Momentum dependence of quantum critical Dirac systems

Lennart Dabelow (Fakultät für Physik, Universität Bielefeld, 33615 Bielefeld, Germany) ; Holger Gies (Theoretisch-Physikalisches Institut, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany and Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany) ; Benjamin Knorr (Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands)

We analyze fermionic criticality in relativistic 2+1 dimensional fermion systems using the functional renormalization group (FRG), concentrating on the Gross-Neveu (chiral Ising) and the Thirring model. While a variety of methods, including the FRG, appear to reach quantitative consensus for the critical regime of the Gross-Neveu model, the situation seems more diverse for the Thirring model with different methods yielding vastly different results. We present a first exploratory FRG study of such fermion systems including momentum-dependent couplings using pseudo-spectral methods. Our results corroborate the stability of results in Gross-Neveu-type universality classes, but indicate that momentum dependencies become more important in Thirring-type models for small flavor numbers. For larger flavor numbers, we confirm the existence of a non-Gaussian fixed point and thus a physical continuum limit. In the large-N limit, we obtain an analytic solution for the momentum dependence of the fixed-point vertex.

{
  "_oai": {
    "updated": "2021-08-28T17:01:02Z", 
    "id": "oai:repo.scoap3.org:48285", 
    "sets": [
      "PRD"
    ]
  }, 
  "authors": [
    {
      "raw_name": "Lennart Dabelow", 
      "affiliations": [
        {
          "country": "Germany", 
          "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, 33615 Bielefeld, Germany"
        }
      ], 
      "surname": "Dabelow", 
      "given_names": "Lennart", 
      "full_name": "Dabelow, Lennart"
    }, 
    {
      "raw_name": "Holger Gies", 
      "affiliations": [
        {
          "country": "Germany", 
          "value": "Theoretisch-Physikalisches Institut, Abbe Center of Photonics, Friedrich-Schiller-Universit\u00e4t Jena, Max-Wien-Platz 1, 07743 Jena, Germany and Helmholtz-Institut Jena, Fr\u00f6belstieg 3, 07743 Jena, Germany"
        }
      ], 
      "surname": "Gies", 
      "given_names": "Holger", 
      "full_name": "Gies, Holger"
    }, 
    {
      "raw_name": "Benjamin Knorr", 
      "affiliations": [
        {
          "country": "Netherlands", 
          "value": "Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands"
        }
      ], 
      "surname": "Knorr", 
      "given_names": "Benjamin", 
      "full_name": "Knorr, Benjamin"
    }
  ], 
  "titles": [
    {
      "source": "APS", 
      "title": "Momentum dependence of quantum critical Dirac systems"
    }
  ], 
  "dois": [
    {
      "value": "10.1103/PhysRevD.99.125019"
    }
  ], 
  "publication_info": [
    {
      "journal_volume": "99", 
      "journal_title": "Physical Review D", 
      "material": "article", 
      "journal_issue": "12", 
      "year": 2019
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2021-08-25T10:37:39.610007", 
    "source": "APS", 
    "method": "APS", 
    "submission_number": "810b323c058f11ecb53772fd3742099d"
  }, 
  "page_nr": [
    20
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses/by/4.0/", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "statement": "Published by the American Physical Society", 
      "year": "2019"
    }
  ], 
  "control_number": "48285", 
  "record_creation_date": "2019-06-28T16:30:05.071160", 
  "_files": [
    {
      "checksum": "md5:03c86f403f80c71b2a7af8692f5bf102", 
      "filetype": "pdf", 
      "bucket": "959e1e6f-4166-4374-b2cf-4676d6237391", 
      "version_id": "3ddbd7e6-69d1-4554-ba30-51fb51f06e08", 
      "key": "10.1103/PhysRevD.99.125019.pdf", 
      "size": 1309341
    }, 
    {
      "checksum": "md5:144a6694306977d3dbb36d4ad907d4a3", 
      "filetype": "xml", 
      "bucket": "959e1e6f-4166-4374-b2cf-4676d6237391", 
      "version_id": "b5380080-3e5c-4684-9301-e5177be513e0", 
      "key": "10.1103/PhysRevD.99.125019.xml", 
      "size": 415002
    }
  ], 
  "collections": [
    {
      "primary": "HEP"
    }, 
    {
      "primary": "Citeable"
    }, 
    {
      "primary": "Published"
    }
  ], 
  "arxiv_eprints": [
    {
      "categories": [
        "hep-th", 
        "cond-mat.str-el", 
        "hep-lat"
      ], 
      "value": "1903.07388"
    }
  ], 
  "abstracts": [
    {
      "source": "APS", 
      "value": "We analyze fermionic criticality in relativistic <math><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></math> dimensional fermion systems using the functional renormalization group (FRG), concentrating on the Gross-Neveu (chiral Ising) and the Thirring model. While a variety of methods, including the FRG, appear to reach quantitative consensus for the critical regime of the Gross-Neveu model, the situation seems more diverse for the Thirring model with different methods yielding vastly different results. We present a first exploratory FRG study of such fermion systems including momentum-dependent couplings using pseudo-spectral methods. Our results corroborate the stability of results in Gross-Neveu-type universality classes, but indicate that momentum dependencies become more important in Thirring-type models for small flavor numbers. For larger flavor numbers, we confirm the existence of a non-Gaussian fixed point and thus a physical continuum limit. In the large-<math><mrow><mi>N</mi></mrow></math> limit, we obtain an analytic solution for the momentum dependence of the fixed-point vertex."
    }
  ], 
  "imprints": [
    {
      "date": "2019-06-28", 
      "publisher": "APS"
    }
  ]
}
Published on:
28 June 2019
Publisher:
APS
Published in:
Physical Review D , Volume 99 (2019)
Issue 12
DOI:
https://doi.org/10.1103/PhysRevD.99.125019
arXiv:
1903.07388
Copyrights:
Published by the American Physical Society
Licence:
CC-BY-4.0

Fulltext files: