$$\Xi _c$$ Ξc and $$\Xi _b$$ Ξb excited states within a $$\mathrm{SU(6)}_{\mathrm{lsf}}\times $$ SU(6)lsf× HQSS model

J. Nieves (Instituto de Física Corpuscular (centro mixto CSIC-UV), Institutos de Investigación de Paterna, Aptdo. 22085, Valencia, 46071, Spain) ; R. Pavao (Instituto de Física Corpuscular (centro mixto CSIC-UV), Institutos de Investigación de Paterna, Aptdo. 22085, Valencia, 46071, Spain) ; L. Tolos (Institut für Theoretische Physik, University of Frankfurt, Max-von-Laue-Str. 1, Frankfurt am Main, 60438, Germany; Frankfurt Institute for Advanced Studies, University of Frankfurt, Ruth-Moufang-Str. 1, Frankfurt am Main, 60438, Germany; Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, Barcelona, 08193, Spain; Institut d’ Estudis Espacials de Catalunya (IEEC), Barcelona, 08034, Spain)

We study odd parity $$J=1/2$$ J=1/2 and $$J=3/2$$ J=3/2 $$\Xi _c$$ Ξc resonances using a unitarized coupled-channel framework based on a $$\mathrm{SU(6)}_{\mathrm{lsf}}\times $$ SU(6)lsf× HQSS-extended Weinberg–Tomozawa baryon–meson interaction, while paying a special attention to the renormalization procedure. We predict a large molecular $$\Lambda _c {\bar{K}}$$ ΛcK¯ component for the $$\Xi _c(2790)$$ Ξc(2790) with a dominant $$0^-$$ 0- light-degree-of-freedom spin configuration. We discuss the differences between the $$3/2^-$$ 3/2- $$\Lambda _c(2625)$$ Λc(2625) and $$\Xi _c(2815)$$ Ξc(2815) states, and conclude that they cannot be SU(3) siblings, whereas we predict the existence of other $$\Xi _c$$ Ξc -states, one of them related to the two-pole structure of the $$\Lambda _c(2595)$$ Λc(2595) . It is of particular interest a pair of $$J=1/2$$ J=1/2 and $$J=3/2$$ J=3/2 poles, which form a HQSS doublet and that we tentatively assign to the $$\Xi _c(2930)$$ Ξc(2930) and $$\Xi _c(2970)$$ Ξc(2970) , respectively. Within this picture, the $$\Xi _c(2930)$$ Ξc(2930) would be part of a SU(3) sextet, containing either the $$\Omega _c(3090)$$ Ωc(3090) or the $$\Omega _c(3119)$$ Ωc(3119) , and that would be completed by the $$\Sigma _c(2800)$$ Σc(2800) . Moreover, we identify a $$J=1/2$$ J=1/2 sextet with the $$\Xi _b(6227)$$ Ξb(6227) state and the recently discovered $$\Sigma _b(6097)$$ Σb(6097) . Assuming the equal spacing rule and to complete this multiplet, we predict the existence of a $$J=1/2$$ J=1/2 $$\Omega _b$$ Ωb odd parity state, with a mass of 6360 MeV and that should be seen in the $$\Xi _b {\bar{K}}$$ ΞbK¯ channel.

{
  "_oai": {
    "updated": "2020-04-03T06:38:54Z", 
    "id": "oai:repo.scoap3.org:52026", 
    "sets": [
      "EPJC"
    ]
  }, 
  "authors": [
    {
      "affiliations": [
        {
          "country": "Spain", 
          "value": "Instituto de F\u00edsica Corpuscular (centro mixto CSIC-UV), Institutos de Investigaci\u00f3n de Paterna, Aptdo. 22085, Valencia, 46071, Spain", 
          "organization": "Instituto\u00a0de\u00a0F\u00edsica\u00a0Corpuscular\u00a0(centro\u00a0mixto\u00a0CSIC-UV), Institutos\u00a0de\u00a0Investigaci\u00f3n\u00a0de\u00a0Paterna"
        }
      ], 
      "surname": "Nieves", 
      "given_names": "J.", 
      "full_name": "Nieves, J."
    }, 
    {
      "affiliations": [
        {
          "country": "Spain", 
          "value": "Instituto de F\u00edsica Corpuscular (centro mixto CSIC-UV), Institutos de Investigaci\u00f3n de Paterna, Aptdo. 22085, Valencia, 46071, Spain", 
          "organization": "Instituto\u00a0de\u00a0F\u00edsica\u00a0Corpuscular\u00a0(centro\u00a0mixto\u00a0CSIC-UV), Institutos\u00a0de\u00a0Investigaci\u00f3n\u00a0de\u00a0Paterna"
        }
      ], 
      "surname": "Pavao", 
      "given_names": "R.", 
      "full_name": "Pavao, R."
    }, 
    {
      "affiliations": [
        {
          "country": "Germany", 
          "value": "Institut f\u00fcr Theoretische Physik, University of Frankfurt, Max-von-Laue-Str. 1, Frankfurt am Main, 60438, Germany", 
          "organization": "Institut f\u00fcr Theoretische Physik, University of Frankfurt"
        }, 
        {
          "country": "Germany", 
          "value": "Frankfurt Institute for Advanced Studies, University of Frankfurt, Ruth-Moufang-Str. 1, Frankfurt am Main, 60438, Germany", 
          "organization": "Frankfurt Institute for Advanced Studies, University of Frankfurt"
        }, 
        {
          "country": "Spain", 
          "value": "Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, Barcelona, 08193, Spain", 
          "organization": "Institute of Space Sciences (ICE, CSIC), Campus UAB"
        }, 
        {
          "country": "Spain", 
          "value": "Institut d\u2019 Estudis Espacials de Catalunya (IEEC), Barcelona, 08034, Spain", 
          "organization": "Institut d\u2019 Estudis Espacials de Catalunya (IEEC)"
        }
      ], 
      "surname": "Tolos", 
      "email": "tolos@ice.csic.es", 
      "full_name": "Tolos, L.", 
      "given_names": "L."
    }
  ], 
  "titles": [
    {
      "source": "Springer", 
      "title": "$$\\Xi _c$$ <math><msub><mi>\u039e</mi><mi>c</mi></msub></math>  and $$\\Xi _b$$ <math><msub><mi>\u039e</mi><mi>b</mi></msub></math>  excited states within a $$\\mathrm{SU(6)}_{\\mathrm{lsf}}\\times $$ <math><mrow><msub><mrow><mi>SU</mi><mo>(</mo><mn>6</mn><mo>)</mo></mrow><mi>lsf</mi></msub><mo>\u00d7</mo></mrow></math> HQSS model"
    }
  ], 
  "dois": [
    {
      "value": "10.1140/epjc/s10052-019-7568-8"
    }
  ], 
  "publication_info": [
    {
      "page_end": "12", 
      "journal_title": "European Physical Journal C", 
      "material": "article", 
      "journal_volume": "80", 
      "artid": "s10052-019-7568-8", 
      "year": 2020, 
      "page_start": "1", 
      "journal_issue": "1"
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2020-04-03T08:31:00.045546", 
    "source": "Springer", 
    "method": "Springer", 
    "submission_number": "8b58288c757411ea832002163e01809a"
  }, 
  "page_nr": [
    12
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses//by/4.0", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "holder": "The Author(s)", 
      "year": 2020
    }
  ], 
  "control_number": "52026", 
  "record_creation_date": "2020-01-15T19:31:49.286325", 
  "_files": [
    {
      "checksum": "md5:8584f82d13a37e63c4e3396ef0960c8b", 
      "filetype": "xml", 
      "bucket": "9092c79d-880b-4042-8803-94b5dc0b8158", 
      "version_id": "8a630303-ab7c-47fe-81c1-7a0331e43987", 
      "key": "10.1140/epjc/s10052-019-7568-8.xml", 
      "size": 38958
    }, 
    {
      "checksum": "md5:cee9aa9e336b3fa67ecb74d9f7b5f4b0", 
      "filetype": "pdf/a", 
      "bucket": "9092c79d-880b-4042-8803-94b5dc0b8158", 
      "version_id": "5a1924ea-0100-408f-93d1-c3d03258ee50", 
      "key": "10.1140/epjc/s10052-019-7568-8_a.pdf", 
      "size": 610672
    }
  ], 
  "collections": [
    {
      "primary": "European Physical Journal C"
    }
  ], 
  "abstracts": [
    {
      "source": "Springer", 
      "value": "We study odd parity $$J=1/2$$ <math><mrow><mi>J</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math>  and $$J=3/2$$ <math><mrow><mi>J</mi><mo>=</mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math>  $$\\Xi _c$$ <math><msub><mi>\u039e</mi><mi>c</mi></msub></math>  resonances using a unitarized coupled-channel framework based on a $$\\mathrm{SU(6)}_{\\mathrm{lsf}}\\times $$ <math><mrow><msub><mrow><mi>SU</mi><mo>(</mo><mn>6</mn><mo>)</mo></mrow><mi>lsf</mi></msub><mo>\u00d7</mo></mrow></math> HQSS-extended Weinberg\u2013Tomozawa baryon\u2013meson interaction, while paying a special attention to the renormalization procedure. We predict a large molecular $$\\Lambda _c {\\bar{K}}$$ <math><mrow><msub><mi>\u039b</mi><mi>c</mi></msub><mover><mrow><mi>K</mi></mrow><mrow><mo>\u00af</mo></mrow></mover></mrow></math>  component for the $$\\Xi _c(2790)$$ <math><mrow><msub><mi>\u039e</mi><mi>c</mi></msub><mrow><mo>(</mo><mn>2790</mn><mo>)</mo></mrow></mrow></math>  with a dominant $$0^-$$ <math><msup><mn>0</mn><mo>-</mo></msup></math>  light-degree-of-freedom spin configuration. We discuss the differences between the $$3/2^-$$ <math><mrow><mn>3</mn><mo>/</mo><msup><mn>2</mn><mo>-</mo></msup></mrow></math>  $$\\Lambda _c(2625)$$ <math><mrow><msub><mi>\u039b</mi><mi>c</mi></msub><mrow><mo>(</mo><mn>2625</mn><mo>)</mo></mrow></mrow></math>  and $$\\Xi _c(2815)$$ <math><mrow><msub><mi>\u039e</mi><mi>c</mi></msub><mrow><mo>(</mo><mn>2815</mn><mo>)</mo></mrow></mrow></math>  states, and conclude that they cannot be SU(3) siblings, whereas we predict the existence of other $$\\Xi _c$$ <math><msub><mi>\u039e</mi><mi>c</mi></msub></math> -states, one of them related to the two-pole structure of the $$\\Lambda _c(2595)$$ <math><mrow><msub><mi>\u039b</mi><mi>c</mi></msub><mrow><mo>(</mo><mn>2595</mn><mo>)</mo></mrow></mrow></math> . It is of particular interest a pair of $$J=1/2$$ <math><mrow><mi>J</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math>  and $$J=3/2$$ <math><mrow><mi>J</mi><mo>=</mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math>  poles, which form a HQSS doublet and that we tentatively assign to the $$\\Xi _c(2930)$$ <math><mrow><msub><mi>\u039e</mi><mi>c</mi></msub><mrow><mo>(</mo><mn>2930</mn><mo>)</mo></mrow></mrow></math>  and $$\\Xi _c(2970)$$ <math><mrow><msub><mi>\u039e</mi><mi>c</mi></msub><mrow><mo>(</mo><mn>2970</mn><mo>)</mo></mrow></mrow></math> , respectively. Within this picture, the $$\\Xi _c(2930)$$ <math><mrow><msub><mi>\u039e</mi><mi>c</mi></msub><mrow><mo>(</mo><mn>2930</mn><mo>)</mo></mrow></mrow></math>  would be part of a SU(3) sextet, containing either the $$\\Omega _c(3090)$$ <math><mrow><msub><mi>\u03a9</mi><mi>c</mi></msub><mrow><mo>(</mo><mn>3090</mn><mo>)</mo></mrow></mrow></math>  or the $$\\Omega _c(3119)$$ <math><mrow><msub><mi>\u03a9</mi><mi>c</mi></msub><mrow><mo>(</mo><mn>3119</mn><mo>)</mo></mrow></mrow></math> , and that would be completed by the $$\\Sigma _c(2800)$$ <math><mrow><msub><mi>\u03a3</mi><mi>c</mi></msub><mrow><mo>(</mo><mn>2800</mn><mo>)</mo></mrow></mrow></math> . Moreover, we identify a $$J=1/2$$ <math><mrow><mi>J</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math>  sextet with the $$\\Xi _b(6227)$$ <math><mrow><msub><mi>\u039e</mi><mi>b</mi></msub><mrow><mo>(</mo><mn>6227</mn><mo>)</mo></mrow></mrow></math>  state and the recently discovered $$\\Sigma _b(6097)$$ <math><mrow><msub><mi>\u03a3</mi><mi>b</mi></msub><mrow><mo>(</mo><mn>6097</mn><mo>)</mo></mrow></mrow></math> . Assuming the equal spacing rule and to complete this multiplet, we predict the existence of a $$J=1/2$$ <math><mrow><mi>J</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math>  $$\\Omega _b$$ <math><msub><mi>\u03a9</mi><mi>b</mi></msub></math>  odd parity state, with a mass of 6360 MeV and that should be seen in the $$\\Xi _b {\\bar{K}}$$ <math><mrow><msub><mi>\u039e</mi><mi>b</mi></msub><mover><mrow><mi>K</mi></mrow><mrow><mo>\u00af</mo></mrow></mover></mrow></math>  channel."
    }
  ], 
  "imprints": [
    {
      "date": "2020-01-11", 
      "publisher": "Springer"
    }
  ]
}
Published on:
11 January 2020
Publisher:
Springer
Published in:
European Physical Journal C , Volume 80 (2020)
Issue 1
Pages 1-12
DOI:
https://doi.org/10.1140/epjc/s10052-019-7568-8
Copyrights:
The Author(s)
Licence:
CC-BY-4.0

Fulltext files: