UHECRs mass composition from $$X_{\mathrm{max}}$$ Xmax distributions

Nicusor Arsene (Institute of Space Science, Bucharest-Magurele, 077125, Romania) ; Octavian Sima (Physics Department, University of Bucharest, Bucharest-Magurele, Romania; “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Magurele, Romania; Extreme Light Infrastructure—Nuclear Physics, ELI-NP, Bucharest-Magurele, 07725, Romania)

The atmospheric depth where the energy deposit profile of secondary particles from extensive air showers (EAS) reaches its maximum, $$X_{\mathrm{max}}$$ Xmax , is related to the primary particle mass. The mass composition of the ultra-high energy cosmic rays (UHECRs) can be inferred from measurements of $$X_{\mathrm{max}}$$ Xmax distributions in each energy interval, by fitting these distributions with Monte Carlo (MC) templates for four primary species (p, He, N and Fe). On the basis of simulations, we show that a high abundance of some intermediate elements in the $$X_{\mathrm{max}}$$ Xmax distributions, e.g. Ne or Si, may affect the quality of the fit and also the reconstructed fractions of different species with respect to their true values. We propose a method for finding the “best combination” of elements in each energy interval from a larger set of primaries (p, He, C, N, O, Ne, Si and Fe) which best describes the $$X_{\mathrm{max}}$$ Xmax distributions. Applying this method to the $$X_{\mathrm{max}}$$ Xmax distributions measured by the Pierre Auger Observatory (2014), we found that the “best combination” of elements which best describe the data suggest the presence of Ne or Si in some low energy bins for the EPOS-LHC model.

{
  "_oai": {
    "updated": "2020-04-03T06:47:03Z", 
    "id": "oai:repo.scoap3.org:52235", 
    "sets": [
      "EPJC"
    ]
  }, 
  "authors": [
    {
      "affiliations": [
        {
          "country": "Romania", 
          "value": "Institute of Space Science, Bucharest-Magurele, 077125, Romania", 
          "organization": "Institute of Space Science"
        }
      ], 
      "surname": "Arsene", 
      "email": "nicusorarsene@spacescience.ro", 
      "full_name": "Arsene, Nicusor", 
      "given_names": "Nicusor"
    }, 
    {
      "affiliations": [
        {
          "country": "Romania", 
          "value": "Physics Department, University of Bucharest, Bucharest-Magurele, Romania", 
          "organization": "University of Bucharest"
        }, 
        {
          "country": "Romania", 
          "value": "\u201cHoria Hulubei\u201d National Institute for Physics and Nuclear Engineering, Magurele, Romania", 
          "organization": "\u201cHoria Hulubei\u201d National Institute for Physics and Nuclear Engineering"
        }, 
        {
          "country": "Romania", 
          "value": "Extreme Light Infrastructure\u2014Nuclear Physics, ELI-NP, Bucharest-Magurele, 07725, Romania", 
          "organization": "Extreme Light Infrastructure\u2014Nuclear Physics, ELI-NP"
        }
      ], 
      "surname": "Sima", 
      "email": "octavian.sima@partner.kit.edu", 
      "full_name": "Sima, Octavian", 
      "given_names": "Octavian"
    }
  ], 
  "titles": [
    {
      "source": "Springer", 
      "title": "UHECRs mass composition from $$X_{\\mathrm{max}}$$ <math><msub><mi>X</mi><mi>max</mi></msub></math>  distributions"
    }
  ], 
  "dois": [
    {
      "value": "10.1140/epjc/s10052-020-7634-2"
    }
  ], 
  "publication_info": [
    {
      "page_end": "8", 
      "journal_title": "European Physical Journal C", 
      "material": "article", 
      "journal_volume": "80", 
      "artid": "s10052-020-7634-2", 
      "year": 2020, 
      "page_start": "1", 
      "journal_issue": "1"
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2020-04-03T08:31:25.153631", 
    "source": "Springer", 
    "method": "Springer", 
    "submission_number": "8b58288c757411ea832002163e01809a"
  }, 
  "page_nr": [
    8
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses//by/4.0", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "holder": "The Author(s)", 
      "year": "2020"
    }
  ], 
  "control_number": "52235", 
  "record_creation_date": "2020-01-22T16:30:28.088513", 
  "_files": [
    {
      "checksum": "md5:a2f8d8da46508e932271357196e91abd", 
      "filetype": "xml", 
      "bucket": "40f0c7d7-9b3a-4253-900f-5ec5c914d1c2", 
      "version_id": "13206cc1-3d07-4211-9bf1-6436ceaa5433", 
      "key": "10.1140/epjc/s10052-020-7634-2.xml", 
      "size": 15827
    }, 
    {
      "checksum": "md5:e35591c9dbb0e03350c90f61e9b32403", 
      "filetype": "pdf/a", 
      "bucket": "40f0c7d7-9b3a-4253-900f-5ec5c914d1c2", 
      "version_id": "abac4513-2e19-442e-a063-9acf7ac50765", 
      "key": "10.1140/epjc/s10052-020-7634-2_a.pdf", 
      "size": 599266
    }
  ], 
  "collections": [
    {
      "primary": "European Physical Journal C"
    }
  ], 
  "abstracts": [
    {
      "source": "Springer", 
      "value": "The atmospheric depth where the energy deposit profile of secondary particles from extensive air showers (EAS) reaches its maximum, $$X_{\\mathrm{max}}$$ <math><msub><mi>X</mi><mi>max</mi></msub></math> , is related to the primary particle mass. The mass composition of the ultra-high energy cosmic rays (UHECRs) can be inferred from measurements of $$X_{\\mathrm{max}}$$ <math><msub><mi>X</mi><mi>max</mi></msub></math>  distributions in each energy interval, by fitting these distributions with Monte Carlo (MC) templates for four primary species (p, He, N and Fe). On the basis of simulations, we show that a high abundance of some intermediate elements in the $$X_{\\mathrm{max}}$$ <math><msub><mi>X</mi><mi>max</mi></msub></math>  distributions, e.g. Ne or Si, may affect the quality of the fit and also the reconstructed fractions of different species with respect to their true values. We propose a method for finding the \u201cbest combination\u201d of elements in each energy interval from a larger set of primaries (p, He, C, N, O, Ne, Si and Fe) which best describes the $$X_{\\mathrm{max}}$$ <math><msub><mi>X</mi><mi>max</mi></msub></math>  distributions. Applying this method to the $$X_{\\mathrm{max}}$$ <math><msub><mi>X</mi><mi>max</mi></msub></math>  distributions measured by the Pierre Auger Observatory (2014), we found that the \u201cbest combination\u201d of elements which best describe the data suggest the presence of Ne or Si in some low energy bins for the EPOS-LHC model."
    }
  ], 
  "imprints": [
    {
      "date": "2020-03-03", 
      "publisher": "Springer"
    }
  ]
}
Published on:
03 March 2020
Publisher:
Springer
Published in:
European Physical Journal C , Volume 80 (2020)
Issue 1
Pages 1-8
DOI:
https://doi.org/10.1140/epjc/s10052-020-7634-2
Copyrights:
The Author(s)
Licence:
CC-BY-4.0

Fulltext files: