The M-theory archipelago

Nathan Agmon (Jefferson Physical Laboratory, Harvard University, Cambridge, MA, 02138, USA) ; Shai Chester (Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel) ; Silviu Pufu (Joseph Henry Laboratories, Princeton University, Princeton, NJ, 08544, USA)

We combine supersymmetric localization results and the numerical conformal bootstrap technique to study the 3d maximally supersymmetric ( N $$ \mathcal{N} $$ = 8) CFT on N coincident M2-branes (the U(N) k × U(N) −k ABJM theory at Chern-Simons level k = 1). In particular, we perform a mixed correlator bootstrap study of the superconformal primaries of the stress tensor multiplet and of the next possible lowest-dimension half-BPS multiplet that is allowed by 3d N $$ \mathcal{N} $$ = 8 superconformal symmetry. Of all known 3d N $$ \mathcal{N} $$ = 8 SCFTs, the k = 1 ABJM theory is the only one that contains both types of multiplets in its operator spectrum. By imposing the values of the short OPE coefficients that can be computed exactly using supersymmetric localization, we are able to derive precise islands in the space of semi-short OPE coefficients for an infinite number of such coefficients. We find that these islands decrease in size with increasing N. More generally, we also analyze 3d N $$ \mathcal{N} $$ = 8 SCFT that contain both aforementioned multiplets in their operator spectra without inputing any additional information that is specific to ABJM theory. For such theories, we compute upper and lower bounds on the semi-short OPE coefficients as well as upper bounds on the scaling dimension of the lowest unprotected scalar operator. These latter bounds are more constraining than the analogous bounds previously derived from a single correlator bootstrap of the stress tensor multiplet. This leads us to conjecture that the U(N)2 × U(N + 1) −2 ABJ theory, and not the k = 1 ABJM theory, saturates the single correlator bounds.

{
  "_oai": {
    "updated": "2022-03-03T09:35:40Z", 
    "id": "oai:repo.scoap3.org:52568", 
    "sets": [
      "JHEP"
    ]
  }, 
  "authors": [
    {
      "affiliations": [
        {
          "country": "USA", 
          "value": "Jefferson Physical Laboratory, Harvard University, Cambridge, MA, 02138, USA", 
          "organization": "Harvard University"
        }
      ], 
      "surname": "Agmon", 
      "email": "nagmon@g.harvard.edu", 
      "full_name": "Agmon, Nathan", 
      "given_names": "Nathan"
    }, 
    {
      "affiliations": [
        {
          "country": "Israel", 
          "value": "Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel", 
          "organization": "Weizmann Institute of Science"
        }
      ], 
      "surname": "Chester", 
      "email": "iahs81@gmail.com", 
      "full_name": "Chester, Shai", 
      "given_names": "Shai"
    }, 
    {
      "affiliations": [
        {
          "country": "USA", 
          "value": "Joseph Henry Laboratories, Princeton University, Princeton, NJ, 08544, USA", 
          "organization": "Princeton University"
        }
      ], 
      "surname": "Pufu", 
      "email": "spufu@princeton.edu", 
      "full_name": "Pufu, Silviu", 
      "given_names": "Silviu"
    }
  ], 
  "titles": [
    {
      "source": "Springer", 
      "title": "The M-theory archipelago"
    }
  ], 
  "dois": [
    {
      "value": "10.1007/JHEP02(2020)010"
    }
  ], 
  "publication_info": [
    {
      "page_end": "57", 
      "journal_title": "Journal of High Energy Physics", 
      "material": "article", 
      "journal_volume": "2020", 
      "artid": "JHEP02(2020)010", 
      "year": 2020, 
      "page_start": "1", 
      "journal_issue": "2"
    }
  ], 
  "$schema": "http://repo.scoap3.org/schemas/hep.json", 
  "acquisition_source": {
    "date": "2021-05-05T15:10:32.247458", 
    "source": "Springer", 
    "method": "Springer", 
    "submission_number": "cd5d2ec6adb311eba0e30a580a641584"
  }, 
  "page_nr": [
    57
  ], 
  "license": [
    {
      "url": "https://creativecommons.org/licenses//by/4.0", 
      "license": "CC-BY-4.0"
    }
  ], 
  "copyright": [
    {
      "holder": "The Author(s)", 
      "year": "2021"
    }
  ], 
  "control_number": "52568", 
  "record_creation_date": "2020-02-08T10:30:21.698909", 
  "_files": [
    {
      "checksum": "md5:9199568c7c4c6399ff7ef65775e95a9a", 
      "filetype": "xml", 
      "bucket": "e9a2541d-3e6b-4aa2-91fb-6332f9cbdb6d", 
      "version_id": "7bd3230d-e31b-47b9-8526-0705f4e87125", 
      "key": "10.1007/JHEP02(2020)010.xml", 
      "size": 15717
    }, 
    {
      "checksum": "md5:5beb6cf80d3d7f713877771efbdc8965", 
      "filetype": "pdf/a", 
      "bucket": "e9a2541d-3e6b-4aa2-91fb-6332f9cbdb6d", 
      "version_id": "e51e9de2-4fc0-4a79-9d3a-fba7e701a5e8", 
      "key": "10.1007/JHEP02(2020)010_a.pdf", 
      "size": 1222957
    }
  ], 
  "collections": [
    {
      "primary": "Journal of High Energy Physics"
    }
  ], 
  "arxiv_eprints": [
    {
      "categories": [
        "hep-th"
      ], 
      "value": "1907.13222"
    }
  ], 
  "abstracts": [
    {
      "source": "Springer", 
      "value": "We combine supersymmetric localization results and the numerical conformal bootstrap technique to study the 3d maximally supersymmetric (  <math> <mi>N</mi> </math>  $$ \\mathcal{N} $$  = 8) CFT on N coincident M2-branes (the U(N) k  \u00d7 U(N) \u2212k  ABJM theory at Chern-Simons level k = 1). In particular, we perform a mixed correlator bootstrap study of the superconformal primaries of the stress tensor multiplet and of the next possible lowest-dimension half-BPS multiplet that is allowed by 3d   <math> <mi>N</mi> </math>  $$ \\mathcal{N} $$  = 8 superconformal symmetry. Of all known 3d   <math> <mi>N</mi> </math>  $$ \\mathcal{N} $$  = 8 SCFTs, the k = 1 ABJM theory is the only one that contains both types of multiplets in its operator spectrum. By imposing the values of the short OPE coefficients that can be computed exactly using supersymmetric localization, we are able to derive precise islands in the space of semi-short OPE coefficients for an infinite number of such coefficients. We find that these islands decrease in size with increasing N. More generally, we also analyze 3d   <math> <mi>N</mi> </math>  $$ \\mathcal{N} $$  = 8 SCFT that contain both aforementioned multiplets in their operator spectra without inputing any additional information that is specific to ABJM theory. For such theories, we compute upper and lower bounds on the semi-short OPE coefficients as well as upper bounds on the scaling dimension of the lowest unprotected scalar operator. These latter bounds are more constraining than the analogous bounds previously derived from a single correlator bootstrap of the stress tensor multiplet. This leads us to conjecture that the U(N)2 \u00d7 U(N + 1) \u22122 ABJ theory, and not the k = 1 ABJM theory, saturates the single correlator bounds."
    }
  ], 
  "imprints": [
    {
      "date": "2020-02-03", 
      "publisher": "Springer"
    }
  ]
}
Published on:
03 February 2020
Publisher:
Springer
Published in:
Journal of High Energy Physics , Volume 2020 (2020)
Issue 2
Pages 1-57
DOI:
https://doi.org/10.1007/JHEP02(2020)010
arXiv:
1907.13222
Copyrights:
The Author(s)
Licence:
CC-BY-4.0

Fulltext files: