Flavor changing neutral current decays $$t\rightarrow c X$$ ($$X=\gamma ,\,g,\, Z,\, H$$ ) and $$t\rightarrow c{{\bar{\ell }}}\ell $$ ($$\ell =\mu ,\,\tau $$ ) via scalar leptoquarks
A. Bolaños (Departamento de Ciencias e Ingenierías, Universidad Iberoamericana, Boulevard del Niño Poblano 2901, Reserva Territorial Atlixcáyotl, San Andrés Cholula, Puebla, CP 72820, Mexico, Department of Science, Tecnologico de Monterrey, Campus Puebla, Av. Atlixcáyotl 2301, Puebla, CP 72453, Mexico); R. Sánchez-Vélez (Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, CP 72570, Mexico); G. Tavares-Velasco (Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, CP 72570, Mexico)
The flavor changing neutral current decays $$t\rightarrow c X$$ ($$X=\gamma ,\,g,\, Z,\, H$$ ) and $$t\rightarrow c{{\bar{\ell }}}\ell $$ ($$\ell =\mu ,\,\tau $$ ) are studied in a renormalizable scalar leptoquark (LQ) model with no proton decay, where a scalar SU(2) doublet with hypercharge $$Y=7/6$$ is added to the standard model, yielding a non-chiral LQ $$\varOmega _{5/3}$$ . Analytical results for the one-loop (tree-level) contributions of a scalar LQ to the $$f_i\rightarrow f_j X$$ ($$f_i\rightarrow f_j {\bar{f}}_m f_l$$ ) decays, with $$f_a=q_a, \ell _a$$ , are presented. We consider the scenario where $$\varOmega _{5/3}$$ couples to the fermions of the second and third families, with its right- and left-handed couplings obeying $$\lambda _R^{\ell u_i}/\lambda _L^{\ell u_i}=O(\epsilon )$$ , where $$\epsilon $$ parametrizes the relative size between these couplings. The allowed parameter space is then found via the current constraints on the muon $$(g-2)$$ , the $$\tau \rightarrow \mu \gamma $$ decay, the LHC Higgs boson data, and the direct LQ searches at the LHC. For $$m_{\varOmega _{5/3}}=1$$ TeV and $$\epsilon =10^{-3}$$ , we find that the $$t\rightarrow c X$$ branching ratios are of similar size and can be as large as $$10^{-8}$$ in a tiny area of the parameter space, whereas $${\mathrm{Br}}(t\rightarrow c{{\bar{\tau }}}\tau )$$ [$${\mathrm{Br}}(t\rightarrow c{{\bar{\mu }}}\mu )$$ ] can be up to $$10^{-6}$$ ($$10^{-7}$$ ).