Flavor changing neutral current decays $$t\rightarrow c X$$ tcX ($$X=\gamma ,\,g,\, Z,\, H$$ X=γ,g,Z,H ) and $$t\rightarrow c{{\bar{\ell }}}\ell $$ tc¯ ($$\ell =\mu ,\,\tau $$ =μ,τ ) via scalar leptoquarks

A. Bolaños (Departamento de Ciencias e Ingenierías, Universidad Iberoamericana, Boulevard del Niño Poblano 2901, Reserva Territorial Atlixcáyotl, San Andrés Cholula, Puebla, CP 72820, Mexico; Department of Science, Tecnologico de Monterrey, Campus Puebla, Av. Atlixcáyotl 2301, Puebla, CP 72453, Mexico) ; R. Sánchez-Vélez (Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, CP 72570, Mexico) ; G. Tavares-Velasco (Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, CP 72570, Mexico)

The flavor changing neutral current decays $$t\rightarrow c X$$ tcX ($$X=\gamma ,\,g,\, Z,\, H$$ X=γ,g,Z,H ) and $$t\rightarrow c{{\bar{\ell }}}\ell $$ tc¯ ($$\ell =\mu ,\,\tau $$ =μ,τ ) are studied in a renormalizable scalar leptoquark (LQ) model with no proton decay, where a scalar SU(2) doublet with hypercharge $$Y=7/6$$ Y=7/6 is added to the standard model, yielding a non-chiral LQ $$\varOmega _{5/3}$$ Ω5/3 . Analytical results for the one-loop (tree-level) contributions of a scalar LQ to the $$f_i\rightarrow f_j X$$ fifjX ($$f_i\rightarrow f_j {\bar{f}}_m f_l$$ fifjf¯mfl ) decays, with $$f_a=q_a, \ell _a$$ fa=qa,a , are presented. We consider the scenario where $$\varOmega _{5/3}$$ Ω5/3 couples to the fermions of the second and third families, with its right- and left-handed couplings obeying $$\lambda _R^{\ell u_i}/\lambda _L^{\ell u_i}=O(\epsilon )$$ λRui/λLui=O(ϵ) , where $$\epsilon $$ ϵ parametrizes the relative size between these couplings. The allowed parameter space is then found via the current constraints on the muon $$(g-2)$$ (g-2) , the $$\tau \rightarrow \mu \gamma $$ τμγ decay, the LHC Higgs boson data, and the direct LQ searches at the LHC. For $$m_{\varOmega _{5/3}}=1$$ mΩ5/3=1 TeV and $$\epsilon =10^{-3}$$ ϵ=10-3 , we find that the $$t\rightarrow c X$$ tcX branching ratios are of similar size and can be as large as $$10^{-8}$$ 10-8 in a tiny area of the parameter space, whereas $${\mathrm{Br}}(t\rightarrow c{{\bar{\tau }}}\tau )$$ Br(tcτ¯τ) [$${\mathrm{Br}}(t\rightarrow c{{\bar{\mu }}}\mu )$$ Br(tcμ¯μ) ] can be up to $$10^{-6}$$ 10-6 ($$10^{-7}$$ 10-7 ).

{
  "_oai": {
    "updated": "2020-01-06T15:24:15Z", 
    "id": "oai:repo.scoap3.org:49277", 
    "sets": [
      "EPJC"
    ]
  }, 
  "authors": [
    {
      "affiliations": [
        {
          "country": "Mexico", 
          "value": "Departamento de Ciencias e Ingenier\u00edas, Universidad Iberoamericana, Boulevard del Ni\u00f1o Poblano 2901, Reserva Territorial Atlixc\u00e1yotl, San Andr\u00e9s Cholula, Puebla, CP 72820, Mexico", 
          "organization": "Universidad Iberoamericana"
        }, 
        {
          "country": "Mexico", 
          "value": "Department of Science, Tecnologico de Monterrey, Campus Puebla, Av. Atlixc\u00e1yotl 2301, Puebla, CP 72453, Mexico", 
          "organization": "Tecnologico de Monterrey"
        }
      ], 
      "surname": "Bola\u00f1os", 
      "email": "azucena.bolanos@iberopuebla.mx", 
      "full_name": "Bola\u00f1os, A.", 
      "given_names": "A."
    }, 
    {
      "affiliations": [
        {
          "country": "Mexico", 
          "value": "Facultad de Ciencias F\u00edsico-Matem\u00e1ticas, Benem\u00e9rita Universidad Aut\u00f3noma de Puebla, Puebla, CP 72570, Mexico", 
          "organization": "Benem\u00e9rita Universidad Aut\u00f3noma de Puebla"
        }
      ], 
      "surname": "S\u00e1nchez-V\u00e9lez", 
      "email": "ricsv05@icloud.com", 
      "full_name": "S\u00e1nchez-V\u00e9lez, R.", 
      "given_names": "R."
    }, 
    {
      "affiliations": [
        {
          "country": "Mexico", 
          "value": "Facultad de Ciencias F\u00edsico-Matem\u00e1ticas, Benem\u00e9rita Universidad Aut\u00f3noma de Puebla, Puebla, CP 72570, Mexico", 
          "organization": "Benem\u00e9rita Universidad Aut\u00f3noma de Puebla"
        }
      ], 
      "surname": "Tavares-Velasco", 
      "email": "gtv@fcfm.buap.mx", 
      "full_name": "Tavares-Velasco, G.", 
      "given_names": "G."
    }
  ], 
  "titles": [
    {
      "source": "Springer", 
      "title": "Flavor changing neutral current decays $$t\\rightarrow c X$$ <math><mrow><mi>t</mi><mo>\u2192</mo><mi>c</mi><mi>X</mi></mrow></math>  ($$X=\\gamma ,\\,g,\\, Z,\\, H$$ <math><mrow><mi>X</mi><mo>=</mo><mi>\u03b3</mi><mo>,</mo><mspace width=\"0.166667em\"></mspace><mi>g</mi><mo>,</mo><mspace width=\"0.166667em\"></mspace><mi>Z</mi><mo>,</mo><mspace width=\"0.166667em\"></mspace><mi>H</mi></mrow></math> ) and $$t\\rightarrow c{{\\bar{\\ell }}}\\ell $$ <math><mrow><mi>t</mi><mo>\u2192</mo><mi>c</mi><mover><mrow><mi>\u2113</mi></mrow><mrow><mo>\u00af</mo></mrow></mover><mi>\u2113</mi></mrow></math>  ($$\\ell =\\mu ,\\,\\tau $$ <math><mrow><mi>\u2113</mi><mo>=</mo><mi>\u03bc</mi><mo>,</mo><mspace width=\"0.166667em\"></mspace><mi>\u03c4</mi></mrow></math> ) via scalar leptoquarks"
    }
  ], 
  "dois": [
    {
      "value": "10.1140/epjc/s10052-019-7211-8"
    }
  ], 
  "publication_info": [
    {
      "page_end": "21", 
      "journal_title": "European Physical Journal C", 
      "material": "article", 
      "journal_volume": "79", 
      "artid": "s10052-019-7211-8", 
      "year": 2019, 
      "page_start": "1", 
      "journal_issue": "8"
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2020-01-06T16:20:44.454211", 
    "source": "Springer", 
    "method": "Springer", 
    "submission_number": "1408b998309811eaad1402163e01809a"
  }, 
  "page_nr": [
    21
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses//by/4.0", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "holder": "The Author(s)", 
      "year": "2019"
    }
  ], 
  "control_number": "49277", 
  "record_creation_date": "2019-08-21T17:30:21.469109", 
  "_files": [
    {
      "checksum": "md5:a24abdd552807dc246133abe15692008", 
      "filetype": "xml", 
      "bucket": "814f6617-6cac-44a0-b9d6-3f1f077372d4", 
      "version_id": "317d38c6-fa3e-4cb2-bab2-5ddc5a8a2b91", 
      "key": "10.1140/epjc/s10052-019-7211-8.xml", 
      "size": 36362
    }, 
    {
      "checksum": "md5:33e3dff9b3b4e7075a9ce74a90b35f61", 
      "filetype": "pdf/a", 
      "bucket": "814f6617-6cac-44a0-b9d6-3f1f077372d4", 
      "version_id": "537edbf1-aadf-42f4-b997-59966cbe7e7a", 
      "key": "10.1140/epjc/s10052-019-7211-8_a.pdf", 
      "size": 7015676
    }
  ], 
  "collections": [
    {
      "primary": "European Physical Journal C"
    }
  ], 
  "abstracts": [
    {
      "source": "Springer", 
      "value": "The flavor changing neutral current decays $$t\\rightarrow c X$$ <math><mrow><mi>t</mi><mo>\u2192</mo><mi>c</mi><mi>X</mi></mrow></math>  ($$X=\\gamma ,\\,g,\\, Z,\\, H$$ <math><mrow><mi>X</mi><mo>=</mo><mi>\u03b3</mi><mo>,</mo><mspace width=\"0.166667em\"></mspace><mi>g</mi><mo>,</mo><mspace width=\"0.166667em\"></mspace><mi>Z</mi><mo>,</mo><mspace width=\"0.166667em\"></mspace><mi>H</mi></mrow></math> ) and $$t\\rightarrow c{{\\bar{\\ell }}}\\ell $$ <math><mrow><mi>t</mi><mo>\u2192</mo><mi>c</mi><mover><mrow><mi>\u2113</mi></mrow><mrow><mo>\u00af</mo></mrow></mover><mi>\u2113</mi></mrow></math>  ($$\\ell =\\mu ,\\,\\tau $$ <math><mrow><mi>\u2113</mi><mo>=</mo><mi>\u03bc</mi><mo>,</mo><mspace width=\"0.166667em\"></mspace><mi>\u03c4</mi></mrow></math> ) are studied in a renormalizable scalar leptoquark (LQ) model with no proton decay, where a scalar SU(2) doublet with hypercharge $$Y=7/6$$ <math><mrow><mi>Y</mi><mo>=</mo><mn>7</mn><mo>/</mo><mn>6</mn></mrow></math>  is added to the standard model, yielding a non-chiral LQ $$\\varOmega _{5/3}$$ <math><msub><mi>\u03a9</mi><mrow><mn>5</mn><mo>/</mo><mn>3</mn></mrow></msub></math> . Analytical results for the one-loop (tree-level) contributions of a scalar LQ to the $$f_i\\rightarrow f_j X$$ <math><mrow><msub><mi>f</mi><mi>i</mi></msub><mo>\u2192</mo><msub><mi>f</mi><mi>j</mi></msub><mi>X</mi></mrow></math>  ($$f_i\\rightarrow f_j {\\bar{f}}_m f_l$$ <math><mrow><msub><mi>f</mi><mi>i</mi></msub><mo>\u2192</mo><msub><mi>f</mi><mi>j</mi></msub><msub><mover><mrow><mi>f</mi></mrow><mrow><mo>\u00af</mo></mrow></mover><mi>m</mi></msub><msub><mi>f</mi><mi>l</mi></msub></mrow></math> ) decays, with $$f_a=q_a, \\ell _a$$ <math><mrow><msub><mi>f</mi><mi>a</mi></msub><mo>=</mo><msub><mi>q</mi><mi>a</mi></msub><mo>,</mo><msub><mi>\u2113</mi><mi>a</mi></msub></mrow></math> , are presented. We consider the scenario where $$\\varOmega _{5/3}$$ <math><msub><mi>\u03a9</mi><mrow><mn>5</mn><mo>/</mo><mn>3</mn></mrow></msub></math>  couples to the fermions of the second and third families, with its right- and left-handed couplings obeying $$\\lambda _R^{\\ell u_i}/\\lambda _L^{\\ell u_i}=O(\\epsilon )$$ <math><mrow><msubsup><mi>\u03bb</mi><mi>R</mi><mrow><mi>\u2113</mi><msub><mi>u</mi><mi>i</mi></msub></mrow></msubsup><mo>/</mo><msubsup><mi>\u03bb</mi><mi>L</mi><mrow><mi>\u2113</mi><msub><mi>u</mi><mi>i</mi></msub></mrow></msubsup><mo>=</mo><mi>O</mi><mrow><mo>(</mo><mi>\u03f5</mi><mo>)</mo></mrow></mrow></math> , where $$\\epsilon $$ <math><mi>\u03f5</mi></math>  parametrizes the relative size between these couplings. The allowed parameter space is then found via the current constraints on the muon $$(g-2)$$ <math><mrow><mo>(</mo><mi>g</mi><mo>-</mo><mn>2</mn><mo>)</mo></mrow></math> , the $$\\tau \\rightarrow \\mu \\gamma $$ <math><mrow><mi>\u03c4</mi><mo>\u2192</mo><mi>\u03bc</mi><mi>\u03b3</mi></mrow></math>  decay, the LHC Higgs boson data, and the direct LQ searches at the LHC. For $$m_{\\varOmega _{5/3}}=1$$ <math><mrow><msub><mi>m</mi><msub><mi>\u03a9</mi><mrow><mn>5</mn><mo>/</mo><mn>3</mn></mrow></msub></msub><mo>=</mo><mn>1</mn></mrow></math>  TeV and $$\\epsilon =10^{-3}$$ <math><mrow><mi>\u03f5</mi><mo>=</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></math> , we find that the $$t\\rightarrow c X$$ <math><mrow><mi>t</mi><mo>\u2192</mo><mi>c</mi><mi>X</mi></mrow></math>  branching ratios are of similar size and can be as large as $$10^{-8}$$ <math><msup><mn>10</mn><mrow><mo>-</mo><mn>8</mn></mrow></msup></math>  in a tiny area of the parameter space, whereas $${\\mathrm{Br}}(t\\rightarrow c{{\\bar{\\tau }}}\\tau )$$ <math><mrow><mi>Br</mi><mo>(</mo><mi>t</mi><mo>\u2192</mo><mi>c</mi><mover><mrow><mi>\u03c4</mi></mrow><mrow><mo>\u00af</mo></mrow></mover><mi>\u03c4</mi><mo>)</mo></mrow></math>  [$${\\mathrm{Br}}(t\\rightarrow c{{\\bar{\\mu }}}\\mu )$$ <math><mrow><mi>Br</mi><mo>(</mo><mi>t</mi><mo>\u2192</mo><mi>c</mi><mover><mrow><mi>\u03bc</mi></mrow><mrow><mo>\u00af</mo></mrow></mover><mi>\u03bc</mi><mo>)</mo></mrow></math> ] can be up to $$10^{-6}$$ <math><msup><mn>10</mn><mrow><mo>-</mo><mn>6</mn></mrow></msup></math>  ($$10^{-7}$$ <math><msup><mn>10</mn><mrow><mo>-</mo><mn>7</mn></mrow></msup></math> )."
    }
  ], 
  "imprints": [
    {
      "date": "2019-09-23", 
      "publisher": "Springer"
    }
  ]
}
Published on:
23 September 2019
Publisher:
Springer
Published in:
European Physical Journal C , Volume 79 (2019)
Issue 8
Pages 1-21
DOI:
https://doi.org/10.1140/epjc/s10052-019-7211-8
Copyrights:
The Author(s)
Licence:
CC-BY-4.0

Fulltext files: