Open-boundary conditions in the deconfined phase

Adrien Florio (Laboratory of Particle Physics and Cosmology, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland) ; Olaf Kaczmarek (Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan, 430079, China; Fakultät für Physik, Universität Bielefeld, Bielefeld, 33615, Germany) ; Lukas Mazur (Fakultät für Physik, Universität Bielefeld, Bielefeld, 33615, Germany)

In this work, we consider open-boundary conditions at high temperatures, as they can potentially be of help to measure the topological susceptibility. In particular, we measure the extent of the boundary effects at $$T=1.5T_c$$ T=1.5Tc and $$T=2.7T_c$$ T=2.7Tc . In the first case, it is larger than at $$T=0$$ T=0 while we find it to be smaller in the second case. The length of this “boundary zone” is controlled by the screening masses. We use this fact to measure the scalar and pseudo-scalar screening masses at these two temperatures. We observe a mass gap at $$T=1.5T_c$$ T=1.5Tc but not at $$T=2.7T_c$$ T=2.7Tc . Finally, we use our pseudo-scalar channel analysis to estimate the topological susceptibility. The results at $$T=1.5T_c$$ T=1.5Tc are in good agreement with the literature. At $$T=2.7T_c$$ T=2.7Tc , they appear to suffer from topological freezing, which prevents us from providing a precise determination of the topological susceptibility.

{
  "_oai": {
    "updated": "2020-01-23T21:52:28Z", 
    "id": "oai:repo.scoap3.org:52045", 
    "sets": [
      "EPJC"
    ]
  }, 
  "authors": [
    {
      "affiliations": [
        {
          "country": "Switzerland", 
          "value": "Laboratory of Particle Physics and Cosmology, Institute of Physics, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, Lausanne, 1015, Switzerland", 
          "organization": "Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne"
        }
      ], 
      "surname": "Florio", 
      "email": "adrien.florio@epfl.ch", 
      "full_name": "Florio, Adrien", 
      "given_names": "Adrien"
    }, 
    {
      "affiliations": [
        {
          "country": "China", 
          "value": "Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan, 430079, China", 
          "organization": "Central China Normal University"
        }, 
        {
          "country": "Germany", 
          "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, Bielefeld, 33615, Germany", 
          "organization": "Universit\u00e4t Bielefeld"
        }
      ], 
      "surname": "Kaczmarek", 
      "email": "okacz@physik.uni-bielefeld.de", 
      "full_name": "Kaczmarek, Olaf", 
      "given_names": "Olaf"
    }, 
    {
      "affiliations": [
        {
          "country": "Germany", 
          "value": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Bielefeld, Bielefeld, 33615, Germany", 
          "organization": "Universit\u00e4t Bielefeld"
        }
      ], 
      "surname": "Mazur", 
      "email": "lmazur@physik.uni-bielefeld.de", 
      "full_name": "Mazur, Lukas", 
      "given_names": "Lukas"
    }
  ], 
  "titles": [
    {
      "source": "Springer", 
      "title": "Open-boundary conditions in the deconfined phase"
    }
  ], 
  "dois": [
    {
      "value": "10.1140/epjc/s10052-019-7564-z"
    }
  ], 
  "publication_info": [
    {
      "page_end": "11", 
      "journal_title": "European Physical Journal C", 
      "material": "article", 
      "journal_volume": "79", 
      "artid": "s10052-019-7564-z", 
      "year": 2019, 
      "page_start": "1", 
      "journal_issue": "12"
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2020-01-23T22:31:17.949565", 
    "source": "Springer", 
    "method": "Springer", 
    "submission_number": "827da78e3e2711eaad1402163e01809a"
  }, 
  "page_nr": [
    11
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses//by/4.0", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "holder": "The Author(s)", 
      "year": 2019
    }
  ], 
  "control_number": "52045", 
  "record_creation_date": "2020-01-15T19:31:59.671116", 
  "_files": [
    {
      "checksum": "md5:a7c98ba04d440a1e637a4f382ac52a1f", 
      "filetype": "xml", 
      "bucket": "4dd62e3a-d464-4471-90ad-689c0bd34acd", 
      "version_id": "11dbb4e3-8ee0-4272-aa94-04d995393c35", 
      "key": "10.1140/epjc/s10052-019-7564-z.xml", 
      "size": 17805
    }, 
    {
      "checksum": "md5:32a3ed027303cdce2e6a2a286eb42309", 
      "filetype": "pdf/a", 
      "bucket": "4dd62e3a-d464-4471-90ad-689c0bd34acd", 
      "version_id": "f7c439c2-409f-41f3-ae33-983827039ee4", 
      "key": "10.1140/epjc/s10052-019-7564-z_a.pdf", 
      "size": 1024950
    }
  ], 
  "collections": [
    {
      "primary": "European Physical Journal C"
    }
  ], 
  "abstracts": [
    {
      "source": "Springer", 
      "value": "In this work, we consider open-boundary conditions at high temperatures, as they can potentially be of help to measure the topological susceptibility. In particular, we measure the extent of the boundary effects at $$T=1.5T_c$$ <math><mrow><mi>T</mi><mo>=</mo><mn>1.5</mn><msub><mi>T</mi><mi>c</mi></msub></mrow></math>  and $$T=2.7T_c$$ <math><mrow><mi>T</mi><mo>=</mo><mn>2.7</mn><msub><mi>T</mi><mi>c</mi></msub></mrow></math> . In the first case, it is larger than at $$T=0$$ <math><mrow><mi>T</mi><mo>=</mo><mn>0</mn></mrow></math>  while we find it to be smaller in the second case. The length of this \u201cboundary zone\u201d is controlled by the screening masses. We use this fact to measure the scalar and pseudo-scalar screening masses at these two temperatures. We observe a mass gap at $$T=1.5T_c$$ <math><mrow><mi>T</mi><mo>=</mo><mn>1.5</mn><msub><mi>T</mi><mi>c</mi></msub></mrow></math>  but not at $$T=2.7T_c$$ <math><mrow><mi>T</mi><mo>=</mo><mn>2.7</mn><msub><mi>T</mi><mi>c</mi></msub></mrow></math> . Finally, we use our pseudo-scalar channel analysis to estimate the topological susceptibility. The results at $$T=1.5T_c$$ <math><mrow><mi>T</mi><mo>=</mo><mn>1.5</mn><msub><mi>T</mi><mi>c</mi></msub></mrow></math>  are in good agreement with the literature. At $$T=2.7T_c$$ <math><mrow><mi>T</mi><mo>=</mo><mn>2.7</mn><msub><mi>T</mi><mi>c</mi></msub></mrow></math> , they appear to suffer from topological freezing, which prevents us from providing a precise determination of the topological susceptibility."
    }
  ], 
  "imprints": [
    {
      "date": "2019-12-30", 
      "publisher": "Springer"
    }
  ]
}
Published on:
30 December 2019
Publisher:
Springer
Published in:
European Physical Journal C , Volume 79 (2019)
Issue 12
Pages 1-11
DOI:
https://doi.org/10.1140/epjc/s10052-019-7564-z
Copyrights:
The Author(s)
Licence:
CC-BY-4.0

Fulltext files: