We present results for pseudo-critical temperatures of QCD chiral crossovers at zero and non-zero values of baryon (B), strangeness (S), electric charge (Q), and isospin (I) chemical potentials . The results were obtained using lattice QCD calculations carried out with two degenerate up and down dynamical quarks and a dynamical strange quark, with quark masses corresponding to physical values of pion and kaon masses in the continuum limit. By parameterizing pseudo-critical temperatures as , we determined and from Taylor expansions of chiral observables in . We obtained a precise result for MeV. For analogous thermal conditions at the chemical freeze-out of relativistic heavy-ion collisions, i.e., and fixed from strangeness-neutrality and isospin-imbalance, we found and . For MeV, the chemical freeze-out takes place in the vicinity of the QCD phase boundary, which coincides with the lines of constant energy density of and constant entropy density of .
{ "_oai": { "updated": "2019-07-31T10:38:42Z", "id": "oai:repo.scoap3.org:47753", "sets": [ "PLB" ] }, "authors": [ { "affiliations": [ { "country": "USA", "value": "Department of Computational Mathematics, Science and Engineering, Department of Physics and Astronomy, Michigan State University, East Lansing, USA" } ], "surname": "Bazavov", "given_names": "A.", "full_name": "Bazavov, A." }, { "orcid": "0000-0003-0590-081X", "affiliations": [ { "country": "China", "value": "Key Laboratory of Quark & Lepton Physics (MOE), Institute of Particle Physics, Central China Normal University, Wuhan, China" } ], "surname": "Ding", "given_names": "H.T.", "full_name": "Ding, H.T." }, { "affiliations": [ { "country": "India", "value": "Center for High Energy Physics, Indian Institute of Science, Bangaluru, India" } ], "surname": "Hegde", "given_names": "P.", "full_name": "Hegde, P." }, { "affiliations": [ { "country": "China", "value": "Key Laboratory of Quark & Lepton Physics (MOE), Institute of Particle Physics, Central China Normal University, Wuhan, China" }, { "country": "Germany", "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, Bielefeld, Germany" } ], "surname": "Kaczmarek", "given_names": "O.", "full_name": "Kaczmarek, O." }, { "affiliations": [ { "country": "Germany", "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, Bielefeld, Germany" }, { "country": "USA", "value": "Physics Department, Brookhaven National Laboratory, Upton, USA" } ], "surname": "Karsch", "given_names": "F.", "full_name": "Karsch, F." }, { "affiliations": [ { "country": "USA", "value": "Physics Department, Brookhaven National Laboratory, Upton, USA" } ], "surname": "Karthik", "given_names": "N.", "full_name": "Karthik, N." }, { "affiliations": [ { "country": "Germany", "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, Bielefeld, Germany" } ], "surname": "Laermann", "given_names": "E.", "full_name": "Laermann, E." }, { "affiliations": [ { "country": "Germany", "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, Bielefeld, Germany" } ], "surname": "Lahiri", "given_names": "Anirban", "full_name": "Lahiri, Anirban" }, { "affiliations": [ { "country": "USA", "value": "Physics Department, Brookhaven National Laboratory, Upton, USA" } ], "surname": "Larsen", "given_names": "R.", "full_name": "Larsen, R." }, { "affiliations": [ { "country": "China", "value": "Key Laboratory of Quark & Lepton Physics (MOE), Institute of Particle Physics, Central China Normal University, Wuhan, China" } ], "surname": "Li", "given_names": "S.T.", "full_name": "Li, S.T." }, { "affiliations": [ { "country": "USA", "value": "Physics Department, Brookhaven National Laboratory, Upton, USA" } ], "surname": "Mukherjee", "given_names": "Swagato", "full_name": "Mukherjee, Swagato" }, { "affiliations": [ { "country": "Japan", "value": "Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan" } ], "surname": "Ohno", "given_names": "H.", "full_name": "Ohno, H." }, { "affiliations": [ { "country": "USA", "value": "Physics Department, Brookhaven National Laboratory, Upton, USA" } ], "surname": "Petreczky", "given_names": "P.", "full_name": "Petreczky, P." }, { "affiliations": [ { "country": "Germany", "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, Bielefeld, Germany" } ], "surname": "Sandmeyer", "given_names": "H.", "full_name": "Sandmeyer, H." }, { "affiliations": [ { "country": "Germany", "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, Bielefeld, Germany" } ], "surname": "Schmidt", "given_names": "C.", "full_name": "Schmidt, C." }, { "affiliations": [ { "country": "India", "value": "Department of Theoretical Physics, The Institute of Mathematical Sciences, Chennai, India" } ], "surname": "Sharma", "given_names": "S.", "full_name": "Sharma, S." }, { "affiliations": [ { "country": "USA", "value": "Physics Department, Brookhaven National Laboratory, Upton, USA" } ], "surname": "Steinbrecher", "given_names": "P.", "full_name": "Steinbrecher, P." } ], "titles": [ { "source": "Elsevier", "title": "Chiral crossover in QCD at zero and non-zero chemical potentials" } ], "dois": [ { "value": "10.1016/j.physletb.2019.05.013" } ], "publication_info": [ { "page_end": "21", "journal_title": "Physics Letters B", "material": "article", "journal_volume": "795 C", "artid": "34633", "year": 2019, "page_start": "15" } ], "$schema": "http://repo.scoap3.org/schemas/hep.json", "acquisition_source": { "date": "2019-07-31T12:28:42.324679", "source": "Elsevier", "method": "Elsevier", "submission_number": "0ca954cab37d11e9be7602163e01809a" }, "page_nr": [ 7 ], "license": [ { "url": "http://creativecommons.org/licenses/by/3.0/", "license": "CC-BY-3.0" } ], "copyright": [ { "holder": "The Author(s)", "statement": "The Author(s)", "year": "2019" } ], "control_number": "47753", "record_creation_date": "2019-06-11T11:30:57.835511", "_files": [ { "checksum": "md5:bf99355f4558b13eeff1c612809834b5", "filetype": "xml", "bucket": "527a151d-dd96-423b-86c4-6b74cd2dafe5", "version_id": "01ca1396-a57c-4444-b815-a31f5f597fd7", "key": "10.1016/j.physletb.2019.05.013.xml", "size": 269095 }, { "checksum": "md5:3746b4e890326a0b1e6755359bd87ffe", "filetype": "pdf", "bucket": "527a151d-dd96-423b-86c4-6b74cd2dafe5", "version_id": "e90f37c7-fb56-4a8e-83a8-754e9f8e3395", "key": "10.1016/j.physletb.2019.05.013.pdf", "size": 557564 }, { "checksum": "md5:c89e038b56c1965afaa1e322b029f58e", "filetype": "pdf/a", "bucket": "527a151d-dd96-423b-86c4-6b74cd2dafe5", "version_id": "211c1fbd-4037-4a0f-a943-3e347d2ed97f", "key": "10.1016/j.physletb.2019.05.013_a.pdf", "size": 892580 } ], "collaborations": [ { "value": "HotQCD Collaboration" } ], "collections": [ { "primary": "Physics Letters B" } ], "abstracts": [ { "source": "Elsevier", "value": "We present results for pseudo-critical temperatures of QCD chiral crossovers at zero and non-zero values of baryon (B), strangeness (S), electric charge (Q), and isospin (I) chemical potentials <math><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>X</mi><mo>=</mo><mi>B</mi><mo>,</mo><mi>Q</mi><mo>,</mo><mi>S</mi><mo>,</mo><mi>I</mi></mrow></msub></math>. The results were obtained using lattice QCD calculations carried out with two degenerate up and down dynamical quarks and a dynamical strange quark, with quark masses corresponding to physical values of pion and kaon masses in the continuum limit. By parameterizing pseudo-critical temperatures as <math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>)</mo><mo>=</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo><mrow><mo>[</mo><mn>1</mn><mo>\u2212</mo><msubsup><mrow><mi>\u03ba</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>X</mi></mrow></msubsup><msup><mrow><mo>(</mo><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>/</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>\u2212</mo><msup><mrow><msub><mrow><mi>\u03ba</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow><mrow><mi>X</mi></mrow></msup><msup><mrow><mo>(</mo><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>/</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo><mo>)</mo></mrow><mrow><mn>4</mn></mrow></msup><mo>]</mo></mrow></math>, we determined <math><msubsup><mrow><mi>\u03ba</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>X</mi></mrow></msubsup></math> and <math><msubsup><mrow><mi>\u03ba</mi></mrow><mrow><mn>4</mn></mrow><mrow><mi>X</mi></mrow></msubsup></math> from Taylor expansions of chiral observables in <math><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>X</mi></mrow></msub></math>. We obtained a precise result for <math><msub><mrow><mi>T</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mo>(</mo><mn>156.5</mn><mo>\u00b1</mo><mn>1.5</mn><mo>)</mo></math> MeV. For analogous thermal conditions at the chemical freeze-out of relativistic heavy-ion collisions, i.e., <math><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>S</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>,</mo><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>)</mo></math> and <math><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>Q</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>,</mo><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>)</mo></math> fixed from strangeness-neutrality and isospin-imbalance, we found <math><msup><mrow><msub><mrow><mi>\u03ba</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mi>B</mi></mrow></msup><mo>=</mo><mn>0.012</mn><mo>(</mo><mn>4</mn><mo>)</mo></math> and <math><msubsup><mrow><mi>\u03ba</mi></mrow><mrow><mn>4</mn></mrow><mrow><mi>B</mi></mrow></msubsup><mo>=</mo><mn>0.000</mn><mo>(</mo><mn>4</mn><mo>)</mo></math>. For <math><msub><mrow><mi>\u03bc</mi></mrow><mrow><mi>B</mi></mrow></msub><mo>\u2272</mo><mn>300</mn></math> MeV, the chemical freeze-out takes place in the vicinity of the QCD phase boundary, which coincides with the lines of constant energy density of <math><mn>0.42</mn><mo>(</mo><mn>6</mn><mo>)</mo><mspace width=\"0.25em\"></mspace><msup><mrow><mtext>GeV/fm</mtext></mrow><mrow><mn>3</mn></mrow></msup></math> and constant entropy density of <math><mn>3.7</mn><mo>(</mo><mn>5</mn><mo>)</mo><mspace width=\"0.25em\"></mspace><msup><mrow><mtext>fm</mtext></mrow><mrow><mo>\u2212</mo><mn>3</mn></mrow></msup></math>." } ], "imprints": [ { "date": "2019-07-31", "publisher": "Elsevier" } ] }