We present a lattice-QCD-based determination of the chiral phase transition temperature in QCD with two degenerate, massless quarks and a physical strange quark mass using lattice QCD calculations with the highly improved staggered quarks action. We propose and calculate two novel estimators for the chiral transition temperature for several values of the light quark masses, corresponding to Goldstone pion masses in the range of . The chiral phase transition temperature is determined by extrapolating to vanishing pion mass using universal scaling analysis. Finite-volume effects are controlled by extrapolating to the thermodynamic limit using spatial lattice extents in the range of 2.8–4.5 times the inverse of the pion mass. Continuum extrapolations are carried out by using three different values of the lattice cutoff, corresponding to lattices with temporal extents , 8, and 12. After thermodynamic, continuum, and chiral extrapolations, we find the chiral phase transition temperature .
{ "_oai": { "updated": "2021-08-28T17:30:39Z", "id": "oai:repo.scoap3.org:49044", "sets": [ "PRL" ] }, "authors": [ { "raw_name": "H.-T. Ding", "affiliations": [ { "country": "China", "value": "Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China" } ], "surname": "Ding", "given_names": "H.T.", "full_name": "Ding, H.T." }, { "raw_name": "P. Hegde", "affiliations": [ { "country": "India", "value": "Center for High Energy Physics, Indian Institute of Science, Bangalore 560012, India" } ], "surname": "Hegde", "given_names": "P.", "full_name": "Hegde, P." }, { "raw_name": "O. Kaczmarek", "affiliations": [ { "country": "China", "value": "Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China" }, { "country": "Germany", "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, D-33615 Bielefeld, Germany" } ], "surname": "Kaczmarek", "given_names": "O.", "full_name": "Kaczmarek, O." }, { "raw_name": "F. Karsch", "affiliations": [ { "country": "Germany", "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, D-33615 Bielefeld, Germany" }, { "country": "USA", "value": "Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA" } ], "surname": "Karsch", "given_names": "F.", "full_name": "Karsch, F." }, { "raw_name": "Anirban Lahiri", "affiliations": [ { "country": "Germany", "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, D-33615 Bielefeld, Germany" } ], "surname": "Lahiri", "given_names": "Anirban", "full_name": "Lahiri, Anirban" }, { "raw_name": "S.-T. Li", "affiliations": [ { "country": "China", "value": "Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China" } ], "surname": "Li", "given_names": "S.T.", "full_name": "Li, S.T." }, { "raw_name": "Swagato Mukherjee", "affiliations": [ { "country": "USA", "value": "Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA" } ], "surname": "Mukherjee", "given_names": "Swagato", "full_name": "Mukherjee, Swagato" }, { "raw_name": "H. Ohno", "affiliations": [ { "country": "Japan", "value": "Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan" } ], "surname": "Ohno", "given_names": "H.", "full_name": "Ohno, H." }, { "raw_name": "P. Petreczky", "affiliations": [ { "country": "USA", "value": "Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA" } ], "surname": "Petreczky", "given_names": "P.", "full_name": "Petreczky, P." }, { "raw_name": "C. Schmidt", "affiliations": [ { "country": "Germany", "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, D-33615 Bielefeld, Germany" } ], "surname": "Schmidt", "given_names": "C.", "full_name": "Schmidt, C." }, { "raw_name": "P. Steinbrecher", "affiliations": [ { "country": "USA", "value": "Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA" } ], "surname": "Steinbrecher", "given_names": "P.", "full_name": "Steinbrecher, P." } ], "titles": [ { "source": "APS", "title": "Chiral Phase Transition Temperature in (<math><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></math>)-Flavor QCD" } ], "dois": [ { "value": "10.1103/PhysRevLett.123.062002" } ], "publication_info": [ { "journal_volume": "123", "journal_title": "Physical Review Letters", "material": "article", "journal_issue": "6", "year": 2019 } ], "$schema": "http://repo.scoap3.org/schemas/hep.json", "acquisition_source": { "date": "2021-08-25T10:37:50.607969", "source": "APS", "method": "APS", "submission_number": "810b323c058f11ecb53772fd3742099d" }, "page_nr": [ 6 ], "license": [ { "url": "https://creativecommons.org/licenses/by/4.0/", "license": "CC-BY-4.0" } ], "copyright": [ { "statement": "Published by the American Physical Society", "year": "2019" } ], "control_number": "49044", "collaborations": [ { "value": "HotQCD Collaboration" } ], "_files": [ { "checksum": "md5:18417c10dbd3f159470d1c16a79080c1", "filetype": "pdf", "bucket": "d7336207-6b3f-42da-a847-977b7efb0475", "version_id": "66cb0dd3-6f34-44e0-8188-b625bffdafee", "key": "10.1103/PhysRevLett.123.062002.pdf", "size": 316913 }, { "checksum": "md5:a110e553564b7ba3159066f4d24ea7e7", "filetype": "xml", "bucket": "d7336207-6b3f-42da-a847-977b7efb0475", "version_id": "f17cd299-0fc4-4a89-baea-fb249fcf107f", "key": "10.1103/PhysRevLett.123.062002.xml", "size": 108908 } ], "record_creation_date": "2019-08-08T16:30:14.818150", "collections": [ { "primary": "HEP" }, { "primary": "Citeable" }, { "primary": "Published" } ], "arxiv_eprints": [ { "categories": [ "hep-lat", "hep-ph", "hep-th", "nucl-th" ], "value": "1903.04801" } ], "abstracts": [ { "source": "APS", "value": "We present a lattice-QCD-based determination of the chiral phase transition temperature in QCD with two degenerate, massless quarks and a physical strange quark mass using lattice QCD calculations with the highly improved staggered quarks action. We propose and calculate two novel estimators for the chiral transition temperature for several values of the light quark masses, corresponding to Goldstone pion masses in the range of <math><mrow><mn>58</mn><mtext> </mtext><mtext> </mtext><mi>MeV</mi><mo>\u2272</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>\u03c0</mi></mrow></msub><mo>\u2272</mo><mn>163</mn><mtext> </mtext><mtext> </mtext><mi>MeV</mi></mrow></math>. The chiral phase transition temperature is determined by extrapolating to vanishing pion mass using universal scaling analysis. Finite-volume effects are controlled by extrapolating to the thermodynamic limit using spatial lattice extents in the range of 2.8\u20134.5 times the inverse of the pion mass. Continuum extrapolations are carried out by using three different values of the lattice cutoff, corresponding to lattices with temporal extents <math><msub><mi>N</mi><mi>\u03c4</mi></msub><mo>=</mo><mn>6</mn></math>, 8, and 12. After thermodynamic, continuum, and chiral extrapolations, we find the chiral phase transition temperature <math><msubsup><mi>T</mi><mi>c</mi><mn>0</mn></msubsup><mo>=</mo><mn>13</mn><msubsup><mn>2</mn><mrow><mo>\u2212</mo><mn>6</mn></mrow><mrow><mo>+</mo><mn>3</mn></mrow></msubsup><mtext> </mtext><mtext> </mtext><mi>MeV</mi></math>." } ], "imprints": [ { "date": "2019-08-08", "publisher": "APS" } ] }