016/j.physletb.2019.05.013.xml", 
      "size": 269095
    }, 
    {
      "checksum": "md5:3746b4e890326a0b1e6755359bd87ffe", 
      "filetype": "pdf", 
      "bucket": "527a151d-dd96-423b-86c4-6b74cd2dafe5", 
      "version_id": "e90f37c7-fb56-4a8e-83a8-754e9f8e3395", 
      "key": "10.1016/j.physletb.2019.05.013.pdf", 
      "size": 557564
    }, 
    {
      "checksum": "md5:c89e038b56c1965afaa1e322b029f58e", 
      "filetype": "pdf/a", 
      "bucket": "527a151d-dd96-423b-86c4-6b74cd2dafe5", 
      "version_id": "211c1fbd-4037-4a0f-a943-3e347d2ed97f", 
      "key": "10.1016/j.physletb.2019.05.013_a.pdf", 
      "size": 892580
    }
  ], 
  "collaborations": [
    {
      "value": "HotQCD Collaboration"
    }
  ], 
  "collections": [
    {
      "primary": "Physics Letters B"
    }
  ], 
  "abstracts": [
    {
      "source": "Elsevier", 
      "value": "We present results for pseudo-critical temperatures of QCD chiral crossovers at zero and non-zero values of baryon (B), strangeness (S), electric charge (Q), and isospin (I) chemical potentials <math><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>X</mi><mo>=</mo><mi>B</mi><mo>,</mo><mi>Q</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></msub></math>. The results were obtained using lattice QCD calculations carried out with two degenerate up and down dynamical quarks and a dynamical strange quark, with quark masses corresponding to physical values of pion and kaon masses in the continuum limit. By parameterizing pseudo-critical temperatures as <math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>)</mo><mo>=</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo><mrow><mo>[</mo><mn>1</mn><mo>\u2212</mo><msubsup><mrow><mi>\u03ba</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>X</mi></mrow></msubsup><msup><mrow><mo>(</mo><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>/</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>\u2212</mo><msup><mrow><msub><mrow><mi>\u03ba</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow><mrow><mi>X</mi></mrow></msup><msup><mrow><mo>(</mo><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>/</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo><mo>)</mo></mrow><mrow><mn>4</mn></mrow></msup><mo>]</mo></mrow></math>, we determined <math><msubsup><mrow><mi>\u03ba</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>X</mi></mrow></msubsup></math> and <math><msubsup><mrow><mi>\u03ba</mi></mrow><mrow><mn>4</mn></mrow><mrow><mi>X</mi></mrow></msubsup></math> from Taylor expansions of chiral observables in <math><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>X</mi></mrow></msub></math>. We obtained a precise result for <math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mo>(</mo><mn>156.5</mn><mo>\u00b1</mo><mn>1.5</mn><mo>)</mo></math> MeV. For analogous thermal conditions at the chemical freeze-out of relativistic heavy-ion collisions, i.e., <math><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>S</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>,</mo><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>)</mo></math> and <math><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>,</mo><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>)</mo></math> fixed from strangeness-neutrality and isospin-imbalance, we found <math><msup><mrow><msub><mrow><mi>\u03ba</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mi>B</mi></mrow></msup><mo>=</mo><mn>0.012</mn><mo>(</mo><mn>4</mn><mo>)</mo></math> and <math><msubsup><mrow><mi>\u03ba</mi></mrow><mrow><mn>4</mn></mrow><mrow><mi>B</mi></mrow></msubsup><mo>=</mo><mn>0.000</mn><mo>(</mo><mn>4</mn><mo>)</mo></math>. For <math><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>\u2272</mo><mn>300</mn></math> MeV, the chemical freeze-out takes place in the vicinity of the QCD phase boundary, which coincides with the lines of constant energy density of <math><mn>0.42</mn><mo>(</mo><mn>6</mn><mo>)</mo><mspace width=\"0.25em\"></mspace><msup><mrow><mtext>GeV/fm</mtext></mrow><mrow><mn>3</mn></mrow></msup></math> and constant entropy density of <math><mn>3.7</mn><mo>(</mo><mn>5</mn><mo>)</mo><mspace width=\"0.25em\"></mspace><msup><mrow><mtext>fm</mtext></mrow><mrow><mo>\u2212</mo><mn>3</mn></mrow></msup></math>."
    }
  ], 
  "imprints": [
    {
      "date": "2019-07-31", 
      "publisher": "Elsevier"
    }
  ]
}
Published on:
31 July 2019
Publisher:
Elsevier
Published in:
Physics Letters B , Volume 795 C (2019)

Pages 15-21
DOI:
https://doi.org/10.1016/j.physletb.2019.05.013
Copyrights:
The Author(s)
Licence:
CC-BY-3.0

Fulltext files: